//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements the Bottom Up SLP vectorizer. It detects consecutive // stores that can be put together into vector-stores. Next, it attempts to // construct vectorizable tree using the use-def chains. If a profitable tree // was found, the SLP vectorizer performs vectorization on the tree. // // The pass is inspired by the work described in the paper: // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/SLPVectorizer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DOTGraphTraits.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Vectorize.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; using namespace slpvectorizer; #define SV_NAME "slp-vectorizer" #define DEBUG_TYPE "SLP" STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); static cl::opt SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, cl::desc("Only vectorize if you gain more than this " "number ")); static cl::opt ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, cl::desc("Attempt to vectorize horizontal reductions")); static cl::opt ShouldStartVectorizeHorAtStore( "slp-vectorize-hor-store", cl::init(false), cl::Hidden, cl::desc( "Attempt to vectorize horizontal reductions feeding into a store")); static cl::opt MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, cl::desc("Attempt to vectorize for this register size in bits")); /// Limits the size of scheduling regions in a block. /// It avoid long compile times for _very_ large blocks where vector /// instructions are spread over a wide range. /// This limit is way higher than needed by real-world functions. static cl::opt ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, cl::desc("Limit the size of the SLP scheduling region per block")); static cl::opt MinVectorRegSizeOption( "slp-min-reg-size", cl::init(128), cl::Hidden, cl::desc("Attempt to vectorize for this register size in bits")); static cl::opt RecursionMaxDepth( "slp-recursion-max-depth", cl::init(12), cl::Hidden, cl::desc("Limit the recursion depth when building a vectorizable tree")); static cl::opt MinTreeSize( "slp-min-tree-size", cl::init(3), cl::Hidden, cl::desc("Only vectorize small trees if they are fully vectorizable")); static cl::opt ViewSLPTree("view-slp-tree", cl::Hidden, cl::desc("Display the SLP trees with Graphviz")); // Limit the number of alias checks. The limit is chosen so that // it has no negative effect on the llvm benchmarks. static const unsigned AliasedCheckLimit = 10; // Another limit for the alias checks: The maximum distance between load/store // instructions where alias checks are done. // This limit is useful for very large basic blocks. static const unsigned MaxMemDepDistance = 160; /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling /// regions to be handled. static const int MinScheduleRegionSize = 16; /// Predicate for the element types that the SLP vectorizer supports. /// /// The most important thing to filter here are types which are invalid in LLVM /// vectors. We also filter target specific types which have absolutely no /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just /// avoids spending time checking the cost model and realizing that they will /// be inevitably scalarized. static bool isValidElementType(Type *Ty) { return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && !Ty->isPPC_FP128Ty(); } /// \returns true if all of the instructions in \p VL are in the same block or /// false otherwise. static bool allSameBlock(ArrayRef VL) { Instruction *I0 = dyn_cast(VL[0]); if (!I0) return false; BasicBlock *BB = I0->getParent(); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast(VL[i]); if (!I) return false; if (BB != I->getParent()) return false; } return true; } /// \returns True if all of the values in \p VL are constants. static bool allConstant(ArrayRef VL) { for (Value *i : VL) if (!isa(i)) return false; return true; } /// \returns True if all of the values in \p VL are identical. static bool isSplat(ArrayRef VL) { for (unsigned i = 1, e = VL.size(); i < e; ++i) if (VL[i] != VL[0]) return false; return true; } /// Checks if the vector of instructions can be represented as a shuffle, like: /// %x0 = extractelement <4 x i8> %x, i32 0 /// %x3 = extractelement <4 x i8> %x, i32 3 /// %y1 = extractelement <4 x i8> %y, i32 1 /// %y2 = extractelement <4 x i8> %y, i32 2 /// %x0x0 = mul i8 %x0, %x0 /// %x3x3 = mul i8 %x3, %x3 /// %y1y1 = mul i8 %y1, %y1 /// %y2y2 = mul i8 %y2, %y2 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 /// ret <4 x i8> %ins4 /// can be transformed into: /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> /// %2 = mul <4 x i8> %1, %1 /// ret <4 x i8> %2 /// We convert this initially to something like: /// %x0 = extractelement <4 x i8> %x, i32 0 /// %x3 = extractelement <4 x i8> %x, i32 3 /// %y1 = extractelement <4 x i8> %y, i32 1 /// %y2 = extractelement <4 x i8> %y, i32 2 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 /// %5 = mul <4 x i8> %4, %4 /// %6 = extractelement <4 x i8> %5, i32 0 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 /// %7 = extractelement <4 x i8> %5, i32 1 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 /// %8 = extractelement <4 x i8> %5, i32 2 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 /// %9 = extractelement <4 x i8> %5, i32 3 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 /// ret <4 x i8> %ins4 /// InstCombiner transforms this into a shuffle and vector mul /// TODO: Can we split off and reuse the shuffle mask detection from /// TargetTransformInfo::getInstructionThroughput? static Optional isShuffle(ArrayRef VL) { auto *EI0 = cast(VL[0]); unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); Value *Vec1 = nullptr; Value *Vec2 = nullptr; enum ShuffleMode { Unknown, Select, Permute }; ShuffleMode CommonShuffleMode = Unknown; for (unsigned I = 0, E = VL.size(); I < E; ++I) { auto *EI = cast(VL[I]); auto *Vec = EI->getVectorOperand(); // All vector operands must have the same number of vector elements. if (Vec->getType()->getVectorNumElements() != Size) return None; auto *Idx = dyn_cast(EI->getIndexOperand()); if (!Idx) return None; // Undefined behavior if Idx is negative or >= Size. if (Idx->getValue().uge(Size)) continue; unsigned IntIdx = Idx->getValue().getZExtValue(); // We can extractelement from undef vector. if (isa(Vec)) continue; // For correct shuffling we have to have at most 2 different vector operands // in all extractelement instructions. if (!Vec1 || Vec1 == Vec) Vec1 = Vec; else if (!Vec2 || Vec2 == Vec) Vec2 = Vec; else return None; if (CommonShuffleMode == Permute) continue; // If the extract index is not the same as the operation number, it is a // permutation. if (IntIdx != I) { CommonShuffleMode = Permute; continue; } CommonShuffleMode = Select; } // If we're not crossing lanes in different vectors, consider it as blending. if (CommonShuffleMode == Select && Vec2) return TargetTransformInfo::SK_Select; // If Vec2 was never used, we have a permutation of a single vector, otherwise // we have permutation of 2 vectors. return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc : TargetTransformInfo::SK_PermuteSingleSrc; } namespace { /// Main data required for vectorization of instructions. struct InstructionsState { /// The very first instruction in the list with the main opcode. Value *OpValue = nullptr; /// The main/alternate instruction. Instruction *MainOp = nullptr; Instruction *AltOp = nullptr; /// The main/alternate opcodes for the list of instructions. unsigned getOpcode() const { return MainOp ? MainOp->getOpcode() : 0; } unsigned getAltOpcode() const { return AltOp ? AltOp->getOpcode() : 0; } /// Some of the instructions in the list have alternate opcodes. bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } bool isOpcodeOrAlt(Instruction *I) const { unsigned CheckedOpcode = I->getOpcode(); return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; } InstructionsState() = delete; InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} }; } // end anonymous namespace /// Chooses the correct key for scheduling data. If \p Op has the same (or /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p /// OpValue. static Value *isOneOf(const InstructionsState &S, Value *Op) { auto *I = dyn_cast(Op); if (I && S.isOpcodeOrAlt(I)) return Op; return S.OpValue; } /// \returns analysis of the Instructions in \p VL described in /// InstructionsState, the Opcode that we suppose the whole list /// could be vectorized even if its structure is diverse. static InstructionsState getSameOpcode(ArrayRef VL, unsigned BaseIndex = 0) { // Make sure these are all Instructions. if (llvm::any_of(VL, [](Value *V) { return !isa(V); })) return InstructionsState(VL[BaseIndex], nullptr, nullptr); bool IsCastOp = isa(VL[BaseIndex]); bool IsBinOp = isa(VL[BaseIndex]); unsigned Opcode = cast(VL[BaseIndex])->getOpcode(); unsigned AltOpcode = Opcode; unsigned AltIndex = BaseIndex; // Check for one alternate opcode from another BinaryOperator. // TODO - generalize to support all operators (types, calls etc.). for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { unsigned InstOpcode = cast(VL[Cnt])->getOpcode(); if (IsBinOp && isa(VL[Cnt])) { if (InstOpcode == Opcode || InstOpcode == AltOpcode) continue; if (Opcode == AltOpcode) { AltOpcode = InstOpcode; AltIndex = Cnt; continue; } } else if (IsCastOp && isa(VL[Cnt])) { Type *Ty0 = cast(VL[BaseIndex])->getOperand(0)->getType(); Type *Ty1 = cast(VL[Cnt])->getOperand(0)->getType(); if (Ty0 == Ty1) { if (InstOpcode == Opcode || InstOpcode == AltOpcode) continue; if (Opcode == AltOpcode) { AltOpcode = InstOpcode; AltIndex = Cnt; continue; } } } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) continue; return InstructionsState(VL[BaseIndex], nullptr, nullptr); } return InstructionsState(VL[BaseIndex], cast(VL[BaseIndex]), cast(VL[AltIndex])); } /// \returns true if all of the values in \p VL have the same type or false /// otherwise. static bool allSameType(ArrayRef VL) { Type *Ty = VL[0]->getType(); for (int i = 1, e = VL.size(); i < e; i++) if (VL[i]->getType() != Ty) return false; return true; } /// \returns True if Extract{Value,Element} instruction extracts element Idx. static Optional getExtractIndex(Instruction *E) { unsigned Opcode = E->getOpcode(); assert((Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."); if (Opcode == Instruction::ExtractElement) { auto *CI = dyn_cast(E->getOperand(1)); if (!CI) return None; return CI->getZExtValue(); } ExtractValueInst *EI = cast(E); if (EI->getNumIndices() != 1) return None; return *EI->idx_begin(); } /// \returns True if in-tree use also needs extract. This refers to /// possible scalar operand in vectorized instruction. static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, TargetLibraryInfo *TLI) { unsigned Opcode = UserInst->getOpcode(); switch (Opcode) { case Instruction::Load: { LoadInst *LI = cast(UserInst); return (LI->getPointerOperand() == Scalar); } case Instruction::Store: { StoreInst *SI = cast(UserInst); return (SI->getPointerOperand() == Scalar); } case Instruction::Call: { CallInst *CI = cast(UserInst); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (hasVectorInstrinsicScalarOpd(ID, 1)) { return (CI->getArgOperand(1) == Scalar); } LLVM_FALLTHROUGH; } default: return false; } } /// \returns the AA location that is being access by the instruction. static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { if (StoreInst *SI = dyn_cast(I)) return MemoryLocation::get(SI); if (LoadInst *LI = dyn_cast(I)) return MemoryLocation::get(LI); return MemoryLocation(); } /// \returns True if the instruction is not a volatile or atomic load/store. static bool isSimple(Instruction *I) { if (LoadInst *LI = dyn_cast(I)) return LI->isSimple(); if (StoreInst *SI = dyn_cast(I)) return SI->isSimple(); if (MemIntrinsic *MI = dyn_cast(I)) return !MI->isVolatile(); return true; } namespace llvm { namespace slpvectorizer { /// Bottom Up SLP Vectorizer. class BoUpSLP { public: using ValueList = SmallVector; using InstrList = SmallVector; using ValueSet = SmallPtrSet; using StoreList = SmallVector; using ExtraValueToDebugLocsMap = MapVector>; BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, const DataLayout *DL, OptimizationRemarkEmitter *ORE) : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { CodeMetrics::collectEphemeralValues(F, AC, EphValues); // Use the vector register size specified by the target unless overridden // by a command-line option. // TODO: It would be better to limit the vectorization factor based on // data type rather than just register size. For example, x86 AVX has // 256-bit registers, but it does not support integer operations // at that width (that requires AVX2). if (MaxVectorRegSizeOption.getNumOccurrences()) MaxVecRegSize = MaxVectorRegSizeOption; else MaxVecRegSize = TTI->getRegisterBitWidth(true); if (MinVectorRegSizeOption.getNumOccurrences()) MinVecRegSize = MinVectorRegSizeOption; else MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); } /// Vectorize the tree that starts with the elements in \p VL. /// Returns the vectorized root. Value *vectorizeTree(); /// Vectorize the tree but with the list of externally used values \p /// ExternallyUsedValues. Values in this MapVector can be replaced but the /// generated extractvalue instructions. Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); /// \returns the cost incurred by unwanted spills and fills, caused by /// holding live values over call sites. int getSpillCost(); /// \returns the vectorization cost of the subtree that starts at \p VL. /// A negative number means that this is profitable. int getTreeCost(); /// Construct a vectorizable tree that starts at \p Roots, ignoring users for /// the purpose of scheduling and extraction in the \p UserIgnoreLst. void buildTree(ArrayRef Roots, ArrayRef UserIgnoreLst = None); /// Construct a vectorizable tree that starts at \p Roots, ignoring users for /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking /// into account (anf updating it, if required) list of externally used /// values stored in \p ExternallyUsedValues. void buildTree(ArrayRef Roots, ExtraValueToDebugLocsMap &ExternallyUsedValues, ArrayRef UserIgnoreLst = None); /// Clear the internal data structures that are created by 'buildTree'. void deleteTree() { VectorizableTree.clear(); ScalarToTreeEntry.clear(); MustGather.clear(); ExternalUses.clear(); NumOpsWantToKeepOrder.clear(); NumOpsWantToKeepOriginalOrder = 0; for (auto &Iter : BlocksSchedules) { BlockScheduling *BS = Iter.second.get(); BS->clear(); } MinBWs.clear(); } unsigned getTreeSize() const { return VectorizableTree.size(); } /// Perform LICM and CSE on the newly generated gather sequences. void optimizeGatherSequence(); /// \returns The best order of instructions for vectorization. Optional> bestOrder() const { auto I = std::max_element( NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, const decltype(NumOpsWantToKeepOrder)::value_type &D2) { return D1.second < D2.second; }); if (I == NumOpsWantToKeepOrder.end() || I->getSecond() <= NumOpsWantToKeepOriginalOrder) return None; return makeArrayRef(I->getFirst()); } /// \return The vector element size in bits to use when vectorizing the /// expression tree ending at \p V. If V is a store, the size is the width of /// the stored value. Otherwise, the size is the width of the largest loaded /// value reaching V. This method is used by the vectorizer to calculate /// vectorization factors. unsigned getVectorElementSize(Value *V); /// Compute the minimum type sizes required to represent the entries in a /// vectorizable tree. void computeMinimumValueSizes(); // \returns maximum vector register size as set by TTI or overridden by cl::opt. unsigned getMaxVecRegSize() const { return MaxVecRegSize; } // \returns minimum vector register size as set by cl::opt. unsigned getMinVecRegSize() const { return MinVecRegSize; } /// Check if ArrayType or StructType is isomorphic to some VectorType. /// /// \returns number of elements in vector if isomorphism exists, 0 otherwise. unsigned canMapToVector(Type *T, const DataLayout &DL) const; /// \returns True if the VectorizableTree is both tiny and not fully /// vectorizable. We do not vectorize such trees. bool isTreeTinyAndNotFullyVectorizable(); OptimizationRemarkEmitter *getORE() { return ORE; } private: struct TreeEntry; /// Checks if all users of \p I are the part of the vectorization tree. bool areAllUsersVectorized(Instruction *I) const; /// \returns the cost of the vectorizable entry. int getEntryCost(TreeEntry *E); /// This is the recursive part of buildTree. void buildTree_rec(ArrayRef Roots, unsigned Depth, int); /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can /// be vectorized to use the original vector (or aggregate "bitcast" to a /// vector) and sets \p CurrentOrder to the identity permutation; otherwise /// returns false, setting \p CurrentOrder to either an empty vector or a /// non-identity permutation that allows to reuse extract instructions. bool canReuseExtract(ArrayRef VL, Value *OpValue, SmallVectorImpl &CurrentOrder) const; /// Vectorize a single entry in the tree. Value *vectorizeTree(TreeEntry *E); /// Vectorize a single entry in the tree, starting in \p VL. Value *vectorizeTree(ArrayRef VL); /// \returns the scalarization cost for this type. Scalarization in this /// context means the creation of vectors from a group of scalars. int getGatherCost(Type *Ty, const DenseSet &ShuffledIndices); /// \returns the scalarization cost for this list of values. Assuming that /// this subtree gets vectorized, we may need to extract the values from the /// roots. This method calculates the cost of extracting the values. int getGatherCost(ArrayRef VL); /// Set the Builder insert point to one after the last instruction in /// the bundle void setInsertPointAfterBundle(ArrayRef VL, const InstructionsState &S); /// \returns a vector from a collection of scalars in \p VL. Value *Gather(ArrayRef VL, VectorType *Ty); /// \returns whether the VectorizableTree is fully vectorizable and will /// be beneficial even the tree height is tiny. bool isFullyVectorizableTinyTree(); /// \reorder commutative operands in alt shuffle if they result in /// vectorized code. void reorderAltShuffleOperands(const InstructionsState &S, ArrayRef VL, SmallVectorImpl &Left, SmallVectorImpl &Right); /// \reorder commutative operands to get better probability of /// generating vectorized code. void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef VL, SmallVectorImpl &Left, SmallVectorImpl &Right); struct TreeEntry { TreeEntry(std::vector &Container) : Container(Container) {} /// \returns true if the scalars in VL are equal to this entry. bool isSame(ArrayRef VL) const { if (VL.size() == Scalars.size()) return std::equal(VL.begin(), VL.end(), Scalars.begin()); return VL.size() == ReuseShuffleIndices.size() && std::equal( VL.begin(), VL.end(), ReuseShuffleIndices.begin(), [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); } /// A vector of scalars. ValueList Scalars; /// The Scalars are vectorized into this value. It is initialized to Null. Value *VectorizedValue = nullptr; /// Do we need to gather this sequence ? bool NeedToGather = false; /// Does this sequence require some shuffling? SmallVector ReuseShuffleIndices; /// Does this entry require reordering? ArrayRef ReorderIndices; /// Points back to the VectorizableTree. /// /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has /// to be a pointer and needs to be able to initialize the child iterator. /// Thus we need a reference back to the container to translate the indices /// to entries. std::vector &Container; /// The TreeEntry index containing the user of this entry. We can actually /// have multiple users so the data structure is not truly a tree. SmallVector UserTreeIndices; }; /// Create a new VectorizableTree entry. void newTreeEntry(ArrayRef VL, bool Vectorized, int &UserTreeIdx, ArrayRef ReuseShuffleIndices = None, ArrayRef ReorderIndices = None) { VectorizableTree.emplace_back(VectorizableTree); int idx = VectorizableTree.size() - 1; TreeEntry *Last = &VectorizableTree[idx]; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->NeedToGather = !Vectorized; Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), ReuseShuffleIndices.end()); Last->ReorderIndices = ReorderIndices; if (Vectorized) { for (int i = 0, e = VL.size(); i != e; ++i) { assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); ScalarToTreeEntry[VL[i]] = idx; } } else { MustGather.insert(VL.begin(), VL.end()); } if (UserTreeIdx >= 0) Last->UserTreeIndices.push_back(UserTreeIdx); UserTreeIdx = idx; } /// -- Vectorization State -- /// Holds all of the tree entries. std::vector VectorizableTree; TreeEntry *getTreeEntry(Value *V) { auto I = ScalarToTreeEntry.find(V); if (I != ScalarToTreeEntry.end()) return &VectorizableTree[I->second]; return nullptr; } /// Maps a specific scalar to its tree entry. SmallDenseMap ScalarToTreeEntry; /// A list of scalars that we found that we need to keep as scalars. ValueSet MustGather; /// This POD struct describes one external user in the vectorized tree. struct ExternalUser { ExternalUser(Value *S, llvm::User *U, int L) : Scalar(S), User(U), Lane(L) {} // Which scalar in our function. Value *Scalar; // Which user that uses the scalar. llvm::User *User; // Which lane does the scalar belong to. int Lane; }; using UserList = SmallVector; /// Checks if two instructions may access the same memory. /// /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it /// is invariant in the calling loop. bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, Instruction *Inst2) { // First check if the result is already in the cache. AliasCacheKey key = std::make_pair(Inst1, Inst2); Optional &result = AliasCache[key]; if (result.hasValue()) { return result.getValue(); } MemoryLocation Loc2 = getLocation(Inst2, AA); bool aliased = true; if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { // Do the alias check. aliased = AA->alias(Loc1, Loc2); } // Store the result in the cache. result = aliased; return aliased; } using AliasCacheKey = std::pair; /// Cache for alias results. /// TODO: consider moving this to the AliasAnalysis itself. DenseMap> AliasCache; /// Removes an instruction from its block and eventually deletes it. /// It's like Instruction::eraseFromParent() except that the actual deletion /// is delayed until BoUpSLP is destructed. /// This is required to ensure that there are no incorrect collisions in the /// AliasCache, which can happen if a new instruction is allocated at the /// same address as a previously deleted instruction. void eraseInstruction(Instruction *I) { I->removeFromParent(); I->dropAllReferences(); DeletedInstructions.emplace_back(I); } /// Temporary store for deleted instructions. Instructions will be deleted /// eventually when the BoUpSLP is destructed. SmallVector DeletedInstructions; /// A list of values that need to extracted out of the tree. /// This list holds pairs of (Internal Scalar : External User). External User /// can be nullptr, it means that this Internal Scalar will be used later, /// after vectorization. UserList ExternalUses; /// Values used only by @llvm.assume calls. SmallPtrSet EphValues; /// Holds all of the instructions that we gathered. SetVector GatherSeq; /// A list of blocks that we are going to CSE. SetVector CSEBlocks; /// Contains all scheduling relevant data for an instruction. /// A ScheduleData either represents a single instruction or a member of an /// instruction bundle (= a group of instructions which is combined into a /// vector instruction). struct ScheduleData { // The initial value for the dependency counters. It means that the // dependencies are not calculated yet. enum { InvalidDeps = -1 }; ScheduleData() = default; void init(int BlockSchedulingRegionID, Value *OpVal) { FirstInBundle = this; NextInBundle = nullptr; NextLoadStore = nullptr; IsScheduled = false; SchedulingRegionID = BlockSchedulingRegionID; UnscheduledDepsInBundle = UnscheduledDeps; clearDependencies(); OpValue = OpVal; } /// Returns true if the dependency information has been calculated. bool hasValidDependencies() const { return Dependencies != InvalidDeps; } /// Returns true for single instructions and for bundle representatives /// (= the head of a bundle). bool isSchedulingEntity() const { return FirstInBundle == this; } /// Returns true if it represents an instruction bundle and not only a /// single instruction. bool isPartOfBundle() const { return NextInBundle != nullptr || FirstInBundle != this; } /// Returns true if it is ready for scheduling, i.e. it has no more /// unscheduled depending instructions/bundles. bool isReady() const { assert(isSchedulingEntity() && "can't consider non-scheduling entity for ready list"); return UnscheduledDepsInBundle == 0 && !IsScheduled; } /// Modifies the number of unscheduled dependencies, also updating it for /// the whole bundle. int incrementUnscheduledDeps(int Incr) { UnscheduledDeps += Incr; return FirstInBundle->UnscheduledDepsInBundle += Incr; } /// Sets the number of unscheduled dependencies to the number of /// dependencies. void resetUnscheduledDeps() { incrementUnscheduledDeps(Dependencies - UnscheduledDeps); } /// Clears all dependency information. void clearDependencies() { Dependencies = InvalidDeps; resetUnscheduledDeps(); MemoryDependencies.clear(); } void dump(raw_ostream &os) const { if (!isSchedulingEntity()) { os << "/ " << *Inst; } else if (NextInBundle) { os << '[' << *Inst; ScheduleData *SD = NextInBundle; while (SD) { os << ';' << *SD->Inst; SD = SD->NextInBundle; } os << ']'; } else { os << *Inst; } } Instruction *Inst = nullptr; /// Points to the head in an instruction bundle (and always to this for /// single instructions). ScheduleData *FirstInBundle = nullptr; /// Single linked list of all instructions in a bundle. Null if it is a /// single instruction. ScheduleData *NextInBundle = nullptr; /// Single linked list of all memory instructions (e.g. load, store, call) /// in the block - until the end of the scheduling region. ScheduleData *NextLoadStore = nullptr; /// The dependent memory instructions. /// This list is derived on demand in calculateDependencies(). SmallVector MemoryDependencies; /// This ScheduleData is in the current scheduling region if this matches /// the current SchedulingRegionID of BlockScheduling. int SchedulingRegionID = 0; /// Used for getting a "good" final ordering of instructions. int SchedulingPriority = 0; /// The number of dependencies. Constitutes of the number of users of the /// instruction plus the number of dependent memory instructions (if any). /// This value is calculated on demand. /// If InvalidDeps, the number of dependencies is not calculated yet. int Dependencies = InvalidDeps; /// The number of dependencies minus the number of dependencies of scheduled /// instructions. As soon as this is zero, the instruction/bundle gets ready /// for scheduling. /// Note that this is negative as long as Dependencies is not calculated. int UnscheduledDeps = InvalidDeps; /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for /// single instructions. int UnscheduledDepsInBundle = InvalidDeps; /// True if this instruction is scheduled (or considered as scheduled in the /// dry-run). bool IsScheduled = false; /// Opcode of the current instruction in the schedule data. Value *OpValue = nullptr; }; #ifndef NDEBUG friend inline raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { SD.dump(os); return os; } #endif friend struct GraphTraits; friend struct DOTGraphTraits; /// Contains all scheduling data for a basic block. struct BlockScheduling { BlockScheduling(BasicBlock *BB) : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} void clear() { ReadyInsts.clear(); ScheduleStart = nullptr; ScheduleEnd = nullptr; FirstLoadStoreInRegion = nullptr; LastLoadStoreInRegion = nullptr; // Reduce the maximum schedule region size by the size of the // previous scheduling run. ScheduleRegionSizeLimit -= ScheduleRegionSize; if (ScheduleRegionSizeLimit < MinScheduleRegionSize) ScheduleRegionSizeLimit = MinScheduleRegionSize; ScheduleRegionSize = 0; // Make a new scheduling region, i.e. all existing ScheduleData is not // in the new region yet. ++SchedulingRegionID; } ScheduleData *getScheduleData(Value *V) { ScheduleData *SD = ScheduleDataMap[V]; if (SD && SD->SchedulingRegionID == SchedulingRegionID) return SD; return nullptr; } ScheduleData *getScheduleData(Value *V, Value *Key) { if (V == Key) return getScheduleData(V); auto I = ExtraScheduleDataMap.find(V); if (I != ExtraScheduleDataMap.end()) { ScheduleData *SD = I->second[Key]; if (SD && SD->SchedulingRegionID == SchedulingRegionID) return SD; } return nullptr; } bool isInSchedulingRegion(ScheduleData *SD) { return SD->SchedulingRegionID == SchedulingRegionID; } /// Marks an instruction as scheduled and puts all dependent ready /// instructions into the ready-list. template void schedule(ScheduleData *SD, ReadyListType &ReadyList) { SD->IsScheduled = true; LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); ScheduleData *BundleMember = SD; while (BundleMember) { if (BundleMember->Inst != BundleMember->OpValue) { BundleMember = BundleMember->NextInBundle; continue; } // Handle the def-use chain dependencies. for (Use &U : BundleMember->Inst->operands()) { auto *I = dyn_cast(U.get()); if (!I) continue; doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { if (OpDef && OpDef->hasValidDependencies() && OpDef->incrementUnscheduledDeps(-1) == 0) { // There are no more unscheduled dependencies after // decrementing, so we can put the dependent instruction // into the ready list. ScheduleData *DepBundle = OpDef->FirstInBundle; assert(!DepBundle->IsScheduled && "already scheduled bundle gets ready"); ReadyList.insert(DepBundle); LLVM_DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); } }); } // Handle the memory dependencies. for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { // There are no more unscheduled dependencies after decrementing, // so we can put the dependent instruction into the ready list. ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; assert(!DepBundle->IsScheduled && "already scheduled bundle gets ready"); ReadyList.insert(DepBundle); LLVM_DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); } } BundleMember = BundleMember->NextInBundle; } } void doForAllOpcodes(Value *V, function_ref Action) { if (ScheduleData *SD = getScheduleData(V)) Action(SD); auto I = ExtraScheduleDataMap.find(V); if (I != ExtraScheduleDataMap.end()) for (auto &P : I->second) if (P.second->SchedulingRegionID == SchedulingRegionID) Action(P.second); } /// Put all instructions into the ReadyList which are ready for scheduling. template void initialFillReadyList(ReadyListType &ReadyList) { for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { doForAllOpcodes(I, [&](ScheduleData *SD) { if (SD->isSchedulingEntity() && SD->isReady()) { ReadyList.insert(SD); LLVM_DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); } }); } } /// Checks if a bundle of instructions can be scheduled, i.e. has no /// cyclic dependencies. This is only a dry-run, no instructions are /// actually moved at this stage. bool tryScheduleBundle(ArrayRef VL, BoUpSLP *SLP, const InstructionsState &S); /// Un-bundles a group of instructions. void cancelScheduling(ArrayRef VL, Value *OpValue); /// Allocates schedule data chunk. ScheduleData *allocateScheduleDataChunks(); /// Extends the scheduling region so that V is inside the region. /// \returns true if the region size is within the limit. bool extendSchedulingRegion(Value *V, const InstructionsState &S); /// Initialize the ScheduleData structures for new instructions in the /// scheduling region. void initScheduleData(Instruction *FromI, Instruction *ToI, ScheduleData *PrevLoadStore, ScheduleData *NextLoadStore); /// Updates the dependency information of a bundle and of all instructions/ /// bundles which depend on the original bundle. void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, BoUpSLP *SLP); /// Sets all instruction in the scheduling region to un-scheduled. void resetSchedule(); BasicBlock *BB; /// Simple memory allocation for ScheduleData. std::vector> ScheduleDataChunks; /// The size of a ScheduleData array in ScheduleDataChunks. int ChunkSize; /// The allocator position in the current chunk, which is the last entry /// of ScheduleDataChunks. int ChunkPos; /// Attaches ScheduleData to Instruction. /// Note that the mapping survives during all vectorization iterations, i.e. /// ScheduleData structures are recycled. DenseMap ScheduleDataMap; /// Attaches ScheduleData to Instruction with the leading key. DenseMap> ExtraScheduleDataMap; struct ReadyList : SmallVector { void insert(ScheduleData *SD) { push_back(SD); } }; /// The ready-list for scheduling (only used for the dry-run). ReadyList ReadyInsts; /// The first instruction of the scheduling region. Instruction *ScheduleStart = nullptr; /// The first instruction _after_ the scheduling region. Instruction *ScheduleEnd = nullptr; /// The first memory accessing instruction in the scheduling region /// (can be null). ScheduleData *FirstLoadStoreInRegion = nullptr; /// The last memory accessing instruction in the scheduling region /// (can be null). ScheduleData *LastLoadStoreInRegion = nullptr; /// The current size of the scheduling region. int ScheduleRegionSize = 0; /// The maximum size allowed for the scheduling region. int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; /// The ID of the scheduling region. For a new vectorization iteration this /// is incremented which "removes" all ScheduleData from the region. // Make sure that the initial SchedulingRegionID is greater than the // initial SchedulingRegionID in ScheduleData (which is 0). int SchedulingRegionID = 1; }; /// Attaches the BlockScheduling structures to basic blocks. MapVector> BlocksSchedules; /// Performs the "real" scheduling. Done before vectorization is actually /// performed in a basic block. void scheduleBlock(BlockScheduling *BS); /// List of users to ignore during scheduling and that don't need extracting. ArrayRef UserIgnoreList; using OrdersType = SmallVector; /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of /// sorted SmallVectors of unsigned. struct OrdersTypeDenseMapInfo { static OrdersType getEmptyKey() { OrdersType V; V.push_back(~1U); return V; } static OrdersType getTombstoneKey() { OrdersType V; V.push_back(~2U); return V; } static unsigned getHashValue(const OrdersType &V) { return static_cast(hash_combine_range(V.begin(), V.end())); } static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { return LHS == RHS; } }; /// Contains orders of operations along with the number of bundles that have /// operations in this order. It stores only those orders that require /// reordering, if reordering is not required it is counted using \a /// NumOpsWantToKeepOriginalOrder. DenseMap NumOpsWantToKeepOrder; /// Number of bundles that do not require reordering. unsigned NumOpsWantToKeepOriginalOrder = 0; // Analysis and block reference. Function *F; ScalarEvolution *SE; TargetTransformInfo *TTI; TargetLibraryInfo *TLI; AliasAnalysis *AA; LoopInfo *LI; DominatorTree *DT; AssumptionCache *AC; DemandedBits *DB; const DataLayout *DL; OptimizationRemarkEmitter *ORE; unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. unsigned MinVecRegSize; // Set by cl::opt (default: 128). /// Instruction builder to construct the vectorized tree. IRBuilder<> Builder; /// A map of scalar integer values to the smallest bit width with which they /// can legally be represented. The values map to (width, signed) pairs, /// where "width" indicates the minimum bit width and "signed" is True if the /// value must be signed-extended, rather than zero-extended, back to its /// original width. MapVector> MinBWs; }; } // end namespace slpvectorizer template <> struct GraphTraits { using TreeEntry = BoUpSLP::TreeEntry; /// NodeRef has to be a pointer per the GraphWriter. using NodeRef = TreeEntry *; /// Add the VectorizableTree to the index iterator to be able to return /// TreeEntry pointers. struct ChildIteratorType : public iterator_adaptor_base::iterator> { std::vector &VectorizableTree; ChildIteratorType(SmallVector::iterator W, std::vector &VT) : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} NodeRef operator*() { return &VectorizableTree[*I]; } }; static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } static ChildIteratorType child_begin(NodeRef N) { return {N->UserTreeIndices.begin(), N->Container}; } static ChildIteratorType child_end(NodeRef N) { return {N->UserTreeIndices.end(), N->Container}; } /// For the node iterator we just need to turn the TreeEntry iterator into a /// TreeEntry* iterator so that it dereferences to NodeRef. using nodes_iterator = pointer_iterator::iterator>; static nodes_iterator nodes_begin(BoUpSLP *R) { return nodes_iterator(R->VectorizableTree.begin()); } static nodes_iterator nodes_end(BoUpSLP *R) { return nodes_iterator(R->VectorizableTree.end()); } static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } }; template <> struct DOTGraphTraits : public DefaultDOTGraphTraits { using TreeEntry = BoUpSLP::TreeEntry; DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { std::string Str; raw_string_ostream OS(Str); if (isSplat(Entry->Scalars)) { OS << " " << *Entry->Scalars[0]; return Str; } for (auto V : Entry->Scalars) { OS << *V; if (std::any_of( R->ExternalUses.begin(), R->ExternalUses.end(), [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) OS << " "; OS << "\n"; } return Str; } static std::string getNodeAttributes(const TreeEntry *Entry, const BoUpSLP *) { if (Entry->NeedToGather) return "color=red"; return ""; } }; } // end namespace llvm void BoUpSLP::buildTree(ArrayRef Roots, ArrayRef UserIgnoreLst) { ExtraValueToDebugLocsMap ExternallyUsedValues; buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); } void BoUpSLP::buildTree(ArrayRef Roots, ExtraValueToDebugLocsMap &ExternallyUsedValues, ArrayRef UserIgnoreLst) { deleteTree(); UserIgnoreList = UserIgnoreLst; if (!allSameType(Roots)) return; buildTree_rec(Roots, 0, -1); // Collect the values that we need to extract from the tree. for (TreeEntry &EIdx : VectorizableTree) { TreeEntry *Entry = &EIdx; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; int FoundLane = Lane; if (!Entry->ReuseShuffleIndices.empty()) { FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), llvm::find(Entry->ReuseShuffleIndices, FoundLane)); } // Check if the scalar is externally used as an extra arg. auto ExtI = ExternallyUsedValues.find(Scalar); if (ExtI != ExternallyUsedValues.end()) { LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << Lane << " from " << *Scalar << ".\n"); ExternalUses.emplace_back(Scalar, nullptr, FoundLane); } for (User *U : Scalar->users()) { LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); Instruction *UserInst = dyn_cast(U); if (!UserInst) continue; // Skip in-tree scalars that become vectors if (TreeEntry *UseEntry = getTreeEntry(U)) { Value *UseScalar = UseEntry->Scalars[0]; // Some in-tree scalars will remain as scalar in vectorized // instructions. If that is the case, the one in Lane 0 will // be used. if (UseScalar != U || !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U << ".\n"); assert(!UseEntry->NeedToGather && "Bad state"); continue; } } // Ignore users in the user ignore list. if (is_contained(UserIgnoreList, UserInst)) continue; LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << Lane << " from " << *Scalar << ".\n"); ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); } } } } void BoUpSLP::buildTree_rec(ArrayRef VL, unsigned Depth, int UserTreeIdx) { assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); InstructionsState S = getSameOpcode(VL); if (Depth == RecursionMaxDepth) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } // Don't handle vectors. if (S.OpValue->getType()->isVectorTy()) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } if (StoreInst *SI = dyn_cast(S.OpValue)) if (SI->getValueOperand()->getType()->isVectorTy()) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } // If all of the operands are identical or constant we have a simple solution. if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); newTreeEntry(VL, false, UserTreeIdx); return; } // We now know that this is a vector of instructions of the same type from // the same block. // Don't vectorize ephemeral values. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (EphValues.count(VL[i])) { LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is ephemeral.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } } // Check if this is a duplicate of another entry. if (TreeEntry *E = getTreeEntry(S.OpValue)) { LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); if (!E->isSame(VL)) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } // Record the reuse of the tree node. FIXME, currently this is only used to // properly draw the graph rather than for the actual vectorization. E->UserTreeIndices.push_back(UserTreeIdx); LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); return; } // Check that none of the instructions in the bundle are already in the tree. for (unsigned i = 0, e = VL.size(); i != e; ++i) { auto *I = dyn_cast(VL[i]); if (!I) continue; if (getTreeEntry(I)) { LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is already in tree.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } } // If any of the scalars is marked as a value that needs to stay scalar, then // we need to gather the scalars. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (MustGather.count(VL[i])) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } } // Check that all of the users of the scalars that we want to vectorize are // schedulable. auto *VL0 = cast(S.OpValue); BasicBlock *BB = VL0->getParent(); if (!DT->isReachableFromEntry(BB)) { // Don't go into unreachable blocks. They may contain instructions with // dependency cycles which confuse the final scheduling. LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } // Check that every instruction appears once in this bundle. SmallVector ReuseShuffleIndicies; SmallVector UniqueValues; DenseMap UniquePositions; for (Value *V : VL) { auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); ReuseShuffleIndicies.emplace_back(Res.first->second); if (Res.second) UniqueValues.emplace_back(V); } if (UniqueValues.size() == VL.size()) { ReuseShuffleIndicies.clear(); } else { LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); newTreeEntry(VL, false, UserTreeIdx); return; } VL = UniqueValues; } auto &BSRef = BlocksSchedules[BB]; if (!BSRef) BSRef = llvm::make_unique(BB); BlockScheduling &BS = *BSRef.get(); if (!BS.tryScheduleBundle(VL, this, S)) { LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); assert((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); return; } LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); unsigned ShuffleOrOp = S.isAltShuffle() ? (unsigned) Instruction::ShuffleVector : S.getOpcode(); switch (ShuffleOrOp) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); // Check for terminator values (e.g. invoke). for (unsigned j = 0; j < VL.size(); ++j) for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { TerminatorInst *Term = dyn_cast( cast(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); if (Term) { LLVM_DEBUG( dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); return; } } newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast(j)->getIncomingValueForBlock( PH->getIncomingBlock(i))); buildTree_rec(Operands, Depth + 1, UserTreeIdx); } return; } case Instruction::ExtractValue: case Instruction::ExtractElement: { OrdersType CurrentOrder; bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); if (Reuse) { LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); ++NumOpsWantToKeepOriginalOrder; newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies); return; } if (!CurrentOrder.empty()) { LLVM_DEBUG({ dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " "with order"; for (unsigned Idx : CurrentOrder) dbgs() << " " << Idx; dbgs() << "\n"; }); // Insert new order with initial value 0, if it does not exist, // otherwise return the iterator to the existing one. auto StoredCurrentOrderAndNum = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; ++StoredCurrentOrderAndNum->getSecond(); newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, StoredCurrentOrderAndNum->getFirst()); return; } LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); BS.cancelScheduling(VL, VL0); return; } case Instruction::Load: { // Check that a vectorized load would load the same memory as a scalar // load. For example, we don't want to vectorize loads that are smaller // than 8-bit. Even though we have a packed struct {} LLVM // treats loading/storing it as an i8 struct. If we vectorize loads/stores // from such a struct, we read/write packed bits disagreeing with the // unvectorized version. Type *ScalarTy = VL0->getType(); if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); return; } // Make sure all loads in the bundle are simple - we can't vectorize // atomic or volatile loads. SmallVector PointerOps(VL.size()); auto POIter = PointerOps.begin(); for (Value *V : VL) { auto *L = cast(V); if (!L->isSimple()) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); return; } *POIter = L->getPointerOperand(); ++POIter; } OrdersType CurrentOrder; // Check the order of pointer operands. if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { Value *Ptr0; Value *PtrN; if (CurrentOrder.empty()) { Ptr0 = PointerOps.front(); PtrN = PointerOps.back(); } else { Ptr0 = PointerOps[CurrentOrder.front()]; PtrN = PointerOps[CurrentOrder.back()]; } const SCEV *Scev0 = SE->getSCEV(Ptr0); const SCEV *ScevN = SE->getSCEV(PtrN); const auto *Diff = dyn_cast(SE->getMinusSCEV(ScevN, Scev0)); uint64_t Size = DL->getTypeAllocSize(ScalarTy); // Check that the sorted loads are consecutive. if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { if (CurrentOrder.empty()) { // Original loads are consecutive and does not require reordering. ++NumOpsWantToKeepOriginalOrder; newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); } else { // Need to reorder. auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; ++I->getSecond(); newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, I->getFirst()); LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); } return; } } LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); return; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); for (unsigned i = 0; i < VL.size(); ++i) { Type *Ty = cast(VL[i])->getOperand(0)->getType(); if (Ty != SrcTy || !isValidElementType(Ty)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1, UserTreeIdx); } return; } case Instruction::ICmp: case Instruction::FCmp: { // Check that all of the compares have the same predicate. CmpInst::Predicate P0 = cast(VL0)->getPredicate(); Type *ComparedTy = VL0->getOperand(0)->getType(); for (unsigned i = 1, e = VL.size(); i < e; ++i) { CmpInst *Cmp = cast(VL[i]); if (Cmp->getPredicate() != P0 || Cmp->getOperand(0)->getType() != ComparedTy) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1, UserTreeIdx); } return; } case Instruction::Select: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); // Sort operands of the instructions so that each side is more likely to // have the same opcode. if (isa(VL0) && VL0->isCommutative()) { ValueList Left, Right; reorderInputsAccordingToOpcode(S.getOpcode(), VL, Left, Right); buildTree_rec(Left, Depth + 1, UserTreeIdx); buildTree_rec(Right, Depth + 1, UserTreeIdx); return; } for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1, UserTreeIdx); } return; case Instruction::GetElementPtr: { // We don't combine GEPs with complicated (nested) indexing. for (unsigned j = 0; j < VL.size(); ++j) { if (cast(VL[j])->getNumOperands() != 2) { LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); return; } } // We can't combine several GEPs into one vector if they operate on // different types. Type *Ty0 = VL0->getOperand(0)->getType(); for (unsigned j = 0; j < VL.size(); ++j) { Type *CurTy = cast(VL[j])->getOperand(0)->getType(); if (Ty0 != CurTy) { LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); return; } } // We don't combine GEPs with non-constant indexes. for (unsigned j = 0; j < VL.size(); ++j) { auto Op = cast(VL[j])->getOperand(1); if (!isa(Op)) { LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); return; } } newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); for (unsigned i = 0, e = 2; i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1, UserTreeIdx); } return; } case Instruction::Store: { // Check if the stores are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); return; } newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; for (Value *j : VL) Operands.push_back(cast(j)->getOperand(0)); buildTree_rec(Operands, Depth + 1, UserTreeIdx); return; } case Instruction::Call: { // Check if the calls are all to the same vectorizable intrinsic. CallInst *CI = cast(VL0); // Check if this is an Intrinsic call or something that can be // represented by an intrinsic call Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (!isTriviallyVectorizable(ID)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); return; } Function *Int = CI->getCalledFunction(); Value *A1I = nullptr; if (hasVectorInstrinsicScalarOpd(ID, 1)) A1I = CI->getArgOperand(1); for (unsigned i = 1, e = VL.size(); i != e; ++i) { CallInst *CI2 = dyn_cast(VL[i]); if (!CI2 || CI2->getCalledFunction() != Int || getVectorIntrinsicIDForCall(CI2, TLI) != ID || !CI->hasIdenticalOperandBundleSchema(*CI2)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] << "\n"); return; } // ctlz,cttz and powi are special intrinsics whose second argument // should be same in order for them to be vectorized. if (hasVectorInstrinsicScalarOpd(ID, 1)) { Value *A1J = CI2->getArgOperand(1); if (A1I != A1J) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI << " argument " << A1I << "!=" << A1J << "\n"); return; } } // Verify that the bundle operands are identical between the two calls. if (CI->hasOperandBundles() && !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), CI->op_begin() + CI->getBundleOperandsEndIndex(), CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" << *VL[i] << '\n'); return; } } newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) { CallInst *CI2 = dyn_cast(j); Operands.push_back(CI2->getArgOperand(i)); } buildTree_rec(Operands, Depth + 1, UserTreeIdx); } return; } case Instruction::ShuffleVector: // If this is not an alternate sequence of opcode like add-sub // then do not vectorize this instruction. if (!S.isAltShuffle()) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); return; } newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); // Reorder operands if reordering would enable vectorization. if (isa(VL0)) { ValueList Left, Right; reorderAltShuffleOperands(S, VL, Left, Right); buildTree_rec(Left, Depth + 1, UserTreeIdx); buildTree_rec(Right, Depth + 1, UserTreeIdx); return; } for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1, UserTreeIdx); } return; default: BS.cancelScheduling(VL, VL0); newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } } unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { unsigned N; Type *EltTy; auto *ST = dyn_cast(T); if (ST) { N = ST->getNumElements(); EltTy = *ST->element_begin(); } else { N = cast(T)->getNumElements(); EltTy = cast(T)->getElementType(); } if (!isValidElementType(EltTy)) return 0; uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) return 0; if (ST) { // Check that struct is homogeneous. for (const auto *Ty : ST->elements()) if (Ty != EltTy) return 0; } return N; } bool BoUpSLP::canReuseExtract(ArrayRef VL, Value *OpValue, SmallVectorImpl &CurrentOrder) const { Instruction *E0 = cast(OpValue); assert(E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue); assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); // Check if all of the extracts come from the same vector and from the // correct offset. Value *Vec = E0->getOperand(0); CurrentOrder.clear(); // We have to extract from a vector/aggregate with the same number of elements. unsigned NElts; if (E0->getOpcode() == Instruction::ExtractValue) { const DataLayout &DL = E0->getModule()->getDataLayout(); NElts = canMapToVector(Vec->getType(), DL); if (!NElts) return false; // Check if load can be rewritten as load of vector. LoadInst *LI = dyn_cast(Vec); if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) return false; } else { NElts = Vec->getType()->getVectorNumElements(); } if (NElts != VL.size()) return false; // Check that all of the indices extract from the correct offset. bool ShouldKeepOrder = true; unsigned E = VL.size(); // Assign to all items the initial value E + 1 so we can check if the extract // instruction index was used already. // Also, later we can check that all the indices are used and we have a // consecutive access in the extract instructions, by checking that no // element of CurrentOrder still has value E + 1. CurrentOrder.assign(E, E + 1); unsigned I = 0; for (; I < E; ++I) { auto *Inst = cast(VL[I]); if (Inst->getOperand(0) != Vec) break; Optional Idx = getExtractIndex(Inst); if (!Idx) break; const unsigned ExtIdx = *Idx; if (ExtIdx != I) { if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) break; ShouldKeepOrder = false; CurrentOrder[ExtIdx] = I; } else { if (CurrentOrder[I] != E + 1) break; CurrentOrder[I] = I; } } if (I < E) { CurrentOrder.clear(); return false; } return ShouldKeepOrder; } bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { return I->hasOneUse() || std::all_of(I->user_begin(), I->user_end(), [this](User *U) { return ScalarToTreeEntry.count(U) > 0; }); } int BoUpSLP::getEntryCost(TreeEntry *E) { ArrayRef VL = E->Scalars; Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); else if (CmpInst *CI = dyn_cast(VL[0])) ScalarTy = CI->getOperand(0)->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); // If we have computed a smaller type for the expression, update VecTy so // that the costs will be accurate. if (MinBWs.count(VL[0])) VecTy = VectorType::get( IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); int ReuseShuffleCost = 0; if (NeedToShuffleReuses) { ReuseShuffleCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); } if (E->NeedToGather) { if (allConstant(VL)) return 0; if (isSplat(VL)) { return ReuseShuffleCost + TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); } if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && allSameType(VL) && allSameBlock(VL)) { Optional ShuffleKind = isShuffle(VL); if (ShuffleKind.hasValue()) { int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); for (auto *V : VL) { // If all users of instruction are going to be vectorized and this // instruction itself is not going to be vectorized, consider this // instruction as dead and remove its cost from the final cost of the // vectorized tree. if (areAllUsersVectorized(cast(V)) && !ScalarToTreeEntry.count(V)) { auto *IO = cast( cast(V)->getIndexOperand()); Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, IO->getZExtValue()); } } return ReuseShuffleCost + Cost; } } return ReuseShuffleCost + getGatherCost(VL); } InstructionsState S = getSameOpcode(VL); assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); Instruction *VL0 = cast(S.OpValue); unsigned ShuffleOrOp = S.isAltShuffle() ? (unsigned) Instruction::ShuffleVector : S.getOpcode(); switch (ShuffleOrOp) { case Instruction::PHI: return 0; case Instruction::ExtractValue: case Instruction::ExtractElement: if (NeedToShuffleReuses) { unsigned Idx = 0; for (unsigned I : E->ReuseShuffleIndices) { if (ShuffleOrOp == Instruction::ExtractElement) { auto *IO = cast( cast(VL[I])->getIndexOperand()); Idx = IO->getZExtValue(); ReuseShuffleCost -= TTI->getVectorInstrCost( Instruction::ExtractElement, VecTy, Idx); } else { ReuseShuffleCost -= TTI->getVectorInstrCost( Instruction::ExtractElement, VecTy, Idx); ++Idx; } } Idx = ReuseShuffleNumbers; for (Value *V : VL) { if (ShuffleOrOp == Instruction::ExtractElement) { auto *IO = cast( cast(V)->getIndexOperand()); Idx = IO->getZExtValue(); } else { --Idx; } ReuseShuffleCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); } } if (!E->NeedToGather) { int DeadCost = ReuseShuffleCost; if (!E->ReorderIndices.empty()) { // TODO: Merge this shuffle with the ReuseShuffleCost. DeadCost += TTI->getShuffleCost( TargetTransformInfo::SK_PermuteSingleSrc, VecTy); } for (unsigned i = 0, e = VL.size(); i < e; ++i) { Instruction *E = cast(VL[i]); // If all users are going to be vectorized, instruction can be // considered as dead. // The same, if have only one user, it will be vectorized for sure. if (areAllUsersVectorized(E)) { // Take credit for instruction that will become dead. if (E->hasOneUse()) { Instruction *Ext = E->user_back(); if ((isa(Ext) || isa(Ext)) && all_of(Ext->users(), [](User *U) { return isa(U); })) { // Use getExtractWithExtendCost() to calculate the cost of // extractelement/ext pair. DeadCost -= TTI->getExtractWithExtendCost( Ext->getOpcode(), Ext->getType(), VecTy, i); // Add back the cost of s|zext which is subtracted seperately. DeadCost += TTI->getCastInstrCost( Ext->getOpcode(), Ext->getType(), E->getType(), Ext); continue; } } DeadCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); } } return DeadCost; } return ReuseShuffleCost + getGatherCost(VL); case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); int ScalarEltCost = TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } // Calculate the cost of this instruction. int ScalarCost = VL.size() * ScalarEltCost; VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); int VecCost = 0; // Check if the values are candidates to demote. if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { VecCost = ReuseShuffleCost + TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); } return VecCost - ScalarCost; } case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: { // Calculate the cost of this instruction. int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, Builder.getInt1Ty(), VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); int ScalarCost = VecTy->getNumElements() * ScalarEltCost; int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); return ReuseShuffleCost + VecCost - ScalarCost; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Certain instructions can be cheaper to vectorize if they have a // constant second vector operand. TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_UniformConstantValue; TargetTransformInfo::OperandValueProperties Op1VP = TargetTransformInfo::OP_None; TargetTransformInfo::OperandValueProperties Op2VP = TargetTransformInfo::OP_PowerOf2; // If all operands are exactly the same ConstantInt then set the // operand kind to OK_UniformConstantValue. // If instead not all operands are constants, then set the operand kind // to OK_AnyValue. If all operands are constants but not the same, // then set the operand kind to OK_NonUniformConstantValue. ConstantInt *CInt0 = nullptr; for (unsigned i = 0, e = VL.size(); i < e; ++i) { const Instruction *I = cast(VL[i]); ConstantInt *CInt = dyn_cast(I->getOperand(1)); if (!CInt) { Op2VK = TargetTransformInfo::OK_AnyValue; Op2VP = TargetTransformInfo::OP_None; break; } if (Op2VP == TargetTransformInfo::OP_PowerOf2 && !CInt->getValue().isPowerOf2()) Op2VP = TargetTransformInfo::OP_None; if (i == 0) { CInt0 = CInt; continue; } if (CInt0 != CInt) Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; } SmallVector Operands(VL0->operand_values()); int ScalarEltCost = TTI->getArithmeticInstrCost( S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } int ScalarCost = VecTy->getNumElements() * ScalarEltCost; int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); return ReuseShuffleCost + VecCost - ScalarCost; } case Instruction::GetElementPtr: { TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_UniformConstantValue; int ScalarEltCost = TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } int ScalarCost = VecTy->getNumElements() * ScalarEltCost; int VecCost = TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); return ReuseShuffleCost + VecCost - ScalarCost; } case Instruction::Load: { // Cost of wide load - cost of scalar loads. unsigned alignment = cast(VL0)->getAlignment(); int ScalarEltCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); if (!E->ReorderIndices.empty()) { // TODO: Merge this shuffle with the ReuseShuffleCost. VecLdCost += TTI->getShuffleCost( TargetTransformInfo::SK_PermuteSingleSrc, VecTy); } return ReuseShuffleCost + VecLdCost - ScalarLdCost; } case Instruction::Store: { // We know that we can merge the stores. Calculate the cost. unsigned alignment = cast(VL0)->getAlignment(); int ScalarEltCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); return ReuseShuffleCost + VecStCost - ScalarStCost; } case Instruction::Call: { CallInst *CI = cast(VL0); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); // Calculate the cost of the scalar and vector calls. SmallVector ScalarTys; for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) ScalarTys.push_back(CI->getArgOperand(op)->getType()); FastMathFlags FMF; if (auto *FPMO = dyn_cast(CI)) FMF = FPMO->getFastMathFlags(); int ScalarEltCost = TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; SmallVector Args(CI->arg_operands()); int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, VecTy->getNumElements()); LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost << " (" << VecCallCost << "-" << ScalarCallCost << ")" << " for " << *CI << "\n"); return ReuseShuffleCost + VecCallCost - ScalarCallCost; } case Instruction::ShuffleVector: { assert(S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"); int ScalarCost = 0; if (NeedToShuffleReuses) { for (unsigned Idx : E->ReuseShuffleIndices) { Instruction *I = cast(VL[Idx]); ReuseShuffleCost -= TTI->getInstructionCost( I, TargetTransformInfo::TCK_RecipThroughput); } for (Value *V : VL) { Instruction *I = cast(V); ReuseShuffleCost += TTI->getInstructionCost( I, TargetTransformInfo::TCK_RecipThroughput); } } for (Value *i : VL) { Instruction *I = cast(i); assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); ScalarCost += TTI->getInstructionCost( I, TargetTransformInfo::TCK_RecipThroughput); } // VecCost is equal to sum of the cost of creating 2 vectors // and the cost of creating shuffle. int VecCost = 0; if (Instruction::isBinaryOp(S.getOpcode())) { VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); } else { Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); } VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); return ReuseShuffleCost + VecCost - ScalarCost; } default: llvm_unreachable("Unknown instruction"); } } bool BoUpSLP::isFullyVectorizableTinyTree() { LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " << VectorizableTree.size() << " is fully vectorizable .\n"); // We only handle trees of heights 1 and 2. if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) return true; if (VectorizableTree.size() != 2) return false; // Handle splat and all-constants stores. if (!VectorizableTree[0].NeedToGather && (allConstant(VectorizableTree[1].Scalars) || isSplat(VectorizableTree[1].Scalars))) return true; // Gathering cost would be too much for tiny trees. if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) return false; return true; } bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { // We can vectorize the tree if its size is greater than or equal to the // minimum size specified by the MinTreeSize command line option. if (VectorizableTree.size() >= MinTreeSize) return false; // If we have a tiny tree (a tree whose size is less than MinTreeSize), we // can vectorize it if we can prove it fully vectorizable. if (isFullyVectorizableTinyTree()) return false; assert(VectorizableTree.empty() ? ExternalUses.empty() : true && "We shouldn't have any external users"); // Otherwise, we can't vectorize the tree. It is both tiny and not fully // vectorizable. return true; } int BoUpSLP::getSpillCost() { // Walk from the bottom of the tree to the top, tracking which values are // live. When we see a call instruction that is not part of our tree, // query TTI to see if there is a cost to keeping values live over it // (for example, if spills and fills are required). unsigned BundleWidth = VectorizableTree.front().Scalars.size(); int Cost = 0; SmallPtrSet LiveValues; Instruction *PrevInst = nullptr; for (const auto &N : VectorizableTree) { Instruction *Inst = dyn_cast(N.Scalars[0]); if (!Inst) continue; if (!PrevInst) { PrevInst = Inst; continue; } // Update LiveValues. LiveValues.erase(PrevInst); for (auto &J : PrevInst->operands()) { if (isa(&*J) && getTreeEntry(&*J)) LiveValues.insert(cast(&*J)); } LLVM_DEBUG({ dbgs() << "SLP: #LV: " << LiveValues.size(); for (auto *X : LiveValues) dbgs() << " " << X->getName(); dbgs() << ", Looking at "; Inst->dump(); }); // Now find the sequence of instructions between PrevInst and Inst. BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), PrevInstIt = PrevInst->getIterator().getReverse(); while (InstIt != PrevInstIt) { if (PrevInstIt == PrevInst->getParent()->rend()) { PrevInstIt = Inst->getParent()->rbegin(); continue; } // Debug informations don't impact spill cost. if ((isa(&*PrevInstIt) && !isa(&*PrevInstIt)) && &*PrevInstIt != PrevInst) { SmallVector V; for (auto *II : LiveValues) V.push_back(VectorType::get(II->getType(), BundleWidth)); Cost += TTI->getCostOfKeepingLiveOverCall(V); } ++PrevInstIt; } PrevInst = Inst; } return Cost; } int BoUpSLP::getTreeCost() { int Cost = 0; LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << VectorizableTree.size() << ".\n"); unsigned BundleWidth = VectorizableTree[0].Scalars.size(); for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { TreeEntry &TE = VectorizableTree[I]; // We create duplicate tree entries for gather sequences that have multiple // uses. However, we should not compute the cost of duplicate sequences. // For example, if we have a build vector (i.e., insertelement sequence) // that is used by more than one vector instruction, we only need to // compute the cost of the insertelement instructions once. The redundent // instructions will be eliminated by CSE. // // We should consider not creating duplicate tree entries for gather // sequences, and instead add additional edges to the tree representing // their uses. Since such an approach results in fewer total entries, // existing heuristics based on tree size may yeild different results. // if (TE.NeedToGather && std::any_of(std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), [TE](TreeEntry &Entry) { return Entry.NeedToGather && Entry.isSame(TE.Scalars); })) continue; int C = getEntryCost(&TE); LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " << *TE.Scalars[0] << ".\n"); Cost += C; } SmallPtrSet ExtractCostCalculated; int ExtractCost = 0; for (ExternalUser &EU : ExternalUses) { // We only add extract cost once for the same scalar. if (!ExtractCostCalculated.insert(EU.Scalar).second) continue; // Uses by ephemeral values are free (because the ephemeral value will be // removed prior to code generation, and so the extraction will be // removed as well). if (EphValues.count(EU.User)) continue; // If we plan to rewrite the tree in a smaller type, we will need to sign // extend the extracted value back to the original type. Here, we account // for the extract and the added cost of the sign extend if needed. auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); auto *ScalarRoot = VectorizableTree[0].Scalars[0]; if (MinBWs.count(ScalarRoot)) { auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); auto Extend = MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; VecTy = VectorType::get(MinTy, BundleWidth); ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), VecTy, EU.Lane); } else { ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); } } int SpillCost = getSpillCost(); Cost += SpillCost + ExtractCost; std::string Str; { raw_string_ostream OS(Str); OS << "SLP: Spill Cost = " << SpillCost << ".\n" << "SLP: Extract Cost = " << ExtractCost << ".\n" << "SLP: Total Cost = " << Cost << ".\n"; } LLVM_DEBUG(dbgs() << Str); if (ViewSLPTree) ViewGraph(this, "SLP" + F->getName(), false, Str); return Cost; } int BoUpSLP::getGatherCost(Type *Ty, const DenseSet &ShuffledIndices) { int Cost = 0; for (unsigned i = 0, e = cast(Ty)->getNumElements(); i < e; ++i) if (!ShuffledIndices.count(i)) Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); if (!ShuffledIndices.empty()) Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); return Cost; } int BoUpSLP::getGatherCost(ArrayRef VL) { // Find the type of the operands in VL. Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); // Find the cost of inserting/extracting values from the vector. // Check if the same elements are inserted several times and count them as // shuffle candidates. DenseSet ShuffledElements; DenseSet UniqueElements; // Iterate in reverse order to consider insert elements with the high cost. for (unsigned I = VL.size(); I > 0; --I) { unsigned Idx = I - 1; if (!UniqueElements.insert(VL[Idx]).second) ShuffledElements.insert(Idx); } return getGatherCost(VecTy, ShuffledElements); } // Reorder commutative operations in alternate shuffle if the resulting vectors // are consecutive loads. This would allow us to vectorize the tree. // If we have something like- // load a[0] - load b[0] // load b[1] + load a[1] // load a[2] - load b[2] // load a[3] + load b[3] // Reordering the second load b[1] load a[1] would allow us to vectorize this // code. void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S, ArrayRef VL, SmallVectorImpl &Left, SmallVectorImpl &Right) { // Push left and right operands of binary operation into Left and Right for (Value *V : VL) { auto *I = cast(V); assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); Left.push_back(I->getOperand(0)); Right.push_back(I->getOperand(1)); } // Reorder if we have a commutative operation and consecutive access // are on either side of the alternate instructions. for (unsigned j = 0; j < VL.size() - 1; ++j) { if (LoadInst *L = dyn_cast(Left[j])) { if (LoadInst *L1 = dyn_cast(Right[j + 1])) { Instruction *VL1 = cast(VL[j]); Instruction *VL2 = cast(VL[j + 1]); if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j], Right[j]); continue; } else if (VL2->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } // else unchanged } } if (LoadInst *L = dyn_cast(Right[j])) { if (LoadInst *L1 = dyn_cast(Left[j + 1])) { Instruction *VL1 = cast(VL[j]); Instruction *VL2 = cast(VL[j + 1]); if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j], Right[j]); continue; } else if (VL2->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } // else unchanged } } } } // Return true if I should be commuted before adding it's left and right // operands to the arrays Left and Right. // // The vectorizer is trying to either have all elements one side being // instruction with the same opcode to enable further vectorization, or having // a splat to lower the vectorizing cost. static bool shouldReorderOperands( int i, unsigned Opcode, Instruction &I, ArrayRef Left, ArrayRef Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { VLeft = I.getOperand(0); VRight = I.getOperand(1); // If we have "SplatRight", try to see if commuting is needed to preserve it. if (SplatRight) { if (VRight == Right[i - 1]) // Preserve SplatRight return false; if (VLeft == Right[i - 1]) { // Commuting would preserve SplatRight, but we don't want to break // SplatLeft either, i.e. preserve the original order if possible. // (FIXME: why do we care?) if (SplatLeft && VLeft == Left[i - 1]) return false; return true; } } // Symmetrically handle Right side. if (SplatLeft) { if (VLeft == Left[i - 1]) // Preserve SplatLeft return false; if (VRight == Left[i - 1]) return true; } Instruction *ILeft = dyn_cast(VLeft); Instruction *IRight = dyn_cast(VRight); // If we have "AllSameOpcodeRight", try to see if the left operands preserves // it and not the right, in this case we want to commute. if (AllSameOpcodeRight) { unsigned RightPrevOpcode = cast(Right[i - 1])->getOpcode(); if (IRight && RightPrevOpcode == IRight->getOpcode()) // Do not commute, a match on the right preserves AllSameOpcodeRight return false; if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { // We have a match and may want to commute, but first check if there is // not also a match on the existing operands on the Left to preserve // AllSameOpcodeLeft, i.e. preserve the original order if possible. // (FIXME: why do we care?) if (AllSameOpcodeLeft && ILeft && cast(Left[i - 1])->getOpcode() == ILeft->getOpcode()) return false; return true; } } // Symmetrically handle Left side. if (AllSameOpcodeLeft) { unsigned LeftPrevOpcode = cast(Left[i - 1])->getOpcode(); if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) return false; if (IRight && LeftPrevOpcode == IRight->getOpcode()) return true; } return false; } void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef VL, SmallVectorImpl &Left, SmallVectorImpl &Right) { if (!VL.empty()) { // Peel the first iteration out of the loop since there's nothing // interesting to do anyway and it simplifies the checks in the loop. auto *I = cast(VL[0]); Value *VLeft = I->getOperand(0); Value *VRight = I->getOperand(1); if (!isa(VRight) && isa(VLeft)) // Favor having instruction to the right. FIXME: why? std::swap(VLeft, VRight); Left.push_back(VLeft); Right.push_back(VRight); } // Keep track if we have instructions with all the same opcode on one side. bool AllSameOpcodeLeft = isa(Left[0]); bool AllSameOpcodeRight = isa(Right[0]); // Keep track if we have one side with all the same value (broadcast). bool SplatLeft = true; bool SplatRight = true; for (unsigned i = 1, e = VL.size(); i != e; ++i) { Instruction *I = cast(VL[i]); assert(((I->getOpcode() == Opcode && I->isCommutative()) || (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && "Can only process commutative instruction"); // Commute to favor either a splat or maximizing having the same opcodes on // one side. Value *VLeft; Value *VRight; if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, VRight)) { Left.push_back(VRight); Right.push_back(VLeft); } else { Left.push_back(VLeft); Right.push_back(VRight); } // Update Splat* and AllSameOpcode* after the insertion. SplatRight = SplatRight && (Right[i - 1] == Right[i]); SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); AllSameOpcodeLeft = AllSameOpcodeLeft && isa(Left[i]) && (cast(Left[i - 1])->getOpcode() == cast(Left[i])->getOpcode()); AllSameOpcodeRight = AllSameOpcodeRight && isa(Right[i]) && (cast(Right[i - 1])->getOpcode() == cast(Right[i])->getOpcode()); } // If one operand end up being broadcast, return this operand order. if (SplatRight || SplatLeft) return; // Finally check if we can get longer vectorizable chain by reordering // without breaking the good operand order detected above. // E.g. If we have something like- // load a[0] load b[0] // load b[1] load a[1] // load a[2] load b[2] // load a[3] load b[3] // Reordering the second load b[1] load a[1] would allow us to vectorize // this code and we still retain AllSameOpcode property. // FIXME: This load reordering might break AllSameOpcode in some rare cases // such as- // add a[0],c[0] load b[0] // add a[1],c[2] load b[1] // b[2] load b[2] // add a[3],c[3] load b[3] for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { if (LoadInst *L = dyn_cast(Left[j])) { if (LoadInst *L1 = dyn_cast(Right[j + 1])) { if (isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } } } if (LoadInst *L = dyn_cast(Right[j])) { if (LoadInst *L1 = dyn_cast(Left[j + 1])) { if (isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } } } // else unchanged } } void BoUpSLP::setInsertPointAfterBundle(ArrayRef VL, const InstructionsState &S) { // Get the basic block this bundle is in. All instructions in the bundle // should be in this block. auto *Front = cast(S.OpValue); auto *BB = Front->getParent(); assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { auto *I = cast(V); return !S.isOpcodeOrAlt(I) || I->getParent() == BB; })); // The last instruction in the bundle in program order. Instruction *LastInst = nullptr; // Find the last instruction. The common case should be that BB has been // scheduled, and the last instruction is VL.back(). So we start with // VL.back() and iterate over schedule data until we reach the end of the // bundle. The end of the bundle is marked by null ScheduleData. if (BlocksSchedules.count(BB)) { auto *Bundle = BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); if (Bundle && Bundle->isPartOfBundle()) for (; Bundle; Bundle = Bundle->NextInBundle) if (Bundle->OpValue == Bundle->Inst) LastInst = Bundle->Inst; } // LastInst can still be null at this point if there's either not an entry // for BB in BlocksSchedules or there's no ScheduleData available for // VL.back(). This can be the case if buildTree_rec aborts for various // reasons (e.g., the maximum recursion depth is reached, the maximum region // size is reached, etc.). ScheduleData is initialized in the scheduling // "dry-run". // // If this happens, we can still find the last instruction by brute force. We // iterate forwards from Front (inclusive) until we either see all // instructions in the bundle or reach the end of the block. If Front is the // last instruction in program order, LastInst will be set to Front, and we // will visit all the remaining instructions in the block. // // One of the reasons we exit early from buildTree_rec is to place an upper // bound on compile-time. Thus, taking an additional compile-time hit here is // not ideal. However, this should be exceedingly rare since it requires that // we both exit early from buildTree_rec and that the bundle be out-of-order // (causing us to iterate all the way to the end of the block). if (!LastInst) { SmallPtrSet Bundle(VL.begin(), VL.end()); for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) LastInst = &I; if (Bundle.empty()) break; } } // Set the insertion point after the last instruction in the bundle. Set the // debug location to Front. Builder.SetInsertPoint(BB, ++LastInst->getIterator()); Builder.SetCurrentDebugLocation(Front->getDebugLoc()); } Value *BoUpSLP::Gather(ArrayRef VL, VectorType *Ty) { Value *Vec = UndefValue::get(Ty); // Generate the 'InsertElement' instruction. for (unsigned i = 0; i < Ty->getNumElements(); ++i) { Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); if (Instruction *Insrt = dyn_cast(Vec)) { GatherSeq.insert(Insrt); CSEBlocks.insert(Insrt->getParent()); // Add to our 'need-to-extract' list. if (TreeEntry *E = getTreeEntry(VL[i])) { // Find which lane we need to extract. int FoundLane = -1; for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { // Is this the lane of the scalar that we are looking for ? if (E->Scalars[Lane] == VL[i]) { FoundLane = Lane; break; } } assert(FoundLane >= 0 && "Could not find the correct lane"); if (!E->ReuseShuffleIndices.empty()) { FoundLane = std::distance(E->ReuseShuffleIndices.begin(), llvm::find(E->ReuseShuffleIndices, FoundLane)); } ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); } } } return Vec; } Value *BoUpSLP::vectorizeTree(ArrayRef VL) { InstructionsState S = getSameOpcode(VL); if (S.getOpcode()) { if (TreeEntry *E = getTreeEntry(S.OpValue)) { if (E->isSame(VL)) { Value *V = vectorizeTree(E); if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { // We need to get the vectorized value but without shuffle. if (auto *SV = dyn_cast(V)) { V = SV->getOperand(0); } else { // Reshuffle to get only unique values. SmallVector UniqueIdxs; SmallSet UsedIdxs; for(unsigned Idx : E->ReuseShuffleIndices) if (UsedIdxs.insert(Idx).second) UniqueIdxs.emplace_back(Idx); V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), UniqueIdxs); } } return V; } } } Type *ScalarTy = S.OpValue->getType(); if (StoreInst *SI = dyn_cast(S.OpValue)) ScalarTy = SI->getValueOperand()->getType(); // Check that every instruction appears once in this bundle. SmallVector ReuseShuffleIndicies; SmallVector UniqueValues; if (VL.size() > 2) { DenseMap UniquePositions; for (Value *V : VL) { auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); ReuseShuffleIndicies.emplace_back(Res.first->second); if (Res.second || isa(V)) UniqueValues.emplace_back(V); } // Do not shuffle single element or if number of unique values is not power // of 2. if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) ReuseShuffleIndicies.clear(); else VL = UniqueValues; } VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); Value *V = Gather(VL, VecTy); if (!ReuseShuffleIndicies.empty()) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), ReuseShuffleIndicies, "shuffle"); if (auto *I = dyn_cast(V)) { GatherSeq.insert(I); CSEBlocks.insert(I->getParent()); } } return V; } static void inversePermutation(ArrayRef Indices, SmallVectorImpl &Mask) { Mask.clear(); const unsigned E = Indices.size(); Mask.resize(E); for (unsigned I = 0; I < E; ++I) Mask[Indices[I]] = I; } Value *BoUpSLP::vectorizeTree(TreeEntry *E) { IRBuilder<>::InsertPointGuard Guard(Builder); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); return E->VectorizedValue; } InstructionsState S = getSameOpcode(E->Scalars); Instruction *VL0 = cast(S.OpValue); Type *ScalarTy = VL0->getType(); if (StoreInst *SI = dyn_cast(VL0)) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); if (E->NeedToGather) { setInsertPointAfterBundle(E->Scalars, S); auto *V = Gather(E->Scalars, VecTy); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); if (auto *I = dyn_cast(V)) { GatherSeq.insert(I); CSEBlocks.insert(I->getParent()); } } E->VectorizedValue = V; return V; } unsigned ShuffleOrOp = S.isAltShuffle() ? (unsigned) Instruction::ShuffleVector : S.getOpcode(); switch (ShuffleOrOp) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); Value *V = NewPhi; if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; // PHINodes may have multiple entries from the same block. We want to // visit every block once. SmallPtrSet VisitedBBs; for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; BasicBlock *IBB = PH->getIncomingBlock(i); if (!VisitedBBs.insert(IBB).second) { NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); continue; } // Prepare the operand vector. for (Value *V : E->Scalars) Operands.push_back(cast(V)->getIncomingValueForBlock(IBB)); Builder.SetInsertPoint(IBB->getTerminator()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); Value *Vec = vectorizeTree(Operands); NewPhi->addIncoming(Vec, IBB); } assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && "Invalid number of incoming values"); return V; } case Instruction::ExtractElement: { if (!E->NeedToGather) { Value *V = VL0->getOperand(0); if (!E->ReorderIndices.empty()) { OrdersType Mask; inversePermutation(E->ReorderIndices, Mask); Builder.SetInsertPoint(VL0); V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, "reorder_shuffle"); } if (NeedToShuffleReuses) { // TODO: Merge this shuffle with the ReorderShuffleMask. if (E->ReorderIndices.empty()) Builder.SetInsertPoint(VL0); V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; return V; } setInsertPointAfterBundle(E->Scalars, S); auto *V = Gather(E->Scalars, VecTy); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); if (auto *I = dyn_cast(V)) { GatherSeq.insert(I); CSEBlocks.insert(I->getParent()); } } E->VectorizedValue = V; return V; } case Instruction::ExtractValue: { if (!E->NeedToGather) { LoadInst *LI = cast(VL0->getOperand(0)); Builder.SetInsertPoint(LI); PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); Value *NewV = propagateMetadata(V, E->Scalars); if (!E->ReorderIndices.empty()) { OrdersType Mask; inversePermutation(E->ReorderIndices, Mask); NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, "reorder_shuffle"); } if (NeedToShuffleReuses) { // TODO: Merge this shuffle with the ReorderShuffleMask. NewV = Builder.CreateShuffleVector( NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = NewV; return NewV; } setInsertPointAfterBundle(E->Scalars, S); auto *V = Gather(E->Scalars, VecTy); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); if (auto *I = dyn_cast(V)) { GatherSeq.insert(I); CSEBlocks.insert(I->getParent()); } } E->VectorizedValue = V; return V; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { ValueList INVL; for (Value *V : E->Scalars) INVL.push_back(cast(V)->getOperand(0)); setInsertPointAfterBundle(E->Scalars, S); Value *InVec = vectorizeTree(INVL); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } CastInst *CI = dyn_cast(VL0); Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::FCmp: case Instruction::ICmp: { ValueList LHSV, RHSV; for (Value *V : E->Scalars) { LHSV.push_back(cast(V)->getOperand(0)); RHSV.push_back(cast(V)->getOperand(1)); } setInsertPointAfterBundle(E->Scalars, S); Value *L = vectorizeTree(LHSV); Value *R = vectorizeTree(RHSV); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } CmpInst::Predicate P0 = cast(VL0)->getPredicate(); Value *V; if (S.getOpcode() == Instruction::FCmp) V = Builder.CreateFCmp(P0, L, R); else V = Builder.CreateICmp(P0, L, R); propagateIRFlags(V, E->Scalars, VL0); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Select: { ValueList TrueVec, FalseVec, CondVec; for (Value *V : E->Scalars) { CondVec.push_back(cast(V)->getOperand(0)); TrueVec.push_back(cast(V)->getOperand(1)); FalseVec.push_back(cast(V)->getOperand(2)); } setInsertPointAfterBundle(E->Scalars, S); Value *Cond = vectorizeTree(CondVec); Value *True = vectorizeTree(TrueVec); Value *False = vectorizeTree(FalseVec); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } Value *V = Builder.CreateSelect(Cond, True, False); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { ValueList LHSVL, RHSVL; if (isa(VL0) && VL0->isCommutative()) reorderInputsAccordingToOpcode(S.getOpcode(), E->Scalars, LHSVL, RHSVL); else for (Value *V : E->Scalars) { auto *I = cast(V); LHSVL.push_back(I->getOperand(0)); RHSVL.push_back(I->getOperand(1)); } setInsertPointAfterBundle(E->Scalars, S); Value *LHS = vectorizeTree(LHSVL); Value *RHS = vectorizeTree(RHSVL); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } Value *V = Builder.CreateBinOp( static_cast(S.getOpcode()), LHS, RHS); propagateIRFlags(V, E->Scalars, VL0); if (auto *I = dyn_cast(V)) V = propagateMetadata(I, E->Scalars); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Load: { // Loads are inserted at the head of the tree because we don't want to // sink them all the way down past store instructions. bool IsReorder = !E->ReorderIndices.empty(); if (IsReorder) { S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); VL0 = cast(S.OpValue); } setInsertPointAfterBundle(E->Scalars, S); LoadInst *LI = cast(VL0); Type *ScalarLoadTy = LI->getType(); unsigned AS = LI->getPointerAddressSpace(); Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo(AS)); // The pointer operand uses an in-tree scalar so we add the new BitCast to // ExternalUses list to make sure that an extract will be generated in the // future. Value *PO = LI->getPointerOperand(); if (getTreeEntry(PO)) ExternalUses.push_back(ExternalUser(PO, cast(VecPtr), 0)); unsigned Alignment = LI->getAlignment(); LI = Builder.CreateLoad(VecPtr); if (!Alignment) { Alignment = DL->getABITypeAlignment(ScalarLoadTy); } LI->setAlignment(Alignment); Value *V = propagateMetadata(LI, E->Scalars); if (IsReorder) { OrdersType Mask; inversePermutation(E->ReorderIndices, Mask); V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask, "reorder_shuffle"); } if (NeedToShuffleReuses) { // TODO: Merge this shuffle with the ReorderShuffleMask. V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Store: { StoreInst *SI = cast(VL0); unsigned Alignment = SI->getAlignment(); unsigned AS = SI->getPointerAddressSpace(); ValueList ScalarStoreValues; for (Value *V : E->Scalars) ScalarStoreValues.push_back(cast(V)->getValueOperand()); setInsertPointAfterBundle(E->Scalars, S); Value *VecValue = vectorizeTree(ScalarStoreValues); Value *ScalarPtr = SI->getPointerOperand(); Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); // The pointer operand uses an in-tree scalar, so add the new BitCast to // ExternalUses to make sure that an extract will be generated in the // future. if (getTreeEntry(ScalarPtr)) ExternalUses.push_back(ExternalUser(ScalarPtr, cast(VecPtr), 0)); if (!Alignment) Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); ST->setAlignment(Alignment); Value *V = propagateMetadata(ST, E->Scalars); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::GetElementPtr: { setInsertPointAfterBundle(E->Scalars, S); ValueList Op0VL; for (Value *V : E->Scalars) Op0VL.push_back(cast(V)->getOperand(0)); Value *Op0 = vectorizeTree(Op0VL); std::vector OpVecs; for (int j = 1, e = cast(VL0)->getNumOperands(); j < e; ++j) { ValueList OpVL; for (Value *V : E->Scalars) OpVL.push_back(cast(V)->getOperand(j)); Value *OpVec = vectorizeTree(OpVL); OpVecs.push_back(OpVec); } Value *V = Builder.CreateGEP( cast(VL0)->getSourceElementType(), Op0, OpVecs); if (Instruction *I = dyn_cast(V)) V = propagateMetadata(I, E->Scalars); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Call: { CallInst *CI = cast(VL0); setInsertPointAfterBundle(E->Scalars, S); Function *FI; Intrinsic::ID IID = Intrinsic::not_intrinsic; Value *ScalarArg = nullptr; if (CI && (FI = CI->getCalledFunction())) { IID = FI->getIntrinsicID(); } std::vector OpVecs; for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { ValueList OpVL; // ctlz,cttz and powi are special intrinsics whose second argument is // a scalar. This argument should not be vectorized. if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { CallInst *CEI = cast(VL0); ScalarArg = CEI->getArgOperand(j); OpVecs.push_back(CEI->getArgOperand(j)); continue; } for (Value *V : E->Scalars) { CallInst *CEI = cast(V); OpVL.push_back(CEI->getArgOperand(j)); } Value *OpVec = vectorizeTree(OpVL); LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); OpVecs.push_back(OpVec); } Module *M = F->getParent(); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; Function *CF = Intrinsic::getDeclaration(M, ID, Tys); SmallVector OpBundles; CI->getOperandBundlesAsDefs(OpBundles); Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); // The scalar argument uses an in-tree scalar so we add the new vectorized // call to ExternalUses list to make sure that an extract will be // generated in the future. if (ScalarArg && getTreeEntry(ScalarArg)) ExternalUses.push_back(ExternalUser(ScalarArg, cast(V), 0)); propagateIRFlags(V, E->Scalars, VL0); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::ShuffleVector: { ValueList LHSVL, RHSVL; assert(S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"); Value *LHS, *RHS; if (Instruction::isBinaryOp(S.getOpcode())) { reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL); setInsertPointAfterBundle(E->Scalars, S); LHS = vectorizeTree(LHSVL); RHS = vectorizeTree(RHSVL); } else { ValueList INVL; for (Value *V : E->Scalars) INVL.push_back(cast(V)->getOperand(0)); setInsertPointAfterBundle(E->Scalars, S); LHS = vectorizeTree(INVL); } if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } Value *V0, *V1; if (Instruction::isBinaryOp(S.getOpcode())) { V0 = Builder.CreateBinOp( static_cast(S.getOpcode()), LHS, RHS); V1 = Builder.CreateBinOp( static_cast(S.getAltOpcode()), LHS, RHS); } else { V0 = Builder.CreateCast( static_cast(S.getOpcode()), LHS, VecTy); V1 = Builder.CreateCast( static_cast(S.getAltOpcode()), LHS, VecTy); } // Create shuffle to take alternate operations from the vector. // Also, gather up main and alt scalar ops to propagate IR flags to // each vector operation. ValueList OpScalars, AltScalars; unsigned e = E->Scalars.size(); SmallVector Mask(e); for (unsigned i = 0; i < e; ++i) { auto *OpInst = cast(E->Scalars[i]); assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); if (OpInst->getOpcode() == S.getAltOpcode()) { Mask[i] = Builder.getInt32(e + i); AltScalars.push_back(E->Scalars[i]); } else { Mask[i] = Builder.getInt32(i); OpScalars.push_back(E->Scalars[i]); } } Value *ShuffleMask = ConstantVector::get(Mask); propagateIRFlags(V0, OpScalars); propagateIRFlags(V1, AltScalars); Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); if (Instruction *I = dyn_cast(V)) V = propagateMetadata(I, E->Scalars); if (NeedToShuffleReuses) { V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } default: llvm_unreachable("unknown inst"); } return nullptr; } Value *BoUpSLP::vectorizeTree() { ExtraValueToDebugLocsMap ExternallyUsedValues; return vectorizeTree(ExternallyUsedValues); } Value * BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { // All blocks must be scheduled before any instructions are inserted. for (auto &BSIter : BlocksSchedules) { scheduleBlock(BSIter.second.get()); } Builder.SetInsertPoint(&F->getEntryBlock().front()); auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); // If the vectorized tree can be rewritten in a smaller type, we truncate the // vectorized root. InstCombine will then rewrite the entire expression. We // sign extend the extracted values below. auto *ScalarRoot = VectorizableTree[0].Scalars[0]; if (MinBWs.count(ScalarRoot)) { if (auto *I = dyn_cast(VectorRoot)) Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); auto BundleWidth = VectorizableTree[0].Scalars.size(); auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); auto *VecTy = VectorType::get(MinTy, BundleWidth); auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); VectorizableTree[0].VectorizedValue = Trunc; } LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); // If necessary, sign-extend or zero-extend ScalarRoot to the larger type // specified by ScalarType. auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { if (!MinBWs.count(ScalarRoot)) return Ex; if (MinBWs[ScalarRoot].second) return Builder.CreateSExt(Ex, ScalarType); return Builder.CreateZExt(Ex, ScalarType); }; // Extract all of the elements with the external uses. for (const auto &ExternalUse : ExternalUses) { Value *Scalar = ExternalUse.Scalar; llvm::User *User = ExternalUse.User; // Skip users that we already RAUW. This happens when one instruction // has multiple uses of the same value. if (User && !is_contained(Scalar->users(), User)) continue; TreeEntry *E = getTreeEntry(Scalar); assert(E && "Invalid scalar"); assert(!E->NeedToGather && "Extracting from a gather list"); Value *Vec = E->VectorizedValue; assert(Vec && "Can't find vectorizable value"); Value *Lane = Builder.getInt32(ExternalUse.Lane); // If User == nullptr, the Scalar is used as extra arg. Generate // ExtractElement instruction and update the record for this scalar in // ExternallyUsedValues. if (!User) { assert(ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in " "ExternallyUsedValues map"); if (auto *VecI = dyn_cast(Vec)) { Builder.SetInsertPoint(VecI->getParent(), std::next(VecI->getIterator())); } else { Builder.SetInsertPoint(&F->getEntryBlock().front()); } Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(cast(Scalar)->getParent()); auto &Locs = ExternallyUsedValues[Scalar]; ExternallyUsedValues.insert({Ex, Locs}); ExternallyUsedValues.erase(Scalar); continue; } // Generate extracts for out-of-tree users. // Find the insertion point for the extractelement lane. if (auto *VecI = dyn_cast(Vec)) { if (PHINode *PH = dyn_cast(User)) { for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { if (PH->getIncomingValue(i) == Scalar) { TerminatorInst *IncomingTerminator = PH->getIncomingBlock(i)->getTerminator(); if (isa(IncomingTerminator)) { Builder.SetInsertPoint(VecI->getParent(), std::next(VecI->getIterator())); } else { Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); } Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(PH->getIncomingBlock(i)); PH->setOperand(i, Ex); } } } else { Builder.SetInsertPoint(cast(User)); Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(cast(User)->getParent()); User->replaceUsesOfWith(Scalar, Ex); } } else { Builder.SetInsertPoint(&F->getEntryBlock().front()); Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(&F->getEntryBlock()); User->replaceUsesOfWith(Scalar, Ex); } LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); } // For each vectorized value: for (TreeEntry &EIdx : VectorizableTree) { TreeEntry *Entry = &EIdx; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; assert(Entry->VectorizedValue && "Can't find vectorizable value"); // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; Type *Ty = Scalar->getType(); if (!Ty->isVoidTy()) { #ifndef NDEBUG for (User *U : Scalar->users()) { LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); // It is legal to replace users in the ignorelist by undef. assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && "Replacing out-of-tree value with undef"); } #endif Value *Undef = UndefValue::get(Ty); Scalar->replaceAllUsesWith(Undef); } LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); eraseInstruction(cast(Scalar)); } } Builder.ClearInsertionPoint(); return VectorizableTree[0].VectorizedValue; } void BoUpSLP::optimizeGatherSequence() { LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() << " gather sequences instructions.\n"); // LICM InsertElementInst sequences. for (Instruction *I : GatherSeq) { if (!isa(I) && !isa(I)) continue; // Check if this block is inside a loop. Loop *L = LI->getLoopFor(I->getParent()); if (!L) continue; // Check if it has a preheader. BasicBlock *PreHeader = L->getLoopPreheader(); if (!PreHeader) continue; // If the vector or the element that we insert into it are // instructions that are defined in this basic block then we can't // hoist this instruction. auto *Op0 = dyn_cast(I->getOperand(0)); auto *Op1 = dyn_cast(I->getOperand(1)); if (Op0 && L->contains(Op0)) continue; if (Op1 && L->contains(Op1)) continue; // We can hoist this instruction. Move it to the pre-header. I->moveBefore(PreHeader->getTerminator()); } // Make a list of all reachable blocks in our CSE queue. SmallVector CSEWorkList; CSEWorkList.reserve(CSEBlocks.size()); for (BasicBlock *BB : CSEBlocks) if (DomTreeNode *N = DT->getNode(BB)) { assert(DT->isReachableFromEntry(N)); CSEWorkList.push_back(N); } // Sort blocks by domination. This ensures we visit a block after all blocks // dominating it are visited. std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), [this](const DomTreeNode *A, const DomTreeNode *B) { return DT->properlyDominates(A, B); }); // Perform O(N^2) search over the gather sequences and merge identical // instructions. TODO: We can further optimize this scan if we split the // instructions into different buckets based on the insert lane. SmallVector Visited; for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"); BasicBlock *BB = (*I)->getBlock(); // For all instructions in blocks containing gather sequences: for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { Instruction *In = &*it++; if (!isa(In) && !isa(In)) continue; // Check if we can replace this instruction with any of the // visited instructions. for (Instruction *v : Visited) { if (In->isIdenticalTo(v) && DT->dominates(v->getParent(), In->getParent())) { In->replaceAllUsesWith(v); eraseInstruction(In); In = nullptr; break; } } if (In) { assert(!is_contained(Visited, In)); Visited.push_back(In); } } } CSEBlocks.clear(); GatherSeq.clear(); } // Groups the instructions to a bundle (which is then a single scheduling entity) // and schedules instructions until the bundle gets ready. bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef VL, BoUpSLP *SLP, const InstructionsState &S) { if (isa(S.OpValue)) return true; // Initialize the instruction bundle. Instruction *OldScheduleEnd = ScheduleEnd; ScheduleData *PrevInBundle = nullptr; ScheduleData *Bundle = nullptr; bool ReSchedule = false; LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); // Make sure that the scheduling region contains all // instructions of the bundle. for (Value *V : VL) { if (!extendSchedulingRegion(V, S)) return false; } for (Value *V : VL) { ScheduleData *BundleMember = getScheduleData(V); assert(BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"); if (BundleMember->IsScheduled) { // A bundle member was scheduled as single instruction before and now // needs to be scheduled as part of the bundle. We just get rid of the // existing schedule. LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember << " was already scheduled\n"); ReSchedule = true; } assert(BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"); if (PrevInBundle) { PrevInBundle->NextInBundle = BundleMember; } else { Bundle = BundleMember; } BundleMember->UnscheduledDepsInBundle = 0; Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; // Group the instructions to a bundle. BundleMember->FirstInBundle = Bundle; PrevInBundle = BundleMember; } if (ScheduleEnd != OldScheduleEnd) { // The scheduling region got new instructions at the lower end (or it is a // new region for the first bundle). This makes it necessary to // recalculate all dependencies. // It is seldom that this needs to be done a second time after adding the // initial bundle to the region. for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); } ReSchedule = true; } if (ReSchedule) { resetSchedule(); initialFillReadyList(ReadyInsts); } LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " << BB->getName() << "\n"); calculateDependencies(Bundle, true, SLP); // Now try to schedule the new bundle. As soon as the bundle is "ready" it // means that there are no cyclic dependencies and we can schedule it. // Note that's important that we don't "schedule" the bundle yet (see // cancelScheduling). while (!Bundle->isReady() && !ReadyInsts.empty()) { ScheduleData *pickedSD = ReadyInsts.back(); ReadyInsts.pop_back(); if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { schedule(pickedSD, ReadyInsts); } } if (!Bundle->isReady()) { cancelScheduling(VL, S.OpValue); return false; } return true; } void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef VL, Value *OpValue) { if (isa(OpValue)) return; ScheduleData *Bundle = getScheduleData(OpValue); LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); assert(!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"); assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && "tried to unbundle something which is not a bundle"); // Un-bundle: make single instructions out of the bundle. ScheduleData *BundleMember = Bundle; while (BundleMember) { assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); BundleMember->FirstInBundle = BundleMember; ScheduleData *Next = BundleMember->NextInBundle; BundleMember->NextInBundle = nullptr; BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; if (BundleMember->UnscheduledDepsInBundle == 0) { ReadyInsts.insert(BundleMember); } BundleMember = Next; } } BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { // Allocate a new ScheduleData for the instruction. if (ChunkPos >= ChunkSize) { ScheduleDataChunks.push_back(llvm::make_unique(ChunkSize)); ChunkPos = 0; } return &(ScheduleDataChunks.back()[ChunkPos++]); } bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, const InstructionsState &S) { if (getScheduleData(V, isOneOf(S, V))) return true; Instruction *I = dyn_cast(V); assert(I && "bundle member must be an instruction"); assert(!isa(I) && "phi nodes don't need to be scheduled"); auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { ScheduleData *ISD = getScheduleData(I); if (!ISD) return false; assert(isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"); ScheduleData *SD = allocateScheduleDataChunks(); SD->Inst = I; SD->init(SchedulingRegionID, S.OpValue); ExtraScheduleDataMap[I][S.OpValue] = SD; return true; }; if (CheckSheduleForI(I)) return true; if (!ScheduleStart) { // It's the first instruction in the new region. initScheduleData(I, I->getNextNode(), nullptr, nullptr); ScheduleStart = I; ScheduleEnd = I->getNextNode(); if (isOneOf(S, I) != I) CheckSheduleForI(I); assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); return true; } // Search up and down at the same time, because we don't know if the new // instruction is above or below the existing scheduling region. BasicBlock::reverse_iterator UpIter = ++ScheduleStart->getIterator().getReverse(); BasicBlock::reverse_iterator UpperEnd = BB->rend(); BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); BasicBlock::iterator LowerEnd = BB->end(); while (true) { if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); return false; } if (UpIter != UpperEnd) { if (&*UpIter == I) { initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); ScheduleStart = I; if (isOneOf(S, I) != I) CheckSheduleForI(I); LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); return true; } UpIter++; } if (DownIter != LowerEnd) { if (&*DownIter == I) { initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, nullptr); ScheduleEnd = I->getNextNode(); if (isOneOf(S, I) != I) CheckSheduleForI(I); assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); return true; } DownIter++; } assert((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"); } return true; } void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, Instruction *ToI, ScheduleData *PrevLoadStore, ScheduleData *NextLoadStore) { ScheduleData *CurrentLoadStore = PrevLoadStore; for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { ScheduleData *SD = ScheduleDataMap[I]; if (!SD) { SD = allocateScheduleDataChunks(); ScheduleDataMap[I] = SD; SD->Inst = I; } assert(!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"); SD->init(SchedulingRegionID, I); if (I->mayReadOrWriteMemory() && (!isa(I) || cast(I)->getIntrinsicID() != Intrinsic::sideeffect)) { // Update the linked list of memory accessing instructions. if (CurrentLoadStore) { CurrentLoadStore->NextLoadStore = SD; } else { FirstLoadStoreInRegion = SD; } CurrentLoadStore = SD; } } if (NextLoadStore) { if (CurrentLoadStore) CurrentLoadStore->NextLoadStore = NextLoadStore; } else { LastLoadStoreInRegion = CurrentLoadStore; } } void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, bool InsertInReadyList, BoUpSLP *SLP) { assert(SD->isSchedulingEntity()); SmallVector WorkList; WorkList.push_back(SD); while (!WorkList.empty()) { ScheduleData *SD = WorkList.back(); WorkList.pop_back(); ScheduleData *BundleMember = SD; while (BundleMember) { assert(isInSchedulingRegion(BundleMember)); if (!BundleMember->hasValidDependencies()) { LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); BundleMember->Dependencies = 0; BundleMember->resetUnscheduledDeps(); // Handle def-use chain dependencies. if (BundleMember->OpValue != BundleMember->Inst) { ScheduleData *UseSD = getScheduleData(BundleMember->Inst); if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { BundleMember->Dependencies++; ScheduleData *DestBundle = UseSD->FirstInBundle; if (!DestBundle->IsScheduled) BundleMember->incrementUnscheduledDeps(1); if (!DestBundle->hasValidDependencies()) WorkList.push_back(DestBundle); } } else { for (User *U : BundleMember->Inst->users()) { if (isa(U)) { ScheduleData *UseSD = getScheduleData(U); if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { BundleMember->Dependencies++; ScheduleData *DestBundle = UseSD->FirstInBundle; if (!DestBundle->IsScheduled) BundleMember->incrementUnscheduledDeps(1); if (!DestBundle->hasValidDependencies()) WorkList.push_back(DestBundle); } } else { // I'm not sure if this can ever happen. But we need to be safe. // This lets the instruction/bundle never be scheduled and // eventually disable vectorization. BundleMember->Dependencies++; BundleMember->incrementUnscheduledDeps(1); } } } // Handle the memory dependencies. ScheduleData *DepDest = BundleMember->NextLoadStore; if (DepDest) { Instruction *SrcInst = BundleMember->Inst; MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); unsigned numAliased = 0; unsigned DistToSrc = 1; while (DepDest) { assert(isInSchedulingRegion(DepDest)); // We have two limits to reduce the complexity: // 1) AliasedCheckLimit: It's a small limit to reduce calls to // SLP->isAliased (which is the expensive part in this loop). // 2) MaxMemDepDistance: It's for very large blocks and it aborts // the whole loop (even if the loop is fast, it's quadratic). // It's important for the loop break condition (see below) to // check this limit even between two read-only instructions. if (DistToSrc >= MaxMemDepDistance || ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && (numAliased >= AliasedCheckLimit || SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { // We increment the counter only if the locations are aliased // (instead of counting all alias checks). This gives a better // balance between reduced runtime and accurate dependencies. numAliased++; DepDest->MemoryDependencies.push_back(BundleMember); BundleMember->Dependencies++; ScheduleData *DestBundle = DepDest->FirstInBundle; if (!DestBundle->IsScheduled) { BundleMember->incrementUnscheduledDeps(1); } if (!DestBundle->hasValidDependencies()) { WorkList.push_back(DestBundle); } } DepDest = DepDest->NextLoadStore; // Example, explaining the loop break condition: Let's assume our // starting instruction is i0 and MaxMemDepDistance = 3. // // +--------v--v--v // i0,i1,i2,i3,i4,i5,i6,i7,i8 // +--------^--^--^ // // MaxMemDepDistance let us stop alias-checking at i3 and we add // dependencies from i0 to i3,i4,.. (even if they are not aliased). // Previously we already added dependencies from i3 to i6,i7,i8 // (because of MaxMemDepDistance). As we added a dependency from // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 // and we can abort this loop at i6. if (DistToSrc >= 2 * MaxMemDepDistance) break; DistToSrc++; } } } BundleMember = BundleMember->NextInBundle; } if (InsertInReadyList && SD->isReady()) { ReadyInsts.push_back(SD); LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); } } } void BoUpSLP::BlockScheduling::resetSchedule() { assert(ScheduleStart && "tried to reset schedule on block which has not been scheduled"); for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { doForAllOpcodes(I, [&](ScheduleData *SD) { assert(isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"); SD->IsScheduled = false; SD->resetUnscheduledDeps(); }); } ReadyInsts.clear(); } void BoUpSLP::scheduleBlock(BlockScheduling *BS) { if (!BS->ScheduleStart) return; LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); BS->resetSchedule(); // For the real scheduling we use a more sophisticated ready-list: it is // sorted by the original instruction location. This lets the final schedule // be as close as possible to the original instruction order. struct ScheduleDataCompare { bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { return SD2->SchedulingPriority < SD1->SchedulingPriority; } }; std::set ReadyInsts; // Ensure that all dependency data is updated and fill the ready-list with // initial instructions. int Idx = 0; int NumToSchedule = 0; for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { assert(SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"); SD->FirstInBundle->SchedulingPriority = Idx++; if (SD->isSchedulingEntity()) { BS->calculateDependencies(SD, false, this); NumToSchedule++; } }); } BS->initialFillReadyList(ReadyInsts); Instruction *LastScheduledInst = BS->ScheduleEnd; // Do the "real" scheduling. while (!ReadyInsts.empty()) { ScheduleData *picked = *ReadyInsts.begin(); ReadyInsts.erase(ReadyInsts.begin()); // Move the scheduled instruction(s) to their dedicated places, if not // there yet. ScheduleData *BundleMember = picked; while (BundleMember) { Instruction *pickedInst = BundleMember->Inst; if (LastScheduledInst->getNextNode() != pickedInst) { BS->BB->getInstList().remove(pickedInst); BS->BB->getInstList().insert(LastScheduledInst->getIterator(), pickedInst); } LastScheduledInst = pickedInst; BundleMember = BundleMember->NextInBundle; } BS->schedule(picked, ReadyInsts); NumToSchedule--; } assert(NumToSchedule == 0 && "could not schedule all instructions"); // Avoid duplicate scheduling of the block. BS->ScheduleStart = nullptr; } unsigned BoUpSLP::getVectorElementSize(Value *V) { // If V is a store, just return the width of the stored value without // traversing the expression tree. This is the common case. if (auto *Store = dyn_cast(V)) return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); // If V is not a store, we can traverse the expression tree to find loads // that feed it. The type of the loaded value may indicate a more suitable // width than V's type. We want to base the vector element size on the width // of memory operations where possible. SmallVector Worklist; SmallPtrSet Visited; if (auto *I = dyn_cast(V)) Worklist.push_back(I); // Traverse the expression tree in bottom-up order looking for loads. If we // encounter an instruciton we don't yet handle, we give up. auto MaxWidth = 0u; auto FoundUnknownInst = false; while (!Worklist.empty() && !FoundUnknownInst) { auto *I = Worklist.pop_back_val(); Visited.insert(I); // We should only be looking at scalar instructions here. If the current // instruction has a vector type, give up. auto *Ty = I->getType(); if (isa(Ty)) FoundUnknownInst = true; // If the current instruction is a load, update MaxWidth to reflect the // width of the loaded value. else if (isa(I)) MaxWidth = std::max(MaxWidth, DL->getTypeSizeInBits(Ty)); // Otherwise, we need to visit the operands of the instruction. We only // handle the interesting cases from buildTree here. If an operand is an // instruction we haven't yet visited, we add it to the worklist. else if (isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I)) { for (Use &U : I->operands()) if (auto *J = dyn_cast(U.get())) if (!Visited.count(J)) Worklist.push_back(J); } // If we don't yet handle the instruction, give up. else FoundUnknownInst = true; } // If we didn't encounter a memory access in the expression tree, or if we // gave up for some reason, just return the width of V. if (!MaxWidth || FoundUnknownInst) return DL->getTypeSizeInBits(V->getType()); // Otherwise, return the maximum width we found. return MaxWidth; } // Determine if a value V in a vectorizable expression Expr can be demoted to a // smaller type with a truncation. We collect the values that will be demoted // in ToDemote and additional roots that require investigating in Roots. static bool collectValuesToDemote(Value *V, SmallPtrSetImpl &Expr, SmallVectorImpl &ToDemote, SmallVectorImpl &Roots) { // We can always demote constants. if (isa(V)) { ToDemote.push_back(V); return true; } // If the value is not an instruction in the expression with only one use, it // cannot be demoted. auto *I = dyn_cast(V); if (!I || !I->hasOneUse() || !Expr.count(I)) return false; switch (I->getOpcode()) { // We can always demote truncations and extensions. Since truncations can // seed additional demotion, we save the truncated value. case Instruction::Trunc: Roots.push_back(I->getOperand(0)); break; case Instruction::ZExt: case Instruction::SExt: break; // We can demote certain binary operations if we can demote both of their // operands. case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) return false; break; // We can demote selects if we can demote their true and false values. case Instruction::Select: { SelectInst *SI = cast(I); if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) return false; break; } // We can demote phis if we can demote all their incoming operands. Note that // we don't need to worry about cycles since we ensure single use above. case Instruction::PHI: { PHINode *PN = cast(I); for (Value *IncValue : PN->incoming_values()) if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) return false; break; } // Otherwise, conservatively give up. default: return false; } // Record the value that we can demote. ToDemote.push_back(V); return true; } void BoUpSLP::computeMinimumValueSizes() { // If there are no external uses, the expression tree must be rooted by a // store. We can't demote in-memory values, so there is nothing to do here. if (ExternalUses.empty()) return; // We only attempt to truncate integer expressions. auto &TreeRoot = VectorizableTree[0].Scalars; auto *TreeRootIT = dyn_cast(TreeRoot[0]->getType()); if (!TreeRootIT) return; // If the expression is not rooted by a store, these roots should have // external uses. We will rely on InstCombine to rewrite the expression in // the narrower type. However, InstCombine only rewrites single-use values. // This means that if a tree entry other than a root is used externally, it // must have multiple uses and InstCombine will not rewrite it. The code // below ensures that only the roots are used externally. SmallPtrSet Expr(TreeRoot.begin(), TreeRoot.end()); for (auto &EU : ExternalUses) if (!Expr.erase(EU.Scalar)) return; if (!Expr.empty()) return; // Collect the scalar values of the vectorizable expression. We will use this // context to determine which values can be demoted. If we see a truncation, // we mark it as seeding another demotion. for (auto &Entry : VectorizableTree) Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); // Ensure the roots of the vectorizable tree don't form a cycle. They must // have a single external user that is not in the vectorizable tree. for (auto *Root : TreeRoot) if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) return; // Conservatively determine if we can actually truncate the roots of the // expression. Collect the values that can be demoted in ToDemote and // additional roots that require investigating in Roots. SmallVector ToDemote; SmallVector Roots; for (auto *Root : TreeRoot) if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) return; // The maximum bit width required to represent all the values that can be // demoted without loss of precision. It would be safe to truncate the roots // of the expression to this width. auto MaxBitWidth = 8u; // We first check if all the bits of the roots are demanded. If they're not, // we can truncate the roots to this narrower type. for (auto *Root : TreeRoot) { auto Mask = DB->getDemandedBits(cast(Root)); MaxBitWidth = std::max( Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); } // True if the roots can be zero-extended back to their original type, rather // than sign-extended. We know that if the leading bits are not demanded, we // can safely zero-extend. So we initialize IsKnownPositive to True. bool IsKnownPositive = true; // If all the bits of the roots are demanded, we can try a little harder to // compute a narrower type. This can happen, for example, if the roots are // getelementptr indices. InstCombine promotes these indices to the pointer // width. Thus, all their bits are technically demanded even though the // address computation might be vectorized in a smaller type. // // We start by looking at each entry that can be demoted. We compute the // maximum bit width required to store the scalar by using ValueTracking to // compute the number of high-order bits we can truncate. if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && llvm::all_of(TreeRoot, [](Value *R) { assert(R->hasOneUse() && "Root should have only one use!"); return isa(R->user_back()); })) { MaxBitWidth = 8u; // Determine if the sign bit of all the roots is known to be zero. If not, // IsKnownPositive is set to False. IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { KnownBits Known = computeKnownBits(R, *DL); return Known.isNonNegative(); }); // Determine the maximum number of bits required to store the scalar // values. for (auto *Scalar : ToDemote) { auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); MaxBitWidth = std::max(NumTypeBits - NumSignBits, MaxBitWidth); } // If we can't prove that the sign bit is zero, we must add one to the // maximum bit width to account for the unknown sign bit. This preserves // the existing sign bit so we can safely sign-extend the root back to the // original type. Otherwise, if we know the sign bit is zero, we will // zero-extend the root instead. // // FIXME: This is somewhat suboptimal, as there will be cases where adding // one to the maximum bit width will yield a larger-than-necessary // type. In general, we need to add an extra bit only if we can't // prove that the upper bit of the original type is equal to the // upper bit of the proposed smaller type. If these two bits are the // same (either zero or one) we know that sign-extending from the // smaller type will result in the same value. Here, since we can't // yet prove this, we are just making the proposed smaller type // larger to ensure correctness. if (!IsKnownPositive) ++MaxBitWidth; } // Round MaxBitWidth up to the next power-of-two. if (!isPowerOf2_64(MaxBitWidth)) MaxBitWidth = NextPowerOf2(MaxBitWidth); // If the maximum bit width we compute is less than the with of the roots' // type, we can proceed with the narrowing. Otherwise, do nothing. if (MaxBitWidth >= TreeRootIT->getBitWidth()) return; // If we can truncate the root, we must collect additional values that might // be demoted as a result. That is, those seeded by truncations we will // modify. while (!Roots.empty()) collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); // Finally, map the values we can demote to the maximum bit with we computed. for (auto *Scalar : ToDemote) MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); } namespace { /// The SLPVectorizer Pass. struct SLPVectorizer : public FunctionPass { SLPVectorizerPass Impl; /// Pass identification, replacement for typeid static char ID; explicit SLPVectorizer() : FunctionPass(ID) { initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M) override { return false; } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto *SE = &getAnalysis().getSE(); auto *TTI = &getAnalysis().getTTI(F); auto *TLIP = getAnalysisIfAvailable(); auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; auto *AA = &getAnalysis().getAAResults(); auto *LI = &getAnalysis().getLoopInfo(); auto *DT = &getAnalysis().getDomTree(); auto *AC = &getAnalysis().getAssumptionCache(F); auto *DB = &getAnalysis().getDemandedBits(); auto *ORE = &getAnalysis().getORE(); return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); } void getAnalysisUsage(AnalysisUsage &AU) const override { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.setPreservesCFG(); } }; } // end anonymous namespace PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { auto *SE = &AM.getResult(F); auto *TTI = &AM.getResult(F); auto *TLI = AM.getCachedResult(F); auto *AA = &AM.getResult(F); auto *LI = &AM.getResult(F); auto *DT = &AM.getResult(F); auto *AC = &AM.getResult(F); auto *DB = &AM.getResult(F); auto *ORE = &AM.getResult(F); bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); PA.preserve(); return PA; } bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, TargetTransformInfo *TTI_, TargetLibraryInfo *TLI_, AliasAnalysis *AA_, LoopInfo *LI_, DominatorTree *DT_, AssumptionCache *AC_, DemandedBits *DB_, OptimizationRemarkEmitter *ORE_) { SE = SE_; TTI = TTI_; TLI = TLI_; AA = AA_; LI = LI_; DT = DT_; AC = AC_; DB = DB_; DL = &F.getParent()->getDataLayout(); Stores.clear(); GEPs.clear(); bool Changed = false; // If the target claims to have no vector registers don't attempt // vectorization. if (!TTI->getNumberOfRegisters(true)) return false; // Don't vectorize when the attribute NoImplicitFloat is used. if (F.hasFnAttribute(Attribute::NoImplicitFloat)) return false; LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); // Use the bottom up slp vectorizer to construct chains that start with // store instructions. BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to // delete instructions. // Scan the blocks in the function in post order. for (auto BB : post_order(&F.getEntryBlock())) { collectSeedInstructions(BB); // Vectorize trees that end at stores. if (!Stores.empty()) { LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() << " underlying objects.\n"); Changed |= vectorizeStoreChains(R); } // Vectorize trees that end at reductions. Changed |= vectorizeChainsInBlock(BB, R); // Vectorize the index computations of getelementptr instructions. This // is primarily intended to catch gather-like idioms ending at // non-consecutive loads. if (!GEPs.empty()) { LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() << " underlying objects.\n"); Changed |= vectorizeGEPIndices(BB, R); } } if (Changed) { R.optimizeGatherSequence(); LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); LLVM_DEBUG(verifyFunction(F)); } return Changed; } /// Check that the Values in the slice in VL array are still existent in /// the WeakTrackingVH array. /// Vectorization of part of the VL array may cause later values in the VL array /// to become invalid. We track when this has happened in the WeakTrackingVH /// array. static bool hasValueBeenRAUWed(ArrayRef VL, ArrayRef VH, unsigned SliceBegin, unsigned SliceSize) { VL = VL.slice(SliceBegin, SliceSize); VH = VH.slice(SliceBegin, SliceSize); return !std::equal(VL.begin(), VL.end(), VH.begin()); } bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef Chain, BoUpSLP &R, unsigned VecRegSize) { const unsigned ChainLen = Chain.size(); LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen << "\n"); const unsigned Sz = R.getVectorElementSize(Chain[0]); const unsigned VF = VecRegSize / Sz; if (!isPowerOf2_32(Sz) || VF < 2) return false; // Keep track of values that were deleted by vectorizing in the loop below. const SmallVector TrackValues(Chain.begin(), Chain.end()); bool Changed = false; // Look for profitable vectorizable trees at all offsets, starting at zero. for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { // Check that a previous iteration of this loop did not delete the Value. if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) continue; LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i << "\n"); ArrayRef Operands = Chain.slice(i, VF); R.buildTree(Operands); if (R.isTreeTinyAndNotFullyVectorizable()) continue; R.computeMinimumValueSizes(); int Cost = R.getTreeCost(); LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); if (Cost < -SLPCostThreshold) { LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); using namespace ore; R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", cast(Chain[i])) << "Stores SLP vectorized with cost " << NV("Cost", Cost) << " and with tree size " << NV("TreeSize", R.getTreeSize())); R.vectorizeTree(); // Move to the next bundle. i += VF - 1; Changed = true; } } return Changed; } bool SLPVectorizerPass::vectorizeStores(ArrayRef Stores, BoUpSLP &R) { SetVector Heads; SmallDenseSet Tails; SmallDenseMap ConsecutiveChain; // We may run into multiple chains that merge into a single chain. We mark the // stores that we vectorized so that we don't visit the same store twice. BoUpSLP::ValueSet VectorizedStores; bool Changed = false; // Do a quadratic search on all of the given stores in reverse order and find // all of the pairs of stores that follow each other. SmallVector IndexQueue; unsigned E = Stores.size(); IndexQueue.resize(E - 1); for (unsigned I = E; I > 0; --I) { unsigned Idx = I - 1; // If a store has multiple consecutive store candidates, search Stores // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... // This is because usually pairing with immediate succeeding or preceding // candidate create the best chance to find slp vectorization opportunity. unsigned Offset = 1; unsigned Cnt = 0; for (unsigned J = 0; J < E - 1; ++J, ++Offset) { if (Idx >= Offset) { IndexQueue[Cnt] = Idx - Offset; ++Cnt; } if (Idx + Offset < E) { IndexQueue[Cnt] = Idx + Offset; ++Cnt; } } for (auto K : IndexQueue) { if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { Tails.insert(Stores[Idx]); Heads.insert(Stores[K]); ConsecutiveChain[Stores[K]] = Stores[Idx]; break; } } } // For stores that start but don't end a link in the chain: for (auto *SI : llvm::reverse(Heads)) { if (Tails.count(SI)) continue; // We found a store instr that starts a chain. Now follow the chain and try // to vectorize it. BoUpSLP::ValueList Operands; StoreInst *I = SI; // Collect the chain into a list. while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { Operands.push_back(I); // Move to the next value in the chain. I = ConsecutiveChain[I]; } // FIXME: Is division-by-2 the correct step? Should we assert that the // register size is a power-of-2? for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { if (vectorizeStoreChain(Operands, R, Size)) { // Mark the vectorized stores so that we don't vectorize them again. VectorizedStores.insert(Operands.begin(), Operands.end()); Changed = true; break; } } } return Changed; } void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { // Initialize the collections. We will make a single pass over the block. Stores.clear(); GEPs.clear(); // Visit the store and getelementptr instructions in BB and organize them in // Stores and GEPs according to the underlying objects of their pointer // operands. for (Instruction &I : *BB) { // Ignore store instructions that are volatile or have a pointer operand // that doesn't point to a scalar type. if (auto *SI = dyn_cast(&I)) { if (!SI->isSimple()) continue; if (!isValidElementType(SI->getValueOperand()->getType())) continue; Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); } // Ignore getelementptr instructions that have more than one index, a // constant index, or a pointer operand that doesn't point to a scalar // type. else if (auto *GEP = dyn_cast(&I)) { auto Idx = GEP->idx_begin()->get(); if (GEP->getNumIndices() > 1 || isa(Idx)) continue; if (!isValidElementType(Idx->getType())) continue; if (GEP->getType()->isVectorTy()) continue; GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); } } } bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { if (!A || !B) return false; Value *VL[] = { A, B }; return tryToVectorizeList(VL, R, /*UserCost=*/0, true); } bool SLPVectorizerPass::tryToVectorizeList(ArrayRef VL, BoUpSLP &R, int UserCost, bool AllowReorder) { if (VL.size() < 2) return false; LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() << ".\n"); // Check that all of the parts are scalar instructions of the same type, // we permit an alternate opcode via InstructionsState. InstructionsState S = getSameOpcode(VL); if (!S.getOpcode()) return false; Instruction *I0 = cast(S.OpValue); unsigned Sz = R.getVectorElementSize(I0); unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); unsigned MaxVF = std::max(PowerOf2Floor(VL.size()), MinVF); if (MaxVF < 2) { R.getORE()->emit([&]() { return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) << "Cannot SLP vectorize list: vectorization factor " << "less than 2 is not supported"; }); return false; } for (Value *V : VL) { Type *Ty = V->getType(); if (!isValidElementType(Ty)) { // NOTE: the following will give user internal llvm type name, which may // not be useful. R.getORE()->emit([&]() { std::string type_str; llvm::raw_string_ostream rso(type_str); Ty->print(rso); return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) << "Cannot SLP vectorize list: type " << rso.str() + " is unsupported by vectorizer"; }); return false; } } bool Changed = false; bool CandidateFound = false; int MinCost = SLPCostThreshold; // Keep track of values that were deleted by vectorizing in the loop below. SmallVector TrackValues(VL.begin(), VL.end()); unsigned NextInst = 0, MaxInst = VL.size(); for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { // No actual vectorization should happen, if number of parts is the same as // provided vectorization factor (i.e. the scalar type is used for vector // code during codegen). auto *VecTy = VectorType::get(VL[0]->getType(), VF); if (TTI->getNumberOfParts(VecTy) == VF) continue; for (unsigned I = NextInst; I < MaxInst; ++I) { unsigned OpsWidth = 0; if (I + VF > MaxInst) OpsWidth = MaxInst - I; else OpsWidth = VF; if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) break; // Check that a previous iteration of this loop did not delete the Value. if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) continue; LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " << "\n"); ArrayRef Ops = VL.slice(I, OpsWidth); R.buildTree(Ops); Optional> Order = R.bestOrder(); // TODO: check if we can allow reordering for more cases. if (AllowReorder && Order) { // TODO: reorder tree nodes without tree rebuilding. // Conceptually, there is nothing actually preventing us from trying to // reorder a larger list. In fact, we do exactly this when vectorizing // reductions. However, at this point, we only expect to get here when // there are exactly two operations. assert(Ops.size() == 2); Value *ReorderedOps[] = {Ops[1], Ops[0]}; R.buildTree(ReorderedOps, None); } if (R.isTreeTinyAndNotFullyVectorizable()) continue; R.computeMinimumValueSizes(); int Cost = R.getTreeCost() - UserCost; CandidateFound = true; MinCost = std::min(MinCost, Cost); if (Cost < -SLPCostThreshold) { LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", cast(Ops[0])) << "SLP vectorized with cost " << ore::NV("Cost", Cost) << " and with tree size " << ore::NV("TreeSize", R.getTreeSize())); R.vectorizeTree(); // Move to the next bundle. I += VF - 1; NextInst = I + 1; Changed = true; } } } if (!Changed && CandidateFound) { R.getORE()->emit([&]() { return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) << "List vectorization was possible but not beneficial with cost " << ore::NV("Cost", MinCost) << " >= " << ore::NV("Treshold", -SLPCostThreshold); }); } else if (!Changed) { R.getORE()->emit([&]() { return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) << "Cannot SLP vectorize list: vectorization was impossible" << " with available vectorization factors"; }); } return Changed; } bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { if (!I) return false; if (!isa(I) && !isa(I)) return false; Value *P = I->getParent(); // Vectorize in current basic block only. auto *Op0 = dyn_cast(I->getOperand(0)); auto *Op1 = dyn_cast(I->getOperand(1)); if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) return false; // Try to vectorize V. if (tryToVectorizePair(Op0, Op1, R)) return true; auto *A = dyn_cast(Op0); auto *B = dyn_cast(Op1); // Try to skip B. if (B && B->hasOneUse()) { auto *B0 = dyn_cast(B->getOperand(0)); auto *B1 = dyn_cast(B->getOperand(1)); if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) return true; if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) return true; } // Try to skip A. if (A && A->hasOneUse()) { auto *A0 = dyn_cast(A->getOperand(0)); auto *A1 = dyn_cast(A->getOperand(1)); if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) return true; if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) return true; } return false; } /// Generate a shuffle mask to be used in a reduction tree. /// /// \param VecLen The length of the vector to be reduced. /// \param NumEltsToRdx The number of elements that should be reduced in the /// vector. /// \param IsPairwise Whether the reduction is a pairwise or splitting /// reduction. A pairwise reduction will generate a mask of /// <0,2,...> or <1,3,..> while a splitting reduction will generate /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. /// \param IsLeft True will generate a mask of even elements, odd otherwise. static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, bool IsPairwise, bool IsLeft, IRBuilder<> &Builder) { assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); SmallVector ShuffleMask( VecLen, UndefValue::get(Builder.getInt32Ty())); if (IsPairwise) // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). for (unsigned i = 0; i != NumEltsToRdx; ++i) ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); else // Move the upper half of the vector to the lower half. for (unsigned i = 0; i != NumEltsToRdx; ++i) ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); return ConstantVector::get(ShuffleMask); } namespace { /// Model horizontal reductions. /// /// A horizontal reduction is a tree of reduction operations (currently add and /// fadd) that has operations that can be put into a vector as its leaf. /// For example, this tree: /// /// mul mul mul mul /// \ / \ / /// + + /// \ / /// + /// This tree has "mul" as its reduced values and "+" as its reduction /// operations. A reduction might be feeding into a store or a binary operation /// feeding a phi. /// ... /// \ / /// + /// | /// phi += /// /// Or: /// ... /// \ / /// + /// | /// *p = /// class HorizontalReduction { using ReductionOpsType = SmallVector; using ReductionOpsListType = SmallVector; ReductionOpsListType ReductionOps; SmallVector ReducedVals; // Use map vector to make stable output. MapVector ExtraArgs; /// Kind of the reduction data. enum ReductionKind { RK_None, /// Not a reduction. RK_Arithmetic, /// Binary reduction data. RK_Min, /// Minimum reduction data. RK_UMin, /// Unsigned minimum reduction data. RK_Max, /// Maximum reduction data. RK_UMax, /// Unsigned maximum reduction data. }; /// Contains info about operation, like its opcode, left and right operands. class OperationData { /// Opcode of the instruction. unsigned Opcode = 0; /// Left operand of the reduction operation. Value *LHS = nullptr; /// Right operand of the reduction operation. Value *RHS = nullptr; /// Kind of the reduction operation. ReductionKind Kind = RK_None; /// True if float point min/max reduction has no NaNs. bool NoNaN = false; /// Checks if the reduction operation can be vectorized. bool isVectorizable() const { return LHS && RHS && // We currently only support adds && min/max reductions. ((Kind == RK_Arithmetic && (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && (Kind == RK_Min || Kind == RK_Max)) || (Opcode == Instruction::ICmp && (Kind == RK_UMin || Kind == RK_UMax))); } /// Creates reduction operation with the current opcode. Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { assert(isVectorizable() && "Expected add|fadd or min/max reduction operation."); Value *Cmp; switch (Kind) { case RK_Arithmetic: return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, Name); case RK_Min: Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) : Builder.CreateFCmpOLT(LHS, RHS); break; case RK_Max: Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) : Builder.CreateFCmpOGT(LHS, RHS); break; case RK_UMin: assert(Opcode == Instruction::ICmp && "Expected integer types."); Cmp = Builder.CreateICmpULT(LHS, RHS); break; case RK_UMax: assert(Opcode == Instruction::ICmp && "Expected integer types."); Cmp = Builder.CreateICmpUGT(LHS, RHS); break; case RK_None: llvm_unreachable("Unknown reduction operation."); } return Builder.CreateSelect(Cmp, LHS, RHS, Name); } public: explicit OperationData() = default; /// Construction for reduced values. They are identified by opcode only and /// don't have associated LHS/RHS values. explicit OperationData(Value *V) { if (auto *I = dyn_cast(V)) Opcode = I->getOpcode(); } /// Constructor for reduction operations with opcode and its left and /// right operands. OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, bool NoNaN = false) : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { assert(Kind != RK_None && "One of the reduction operations is expected."); } explicit operator bool() const { return Opcode; } /// Get the index of the first operand. unsigned getFirstOperandIndex() const { assert(!!*this && "The opcode is not set."); switch (Kind) { case RK_Min: case RK_UMin: case RK_Max: case RK_UMax: return 1; case RK_Arithmetic: case RK_None: break; } return 0; } /// Total number of operands in the reduction operation. unsigned getNumberOfOperands() const { assert(Kind != RK_None && !!*this && LHS && RHS && "Expected reduction operation."); switch (Kind) { case RK_Arithmetic: return 2; case RK_Min: case RK_UMin: case RK_Max: case RK_UMax: return 3; case RK_None: break; } llvm_unreachable("Reduction kind is not set"); } /// Checks if the operation has the same parent as \p P. bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { assert(Kind != RK_None && !!*this && LHS && RHS && "Expected reduction operation."); if (!IsRedOp) return I->getParent() == P; switch (Kind) { case RK_Arithmetic: // Arithmetic reduction operation must be used once only. return I->getParent() == P; case RK_Min: case RK_UMin: case RK_Max: case RK_UMax: { // SelectInst must be used twice while the condition op must have single // use only. auto *Cmp = cast(cast(I)->getCondition()); return I->getParent() == P && Cmp && Cmp->getParent() == P; } case RK_None: break; } llvm_unreachable("Reduction kind is not set"); } /// Expected number of uses for reduction operations/reduced values. bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { assert(Kind != RK_None && !!*this && LHS && RHS && "Expected reduction operation."); switch (Kind) { case RK_Arithmetic: return I->hasOneUse(); case RK_Min: case RK_UMin: case RK_Max: case RK_UMax: return I->hasNUses(2) && (!IsReductionOp || cast(I)->getCondition()->hasOneUse()); case RK_None: break; } llvm_unreachable("Reduction kind is not set"); } /// Initializes the list of reduction operations. void initReductionOps(ReductionOpsListType &ReductionOps) { assert(Kind != RK_None && !!*this && LHS && RHS && "Expected reduction operation."); switch (Kind) { case RK_Arithmetic: ReductionOps.assign(1, ReductionOpsType()); break; case RK_Min: case RK_UMin: case RK_Max: case RK_UMax: ReductionOps.assign(2, ReductionOpsType()); break; case RK_None: llvm_unreachable("Reduction kind is not set"); } } /// Add all reduction operations for the reduction instruction \p I. void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { assert(Kind != RK_None && !!*this && LHS && RHS && "Expected reduction operation."); switch (Kind) { case RK_Arithmetic: ReductionOps[0].emplace_back(I); break; case RK_Min: case RK_UMin: case RK_Max: case RK_UMax: ReductionOps[0].emplace_back(cast(I)->getCondition()); ReductionOps[1].emplace_back(I); break; case RK_None: llvm_unreachable("Reduction kind is not set"); } } /// Checks if instruction is associative and can be vectorized. bool isAssociative(Instruction *I) const { assert(Kind != RK_None && *this && LHS && RHS && "Expected reduction operation."); switch (Kind) { case RK_Arithmetic: return I->isAssociative(); case RK_Min: case RK_Max: return Opcode == Instruction::ICmp || cast(I->getOperand(0))->isFast(); case RK_UMin: case RK_UMax: assert(Opcode == Instruction::ICmp && "Only integer compare operation is expected."); return true; case RK_None: break; } llvm_unreachable("Reduction kind is not set"); } /// Checks if the reduction operation can be vectorized. bool isVectorizable(Instruction *I) const { return isVectorizable() && isAssociative(I); } /// Checks if two operation data are both a reduction op or both a reduced /// value. bool operator==(const OperationData &OD) { assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && "One of the comparing operations is incorrect."); return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); } bool operator!=(const OperationData &OD) { return !(*this == OD); } void clear() { Opcode = 0; LHS = nullptr; RHS = nullptr; Kind = RK_None; NoNaN = false; } /// Get the opcode of the reduction operation. unsigned getOpcode() const { assert(isVectorizable() && "Expected vectorizable operation."); return Opcode; } /// Get kind of reduction data. ReductionKind getKind() const { return Kind; } Value *getLHS() const { return LHS; } Value *getRHS() const { return RHS; } Type *getConditionType() const { switch (Kind) { case RK_Arithmetic: return nullptr; case RK_Min: case RK_Max: case RK_UMin: case RK_UMax: return CmpInst::makeCmpResultType(LHS->getType()); case RK_None: break; } llvm_unreachable("Reduction kind is not set"); } /// Creates reduction operation with the current opcode with the IR flags /// from \p ReductionOps. Value *createOp(IRBuilder<> &Builder, const Twine &Name, const ReductionOpsListType &ReductionOps) const { assert(isVectorizable() && "Expected add|fadd or min/max reduction operation."); auto *Op = createOp(Builder, Name); switch (Kind) { case RK_Arithmetic: propagateIRFlags(Op, ReductionOps[0]); return Op; case RK_Min: case RK_Max: case RK_UMin: case RK_UMax: if (auto *SI = dyn_cast(Op)) propagateIRFlags(SI->getCondition(), ReductionOps[0]); propagateIRFlags(Op, ReductionOps[1]); return Op; case RK_None: break; } llvm_unreachable("Unknown reduction operation."); } /// Creates reduction operation with the current opcode with the IR flags /// from \p I. Value *createOp(IRBuilder<> &Builder, const Twine &Name, Instruction *I) const { assert(isVectorizable() && "Expected add|fadd or min/max reduction operation."); auto *Op = createOp(Builder, Name); switch (Kind) { case RK_Arithmetic: propagateIRFlags(Op, I); return Op; case RK_Min: case RK_Max: case RK_UMin: case RK_UMax: if (auto *SI = dyn_cast(Op)) { propagateIRFlags(SI->getCondition(), cast(I)->getCondition()); } propagateIRFlags(Op, I); return Op; case RK_None: break; } llvm_unreachable("Unknown reduction operation."); } TargetTransformInfo::ReductionFlags getFlags() const { TargetTransformInfo::ReductionFlags Flags; Flags.NoNaN = NoNaN; switch (Kind) { case RK_Arithmetic: break; case RK_Min: Flags.IsSigned = Opcode == Instruction::ICmp; Flags.IsMaxOp = false; break; case RK_Max: Flags.IsSigned = Opcode == Instruction::ICmp; Flags.IsMaxOp = true; break; case RK_UMin: Flags.IsSigned = false; Flags.IsMaxOp = false; break; case RK_UMax: Flags.IsSigned = false; Flags.IsMaxOp = true; break; case RK_None: llvm_unreachable("Reduction kind is not set"); } return Flags; } }; Instruction *ReductionRoot = nullptr; /// The operation data of the reduction operation. OperationData ReductionData; /// The operation data of the values we perform a reduction on. OperationData ReducedValueData; /// Should we model this reduction as a pairwise reduction tree or a tree that /// splits the vector in halves and adds those halves. bool IsPairwiseReduction = false; /// Checks if the ParentStackElem.first should be marked as a reduction /// operation with an extra argument or as extra argument itself. void markExtraArg(std::pair &ParentStackElem, Value *ExtraArg) { if (ExtraArgs.count(ParentStackElem.first)) { ExtraArgs[ParentStackElem.first] = nullptr; // We ran into something like: // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. // The whole ParentStackElem.first should be considered as an extra value // in this case. // Do not perform analysis of remaining operands of ParentStackElem.first // instruction, this whole instruction is an extra argument. ParentStackElem.second = ParentStackElem.first->getNumOperands(); } else { // We ran into something like: // ParentStackElem.first += ... + ExtraArg + ... ExtraArgs[ParentStackElem.first] = ExtraArg; } } static OperationData getOperationData(Value *V) { if (!V) return OperationData(); Value *LHS; Value *RHS; if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { return OperationData(cast(V)->getOpcode(), LHS, RHS, RK_Arithmetic); } if (auto *Select = dyn_cast(V)) { // Look for a min/max pattern. if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { return OperationData( Instruction::FCmp, LHS, RHS, RK_Min, cast(Select->getCondition())->hasNoNaNs()); } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { return OperationData( Instruction::FCmp, LHS, RHS, RK_Max, cast(Select->getCondition())->hasNoNaNs()); } else { // Try harder: look for min/max pattern based on instructions producing // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). // During the intermediate stages of SLP, it's very common to have // pattern like this (since optimizeGatherSequence is run only once // at the end): // %1 = extractelement <2 x i32> %a, i32 0 // %2 = extractelement <2 x i32> %a, i32 1 // %cond = icmp sgt i32 %1, %2 // %3 = extractelement <2 x i32> %a, i32 0 // %4 = extractelement <2 x i32> %a, i32 1 // %select = select i1 %cond, i32 %3, i32 %4 CmpInst::Predicate Pred; Instruction *L1; Instruction *L2; LHS = Select->getTrueValue(); RHS = Select->getFalseValue(); Value *Cond = Select->getCondition(); // TODO: Support inverse predicates. if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { if (!isa(RHS) || !L2->isIdenticalTo(cast(RHS))) return OperationData(V); } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { if (!isa(LHS) || !L1->isIdenticalTo(cast(LHS))) return OperationData(V); } else { if (!isa(LHS) || !isa(RHS)) return OperationData(V); if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || !L1->isIdenticalTo(cast(LHS)) || !L2->isIdenticalTo(cast(RHS))) return OperationData(V); } switch (Pred) { default: return OperationData(V); case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, cast(Cond)->hasNoNaNs()); case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, cast(Cond)->hasNoNaNs()); } } } return OperationData(V); } public: HorizontalReduction() = default; /// Try to find a reduction tree. bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { assert((!Phi || is_contained(Phi->operands(), B)) && "Thi phi needs to use the binary operator"); ReductionData = getOperationData(B); // We could have a initial reductions that is not an add. // r *= v1 + v2 + v3 + v4 // In such a case start looking for a tree rooted in the first '+'. if (Phi) { if (ReductionData.getLHS() == Phi) { Phi = nullptr; B = dyn_cast(ReductionData.getRHS()); ReductionData = getOperationData(B); } else if (ReductionData.getRHS() == Phi) { Phi = nullptr; B = dyn_cast(ReductionData.getLHS()); ReductionData = getOperationData(B); } } if (!ReductionData.isVectorizable(B)) return false; Type *Ty = B->getType(); if (!isValidElementType(Ty)) return false; if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) return false; ReducedValueData.clear(); ReductionRoot = B; // Post order traverse the reduction tree starting at B. We only handle true // trees containing only binary operators. SmallVector, 32> Stack; Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); ReductionData.initReductionOps(ReductionOps); while (!Stack.empty()) { Instruction *TreeN = Stack.back().first; unsigned EdgeToVist = Stack.back().second++; OperationData OpData = getOperationData(TreeN); bool IsReducedValue = OpData != ReductionData; // Postorder vist. if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { if (IsReducedValue) ReducedVals.push_back(TreeN); else { auto I = ExtraArgs.find(TreeN); if (I != ExtraArgs.end() && !I->second) { // Check if TreeN is an extra argument of its parent operation. if (Stack.size() <= 1) { // TreeN can't be an extra argument as it is a root reduction // operation. return false; } // Yes, TreeN is an extra argument, do not add it to a list of // reduction operations. // Stack[Stack.size() - 2] always points to the parent operation. markExtraArg(Stack[Stack.size() - 2], TreeN); ExtraArgs.erase(TreeN); } else ReductionData.addReductionOps(TreeN, ReductionOps); } // Retract. Stack.pop_back(); continue; } // Visit left or right. Value *NextV = TreeN->getOperand(EdgeToVist); if (NextV != Phi) { auto *I = dyn_cast(NextV); OpData = getOperationData(I); // Continue analysis if the next operand is a reduction operation or // (possibly) a reduced value. If the reduced value opcode is not set, // the first met operation != reduction operation is considered as the // reduced value class. if (I && (!ReducedValueData || OpData == ReducedValueData || OpData == ReductionData)) { const bool IsReductionOperation = OpData == ReductionData; // Only handle trees in the current basic block. if (!ReductionData.hasSameParent(I, B->getParent(), IsReductionOperation)) { // I is an extra argument for TreeN (its parent operation). markExtraArg(Stack.back(), I); continue; } // Each tree node needs to have minimal number of users except for the // ultimate reduction. if (!ReductionData.hasRequiredNumberOfUses(I, OpData == ReductionData) && I != B) { // I is an extra argument for TreeN (its parent operation). markExtraArg(Stack.back(), I); continue; } if (IsReductionOperation) { // We need to be able to reassociate the reduction operations. if (!OpData.isAssociative(I)) { // I is an extra argument for TreeN (its parent operation). markExtraArg(Stack.back(), I); continue; } } else if (ReducedValueData && ReducedValueData != OpData) { // Make sure that the opcodes of the operations that we are going to // reduce match. // I is an extra argument for TreeN (its parent operation). markExtraArg(Stack.back(), I); continue; } else if (!ReducedValueData) ReducedValueData = OpData; Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); continue; } } // NextV is an extra argument for TreeN (its parent operation). markExtraArg(Stack.back(), NextV); } return true; } /// Attempt to vectorize the tree found by /// matchAssociativeReduction. bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { if (ReducedVals.empty()) return false; // If there is a sufficient number of reduction values, reduce // to a nearby power-of-2. Can safely generate oversized // vectors and rely on the backend to split them to legal sizes. unsigned NumReducedVals = ReducedVals.size(); if (NumReducedVals < 4) return false; unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); Value *VectorizedTree = nullptr; IRBuilder<> Builder(ReductionRoot); FastMathFlags Unsafe; Unsafe.setFast(); Builder.setFastMathFlags(Unsafe); unsigned i = 0; BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; // The same extra argument may be used several time, so log each attempt // to use it. for (auto &Pair : ExtraArgs) ExternallyUsedValues[Pair.second].push_back(Pair.first); SmallVector IgnoreList; for (auto &V : ReductionOps) IgnoreList.append(V.begin(), V.end()); while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); V.buildTree(VL, ExternallyUsedValues, IgnoreList); Optional> Order = V.bestOrder(); // TODO: Handle orders of size less than number of elements in the vector. if (Order && Order->size() == VL.size()) { // TODO: reorder tree nodes without tree rebuilding. SmallVector ReorderedOps(VL.size()); llvm::transform(*Order, ReorderedOps.begin(), [VL](const unsigned Idx) { return VL[Idx]; }); V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); } if (V.isTreeTinyAndNotFullyVectorizable()) break; V.computeMinimumValueSizes(); // Estimate cost. int TreeCost = V.getTreeCost(); int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); int Cost = TreeCost + ReductionCost; if (Cost >= -SLPCostThreshold) { V.getORE()->emit([&]() { return OptimizationRemarkMissed( SV_NAME, "HorSLPNotBeneficial", cast(VL[0])) << "Vectorizing horizontal reduction is possible" << "but not beneficial with cost " << ore::NV("Cost", Cost) << " and threshold " << ore::NV("Threshold", -SLPCostThreshold); }); break; } LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost << ". (HorRdx)\n"); V.getORE()->emit([&]() { return OptimizationRemark( SV_NAME, "VectorizedHorizontalReduction", cast(VL[0])) << "Vectorized horizontal reduction with cost " << ore::NV("Cost", Cost) << " and with tree size " << ore::NV("TreeSize", V.getTreeSize()); }); // Vectorize a tree. DebugLoc Loc = cast(ReducedVals[i])->getDebugLoc(); Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); // Emit a reduction. Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); if (VectorizedTree) { Builder.SetCurrentDebugLocation(Loc); OperationData VectReductionData(ReductionData.getOpcode(), VectorizedTree, ReducedSubTree, ReductionData.getKind()); VectorizedTree = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); } else VectorizedTree = ReducedSubTree; i += ReduxWidth; ReduxWidth = PowerOf2Floor(NumReducedVals - i); } if (VectorizedTree) { // Finish the reduction. for (; i < NumReducedVals; ++i) { auto *I = cast(ReducedVals[i]); Builder.SetCurrentDebugLocation(I->getDebugLoc()); OperationData VectReductionData(ReductionData.getOpcode(), VectorizedTree, I, ReductionData.getKind()); VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); } for (auto &Pair : ExternallyUsedValues) { assert(!Pair.second.empty() && "At least one DebugLoc must be inserted"); // Add each externally used value to the final reduction. for (auto *I : Pair.second) { Builder.SetCurrentDebugLocation(I->getDebugLoc()); OperationData VectReductionData(ReductionData.getOpcode(), VectorizedTree, Pair.first, ReductionData.getKind()); VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); } } // Update users. ReductionRoot->replaceAllUsesWith(VectorizedTree); } return VectorizedTree != nullptr; } unsigned numReductionValues() const { return ReducedVals.size(); } private: /// Calculate the cost of a reduction. int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, unsigned ReduxWidth) { Type *ScalarTy = FirstReducedVal->getType(); Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); int PairwiseRdxCost; int SplittingRdxCost; switch (ReductionData.getKind()) { case RK_Arithmetic: PairwiseRdxCost = TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, /*IsPairwiseForm=*/true); SplittingRdxCost = TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, /*IsPairwiseForm=*/false); break; case RK_Min: case RK_Max: case RK_UMin: case RK_UMax: { Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); bool IsUnsigned = ReductionData.getKind() == RK_UMin || ReductionData.getKind() == RK_UMax; PairwiseRdxCost = TTI->getMinMaxReductionCost(VecTy, VecCondTy, /*IsPairwiseForm=*/true, IsUnsigned); SplittingRdxCost = TTI->getMinMaxReductionCost(VecTy, VecCondTy, /*IsPairwiseForm=*/false, IsUnsigned); break; } case RK_None: llvm_unreachable("Expected arithmetic or min/max reduction operation"); } IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; int ScalarReduxCost; switch (ReductionData.getKind()) { case RK_Arithmetic: ScalarReduxCost = TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); break; case RK_Min: case RK_Max: case RK_UMin: case RK_UMax: ScalarReduxCost = TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, CmpInst::makeCmpResultType(ScalarTy)); break; case RK_None: llvm_unreachable("Expected arithmetic or min/max reduction operation"); } ScalarReduxCost *= (ReduxWidth - 1); LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost << " for reduction that starts with " << *FirstReducedVal << " (It is a " << (IsPairwiseReduction ? "pairwise" : "splitting") << " reduction)\n"); return VecReduxCost - ScalarReduxCost; } /// Emit a horizontal reduction of the vectorized value. Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, unsigned ReduxWidth, const TargetTransformInfo *TTI) { assert(VectorizedValue && "Need to have a vectorized tree node"); assert(isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"); if (!IsPairwiseReduction) return createSimpleTargetReduction( Builder, TTI, ReductionData.getOpcode(), VectorizedValue, ReductionData.getFlags(), ReductionOps.back()); Value *TmpVec = VectorizedValue; for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { Value *LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true, Builder); Value *RightMask = createRdxShuffleMask(ReduxWidth, i, true, false, Builder); Value *LeftShuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); Value *RightShuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), "rdx.shuf.r"); OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, RightShuf, ReductionData.getKind()); TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); } // The result is in the first element of the vector. return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); } }; } // end anonymous namespace /// Recognize construction of vectors like /// %ra = insertelement <4 x float> undef, float %s0, i32 0 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 /// starting from the last insertelement instruction. /// /// Returns true if it matches static bool findBuildVector(InsertElementInst *LastInsertElem, TargetTransformInfo *TTI, SmallVectorImpl &BuildVectorOpds, int &UserCost) { UserCost = 0; Value *V = nullptr; do { if (auto *CI = dyn_cast(LastInsertElem->getOperand(2))) { UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, LastInsertElem->getType(), CI->getZExtValue()); } BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); V = LastInsertElem->getOperand(0); if (isa(V)) break; LastInsertElem = dyn_cast(V); if (!LastInsertElem || !LastInsertElem->hasOneUse()) return false; } while (true); std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); return true; } /// Like findBuildVector, but looks for construction of aggregate. /// /// \return true if it matches. static bool findBuildAggregate(InsertValueInst *IV, SmallVectorImpl &BuildVectorOpds) { Value *V; do { BuildVectorOpds.push_back(IV->getInsertedValueOperand()); V = IV->getAggregateOperand(); if (isa(V)) break; IV = dyn_cast(V); if (!IV || !IV->hasOneUse()) return false; } while (true); std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); return true; } static bool PhiTypeSorterFunc(Value *V, Value *V2) { return V->getType() < V2->getType(); } /// Try and get a reduction value from a phi node. /// /// Given a phi node \p P in a block \p ParentBB, consider possible reductions /// if they come from either \p ParentBB or a containing loop latch. /// /// \returns A candidate reduction value if possible, or \code nullptr \endcode /// if not possible. static Value *getReductionValue(const DominatorTree *DT, PHINode *P, BasicBlock *ParentBB, LoopInfo *LI) { // There are situations where the reduction value is not dominated by the // reduction phi. Vectorizing such cases has been reported to cause // miscompiles. See PR25787. auto DominatedReduxValue = [&](Value *R) { return isa(R) && DT->dominates(P->getParent(), cast(R)->getParent()); }; Value *Rdx = nullptr; // Return the incoming value if it comes from the same BB as the phi node. if (P->getIncomingBlock(0) == ParentBB) { Rdx = P->getIncomingValue(0); } else if (P->getIncomingBlock(1) == ParentBB) { Rdx = P->getIncomingValue(1); } if (Rdx && DominatedReduxValue(Rdx)) return Rdx; // Otherwise, check whether we have a loop latch to look at. Loop *BBL = LI->getLoopFor(ParentBB); if (!BBL) return nullptr; BasicBlock *BBLatch = BBL->getLoopLatch(); if (!BBLatch) return nullptr; // There is a loop latch, return the incoming value if it comes from // that. This reduction pattern occasionally turns up. if (P->getIncomingBlock(0) == BBLatch) { Rdx = P->getIncomingValue(0); } else if (P->getIncomingBlock(1) == BBLatch) { Rdx = P->getIncomingValue(1); } if (Rdx && DominatedReduxValue(Rdx)) return Rdx; return nullptr; } /// Attempt to reduce a horizontal reduction. /// If it is legal to match a horizontal reduction feeding the phi node \a P /// with reduction operators \a Root (or one of its operands) in a basic block /// \a BB, then check if it can be done. If horizontal reduction is not found /// and root instruction is a binary operation, vectorization of the operands is /// attempted. /// \returns true if a horizontal reduction was matched and reduced or operands /// of one of the binary instruction were vectorized. /// \returns false if a horizontal reduction was not matched (or not possible) /// or no vectorization of any binary operation feeding \a Root instruction was /// performed. static bool tryToVectorizeHorReductionOrInstOperands( PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI, const function_ref Vectorize) { if (!ShouldVectorizeHor) return false; if (!Root) return false; if (Root->getParent() != BB || isa(Root)) return false; // Start analysis starting from Root instruction. If horizontal reduction is // found, try to vectorize it. If it is not a horizontal reduction or // vectorization is not possible or not effective, and currently analyzed // instruction is a binary operation, try to vectorize the operands, using // pre-order DFS traversal order. If the operands were not vectorized, repeat // the same procedure considering each operand as a possible root of the // horizontal reduction. // Interrupt the process if the Root instruction itself was vectorized or all // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. SmallVector, 8> Stack(1, {Root, 0}); SmallPtrSet VisitedInstrs; bool Res = false; while (!Stack.empty()) { Value *V; unsigned Level; std::tie(V, Level) = Stack.pop_back_val(); if (!V) continue; auto *Inst = dyn_cast(V); if (!Inst) continue; auto *BI = dyn_cast(Inst); auto *SI = dyn_cast(Inst); if (BI || SI) { HorizontalReduction HorRdx; if (HorRdx.matchAssociativeReduction(P, Inst)) { if (HorRdx.tryToReduce(R, TTI)) { Res = true; // Set P to nullptr to avoid re-analysis of phi node in // matchAssociativeReduction function unless this is the root node. P = nullptr; continue; } } if (P && BI) { Inst = dyn_cast(BI->getOperand(0)); if (Inst == P) Inst = dyn_cast(BI->getOperand(1)); if (!Inst) { // Set P to nullptr to avoid re-analysis of phi node in // matchAssociativeReduction function unless this is the root node. P = nullptr; continue; } } } // Set P to nullptr to avoid re-analysis of phi node in // matchAssociativeReduction function unless this is the root node. P = nullptr; if (Vectorize(Inst, R)) { Res = true; continue; } // Try to vectorize operands. // Continue analysis for the instruction from the same basic block only to // save compile time. if (++Level < RecursionMaxDepth) for (auto *Op : Inst->operand_values()) if (VisitedInstrs.insert(Op).second) if (auto *I = dyn_cast(Op)) if (!isa(I) && I->getParent() == BB) Stack.emplace_back(Op, Level); } return Res; } bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI) { if (!V) return false; auto *I = dyn_cast(V); if (!I) return false; if (!isa(I)) P = nullptr; // Try to match and vectorize a horizontal reduction. auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { return tryToVectorize(I, R); }; return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, ExtraVectorization); } bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, BasicBlock *BB, BoUpSLP &R) { const DataLayout &DL = BB->getModule()->getDataLayout(); if (!R.canMapToVector(IVI->getType(), DL)) return false; SmallVector BuildVectorOpds; if (!findBuildAggregate(IVI, BuildVectorOpds)) return false; LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); // Aggregate value is unlikely to be processed in vector register, we need to // extract scalars into scalar registers, so NeedExtraction is set true. return tryToVectorizeList(BuildVectorOpds, R); } bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, BasicBlock *BB, BoUpSLP &R) { int UserCost; SmallVector BuildVectorOpds; if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || (llvm::all_of(BuildVectorOpds, [](Value *V) { return isa(V); }) && isShuffle(BuildVectorOpds))) return false; // Vectorize starting with the build vector operands ignoring the BuildVector // instructions for the purpose of scheduling and user extraction. return tryToVectorizeList(BuildVectorOpds, R, UserCost); } bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, BoUpSLP &R) { if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) return true; bool OpsChanged = false; for (int Idx = 0; Idx < 2; ++Idx) { OpsChanged |= vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); } return OpsChanged; } bool SLPVectorizerPass::vectorizeSimpleInstructions( SmallVectorImpl &Instructions, BasicBlock *BB, BoUpSLP &R) { bool OpsChanged = false; for (auto &VH : reverse(Instructions)) { auto *I = dyn_cast_or_null(VH); if (!I) continue; if (auto *LastInsertValue = dyn_cast(I)) OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); else if (auto *LastInsertElem = dyn_cast(I)) OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); else if (auto *CI = dyn_cast(I)) OpsChanged |= vectorizeCmpInst(CI, BB, R); } Instructions.clear(); return OpsChanged; } bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { bool Changed = false; SmallVector Incoming; SmallPtrSet VisitedInstrs; bool HaveVectorizedPhiNodes = true; while (HaveVectorizedPhiNodes) { HaveVectorizedPhiNodes = false; // Collect the incoming values from the PHIs. Incoming.clear(); for (Instruction &I : *BB) { PHINode *P = dyn_cast(&I); if (!P) break; if (!VisitedInstrs.count(P)) Incoming.push_back(P); } // Sort by type. std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); // Try to vectorize elements base on their type. for (SmallVector::iterator IncIt = Incoming.begin(), E = Incoming.end(); IncIt != E;) { // Look for the next elements with the same type. SmallVector::iterator SameTypeIt = IncIt; while (SameTypeIt != E && (*SameTypeIt)->getType() == (*IncIt)->getType()) { VisitedInstrs.insert(*SameTypeIt); ++SameTypeIt; } // Try to vectorize them. unsigned NumElts = (SameTypeIt - IncIt); LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); // The order in which the phi nodes appear in the program does not matter. // So allow tryToVectorizeList to reorder them if it is beneficial. This // is done when there are exactly two elements since tryToVectorizeList // asserts that there are only two values when AllowReorder is true. bool AllowReorder = NumElts == 2; if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, /*UserCost=*/0, AllowReorder)) { // Success start over because instructions might have been changed. HaveVectorizedPhiNodes = true; Changed = true; break; } // Start over at the next instruction of a different type (or the end). IncIt = SameTypeIt; } } VisitedInstrs.clear(); SmallVector PostProcessInstructions; SmallDenseSet KeyNodes; for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { // We may go through BB multiple times so skip the one we have checked. if (!VisitedInstrs.insert(&*it).second) { if (it->use_empty() && KeyNodes.count(&*it) > 0 && vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { // We would like to start over since some instructions are deleted // and the iterator may become invalid value. Changed = true; it = BB->begin(); e = BB->end(); } continue; } if (isa(it)) continue; // Try to vectorize reductions that use PHINodes. if (PHINode *P = dyn_cast(it)) { // Check that the PHI is a reduction PHI. if (P->getNumIncomingValues() != 2) return Changed; // Try to match and vectorize a horizontal reduction. if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, TTI)) { Changed = true; it = BB->begin(); e = BB->end(); continue; } continue; } // Ran into an instruction without users, like terminator, or function call // with ignored return value, store. Ignore unused instructions (basing on // instruction type, except for CallInst and InvokeInst). if (it->use_empty() && (it->getType()->isVoidTy() || isa(it) || isa(it))) { KeyNodes.insert(&*it); bool OpsChanged = false; if (ShouldStartVectorizeHorAtStore || !isa(it)) { for (auto *V : it->operand_values()) { // Try to match and vectorize a horizontal reduction. OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); } } // Start vectorization of post-process list of instructions from the // top-tree instructions to try to vectorize as many instructions as // possible. OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); if (OpsChanged) { // We would like to start over since some instructions are deleted // and the iterator may become invalid value. Changed = true; it = BB->begin(); e = BB->end(); continue; } } if (isa(it) || isa(it) || isa(it)) PostProcessInstructions.push_back(&*it); } return Changed; } bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { auto Changed = false; for (auto &Entry : GEPs) { // If the getelementptr list has fewer than two elements, there's nothing // to do. if (Entry.second.size() < 2) continue; LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " << Entry.second.size() << ".\n"); // We process the getelementptr list in chunks of 16 (like we do for // stores) to minimize compile-time. for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { auto Len = std::min(BE - BI, 16); auto GEPList = makeArrayRef(&Entry.second[BI], Len); // Initialize a set a candidate getelementptrs. Note that we use a // SetVector here to preserve program order. If the index computations // are vectorizable and begin with loads, we want to minimize the chance // of having to reorder them later. SetVector Candidates(GEPList.begin(), GEPList.end()); // Some of the candidates may have already been vectorized after we // initially collected them. If so, the WeakTrackingVHs will have // nullified the // values, so remove them from the set of candidates. Candidates.remove(nullptr); // Remove from the set of candidates all pairs of getelementptrs with // constant differences. Such getelementptrs are likely not good // candidates for vectorization in a bottom-up phase since one can be // computed from the other. We also ensure all candidate getelementptr // indices are unique. for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { auto *GEPI = cast(GEPList[I]); if (!Candidates.count(GEPI)) continue; auto *SCEVI = SE->getSCEV(GEPList[I]); for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { auto *GEPJ = cast(GEPList[J]); auto *SCEVJ = SE->getSCEV(GEPList[J]); if (isa(SE->getMinusSCEV(SCEVI, SCEVJ))) { Candidates.remove(GEPList[I]); Candidates.remove(GEPList[J]); } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { Candidates.remove(GEPList[J]); } } } // We break out of the above computation as soon as we know there are // fewer than two candidates remaining. if (Candidates.size() < 2) continue; // Add the single, non-constant index of each candidate to the bundle. We // ensured the indices met these constraints when we originally collected // the getelementptrs. SmallVector Bundle(Candidates.size()); auto BundleIndex = 0u; for (auto *V : Candidates) { auto *GEP = cast(V); auto *GEPIdx = GEP->idx_begin()->get(); assert(GEP->getNumIndices() == 1 || !isa(GEPIdx)); Bundle[BundleIndex++] = GEPIdx; } // Try and vectorize the indices. We are currently only interested in // gather-like cases of the form: // // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... // // where the loads of "a", the loads of "b", and the subtractions can be // performed in parallel. It's likely that detecting this pattern in a // bottom-up phase will be simpler and less costly than building a // full-blown top-down phase beginning at the consecutive loads. Changed |= tryToVectorizeList(Bundle, R); } } return Changed; } bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { bool Changed = false; // Attempt to sort and vectorize each of the store-groups. for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; ++it) { if (it->second.size() < 2) continue; LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << it->second.size() << ".\n"); // Process the stores in chunks of 16. // TODO: The limit of 16 inhibits greater vectorization factors. // For example, AVX2 supports v32i8. Increasing this limit, however, // may cause a significant compile-time increase. for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { unsigned Len = std::min(CE - CI, 16); Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); } } return Changed; } char SLPVectorizer::ID = 0; static const char lv_name[] = "SLP Vectorizer"; INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }