//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements induction variable simplification. It does // not define any actual pass or policy, but provides a single function to // simplify a loop's induction variables based on ScalarEvolution. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/SimplifyIndVar.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "indvars" STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); STATISTIC( NumSimplifiedSDiv, "Number of IV signed division operations converted to unsigned division"); STATISTIC( NumSimplifiedSRem, "Number of IV signed remainder operations converted to unsigned remainder"); STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); namespace { /// This is a utility for simplifying induction variables /// based on ScalarEvolution. It is the primary instrument of the /// IndvarSimplify pass, but it may also be directly invoked to cleanup after /// other loop passes that preserve SCEV. class SimplifyIndvar { Loop *L; LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; SCEVExpander &Rewriter; SmallVectorImpl &DeadInsts; bool Changed; public: SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, SCEVExpander &Rewriter, SmallVectorImpl &Dead) : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead), Changed(false) { assert(LI && "IV simplification requires LoopInfo"); } bool hasChanged() const { return Changed; } /// Iteratively perform simplification on a worklist of users of the /// specified induction variable. This is the top-level driver that applies /// all simplifications to users of an IV. void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); bool replaceIVUserWithLoopInvariant(Instruction *UseInst); bool eliminateOverflowIntrinsic(CallInst *CI); bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, bool IsSigned); void replaceRemWithNumerator(BinaryOperator *Rem); void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); void replaceSRemWithURem(BinaryOperator *Rem); bool eliminateSDiv(BinaryOperator *SDiv); bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); }; } /// Fold an IV operand into its use. This removes increments of an /// aligned IV when used by a instruction that ignores the low bits. /// /// IVOperand is guaranteed SCEVable, but UseInst may not be. /// /// Return the operand of IVOperand for this induction variable if IVOperand can /// be folded (in case more folding opportunities have been exposed). /// Otherwise return null. Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { Value *IVSrc = nullptr; unsigned OperIdx = 0; const SCEV *FoldedExpr = nullptr; switch (UseInst->getOpcode()) { default: return nullptr; case Instruction::UDiv: case Instruction::LShr: // We're only interested in the case where we know something about // the numerator and have a constant denominator. if (IVOperand != UseInst->getOperand(OperIdx) || !isa(UseInst->getOperand(1))) return nullptr; // Attempt to fold a binary operator with constant operand. // e.g. ((I + 1) >> 2) => I >> 2 if (!isa(IVOperand) || !isa(IVOperand->getOperand(1))) return nullptr; IVSrc = IVOperand->getOperand(0); // IVSrc must be the (SCEVable) IV, since the other operand is const. assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); ConstantInt *D = cast(UseInst->getOperand(1)); if (UseInst->getOpcode() == Instruction::LShr) { // Get a constant for the divisor. See createSCEV. uint32_t BitWidth = cast(UseInst->getType())->getBitWidth(); if (D->getValue().uge(BitWidth)) return nullptr; D = ConstantInt::get(UseInst->getContext(), APInt::getOneBitSet(BitWidth, D->getZExtValue())); } FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); } // We have something that might fold it's operand. Compare SCEVs. if (!SE->isSCEVable(UseInst->getType())) return nullptr; // Bypass the operand if SCEV can prove it has no effect. if (SE->getSCEV(UseInst) != FoldedExpr) return nullptr; DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand << " -> " << *UseInst << '\n'); UseInst->setOperand(OperIdx, IVSrc); assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); ++NumElimOperand; Changed = true; if (IVOperand->use_empty()) DeadInsts.emplace_back(IVOperand); return IVSrc; } bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand) { unsigned IVOperIdx = 0; ICmpInst::Predicate Pred = ICmp->getPredicate(); if (IVOperand != ICmp->getOperand(0)) { // Swapped assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); IVOperIdx = 1; Pred = ICmpInst::getSwappedPredicate(Pred); } // Get the SCEVs for the ICmp operands (in the specific context of the // current loop) const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); ICmpInst::Predicate InvariantPredicate; const SCEV *InvariantLHS, *InvariantRHS; auto *PN = dyn_cast(IVOperand); if (!PN) return false; if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, InvariantLHS, InvariantRHS)) return false; // Rewrite the comparison to a loop invariant comparison if it can be done // cheaply, where cheaply means "we don't need to emit any new // instructions". SmallDenseMap CheapExpansions; CheapExpansions[S] = ICmp->getOperand(IVOperIdx); CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); // TODO: Support multiple entry loops? (We currently bail out of these in // the IndVarSimplify pass) if (auto *BB = L->getLoopPredecessor()) { const int Idx = PN->getBasicBlockIndex(BB); if (Idx >= 0) { Value *Incoming = PN->getIncomingValue(Idx); const SCEV *IncomingS = SE->getSCEV(Incoming); CheapExpansions[IncomingS] = Incoming; } } Value *NewLHS = CheapExpansions[InvariantLHS]; Value *NewRHS = CheapExpansions[InvariantRHS]; if (!NewLHS) if (auto *ConstLHS = dyn_cast(InvariantLHS)) NewLHS = ConstLHS->getValue(); if (!NewRHS) if (auto *ConstRHS = dyn_cast(InvariantRHS)) NewRHS = ConstRHS->getValue(); if (!NewLHS || !NewRHS) // We could not find an existing value to replace either LHS or RHS. // Generating new instructions has subtler tradeoffs, so avoid doing that // for now. return false; DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); ICmp->setPredicate(InvariantPredicate); ICmp->setOperand(0, NewLHS); ICmp->setOperand(1, NewRHS); return true; } /// SimplifyIVUsers helper for eliminating useless /// comparisons against an induction variable. void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { unsigned IVOperIdx = 0; ICmpInst::Predicate Pred = ICmp->getPredicate(); ICmpInst::Predicate OriginalPred = Pred; if (IVOperand != ICmp->getOperand(0)) { // Swapped assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); IVOperIdx = 1; Pred = ICmpInst::getSwappedPredicate(Pred); } // Get the SCEVs for the ICmp operands (in the specific context of the // current loop) const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); // If the condition is always true or always false, replace it with // a constant value. if (SE->isKnownPredicate(Pred, S, X)) { ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); DeadInsts.emplace_back(ICmp); DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); DeadInsts.emplace_back(ICmp); DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { // fallthrough to end of function } else if (ICmpInst::isSigned(OriginalPred) && SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { // If we were unable to make anything above, all we can is to canonicalize // the comparison hoping that it will open the doors for other // optimizations. If we find out that we compare two non-negative values, // we turn the instruction's predicate to its unsigned version. Note that // we cannot rely on Pred here unless we check if we have swapped it. assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp << '\n'); ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); } else return; ++NumElimCmp; Changed = true; } bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { // Get the SCEVs for the ICmp operands. auto *N = SE->getSCEV(SDiv->getOperand(0)); auto *D = SE->getSCEV(SDiv->getOperand(1)); // Simplify unnecessary loops away. const Loop *L = LI->getLoopFor(SDiv->getParent()); N = SE->getSCEVAtScope(N, L); D = SE->getSCEVAtScope(D, L); // Replace sdiv by udiv if both of the operands are non-negative if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { auto *UDiv = BinaryOperator::Create( BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), SDiv->getName() + ".udiv", SDiv); UDiv->setIsExact(SDiv->isExact()); SDiv->replaceAllUsesWith(UDiv); DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); ++NumSimplifiedSDiv; Changed = true; DeadInsts.push_back(SDiv); return true; } return false; } // i %s n -> i %u n if i >= 0 and n >= 0 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, Rem->getName() + ".urem", Rem); Rem->replaceAllUsesWith(URem); DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); ++NumSimplifiedSRem; Changed = true; DeadInsts.emplace_back(Rem); } // i % n --> i if i is in [0,n). void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { Rem->replaceAllUsesWith(Rem->getOperand(0)); DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); ++NumElimRem; Changed = true; DeadInsts.emplace_back(Rem); } // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { auto *T = Rem->getType(); auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); SelectInst *Sel = SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); Rem->replaceAllUsesWith(Sel); DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); ++NumElimRem; Changed = true; DeadInsts.emplace_back(Rem); } /// SimplifyIVUsers helper for eliminating useless remainder operations /// operating on an induction variable or replacing srem by urem. void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, bool IsSigned) { auto *NValue = Rem->getOperand(0); auto *DValue = Rem->getOperand(1); // We're only interested in the case where we know something about // the numerator, unless it is a srem, because we want to replace srem by urem // in general. bool UsedAsNumerator = IVOperand == NValue; if (!UsedAsNumerator && !IsSigned) return; const SCEV *N = SE->getSCEV(NValue); // Simplify unnecessary loops away. const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); N = SE->getSCEVAtScope(N, ICmpLoop); bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); // Do not proceed if the Numerator may be negative if (!IsNumeratorNonNegative) return; const SCEV *D = SE->getSCEV(DValue); D = SE->getSCEVAtScope(D, ICmpLoop); if (UsedAsNumerator) { auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; if (SE->isKnownPredicate(LT, N, D)) { replaceRemWithNumerator(Rem); return; } auto *T = Rem->getType(); const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); if (SE->isKnownPredicate(LT, NLessOne, D)) { replaceRemWithNumeratorOrZero(Rem); return; } } // Try to replace SRem with URem, if both N and D are known non-negative. // Since we had already check N, we only need to check D now if (!IsSigned || !SE->isKnownNonNegative(D)) return; replaceSRemWithURem(Rem); } bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { auto *F = CI->getCalledFunction(); if (!F) return false; typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( const SCEV *, Type *, unsigned); OperationFunctionTy Operation; ExtensionFunctionTy Extension; Instruction::BinaryOps RawOp; // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we // have nuw. bool NoSignedOverflow; switch (F->getIntrinsicID()) { default: return false; case Intrinsic::sadd_with_overflow: Operation = &ScalarEvolution::getAddExpr; Extension = &ScalarEvolution::getSignExtendExpr; RawOp = Instruction::Add; NoSignedOverflow = true; break; case Intrinsic::uadd_with_overflow: Operation = &ScalarEvolution::getAddExpr; Extension = &ScalarEvolution::getZeroExtendExpr; RawOp = Instruction::Add; NoSignedOverflow = false; break; case Intrinsic::ssub_with_overflow: Operation = &ScalarEvolution::getMinusSCEV; Extension = &ScalarEvolution::getSignExtendExpr; RawOp = Instruction::Sub; NoSignedOverflow = true; break; case Intrinsic::usub_with_overflow: Operation = &ScalarEvolution::getMinusSCEV; Extension = &ScalarEvolution::getZeroExtendExpr; RawOp = Instruction::Sub; NoSignedOverflow = false; break; } const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); auto *NarrowTy = cast(LHS->getType()); auto *WideTy = IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); const SCEV *A = (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); const SCEV *B = (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); if (A != B) return false; // Proved no overflow, nuke the overflow check and, if possible, the overflow // intrinsic as well. BinaryOperator *NewResult = BinaryOperator::Create( RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); if (NoSignedOverflow) NewResult->setHasNoSignedWrap(true); else NewResult->setHasNoUnsignedWrap(true); SmallVector ToDelete; for (auto *U : CI->users()) { if (auto *EVI = dyn_cast(U)) { if (EVI->getIndices()[0] == 1) EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); else { assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); EVI->replaceAllUsesWith(NewResult); } ToDelete.push_back(EVI); } } for (auto *EVI : ToDelete) EVI->eraseFromParent(); if (CI->use_empty()) CI->eraseFromParent(); return true; } /// Eliminate an operation that consumes a simple IV and has no observable /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, /// but UseInst may not be. bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, Instruction *IVOperand) { if (ICmpInst *ICmp = dyn_cast(UseInst)) { eliminateIVComparison(ICmp, IVOperand); return true; } if (BinaryOperator *Bin = dyn_cast(UseInst)) { bool IsSRem = Bin->getOpcode() == Instruction::SRem; if (IsSRem || Bin->getOpcode() == Instruction::URem) { simplifyIVRemainder(Bin, IVOperand, IsSRem); return true; } if (Bin->getOpcode() == Instruction::SDiv) return eliminateSDiv(Bin); } if (auto *CI = dyn_cast(UseInst)) if (eliminateOverflowIntrinsic(CI)) return true; if (eliminateIdentitySCEV(UseInst, IVOperand)) return true; return false; } static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { if (auto *BB = L->getLoopPreheader()) return BB->getTerminator(); return Hint; } /// Replace the UseInst with a constant if possible. bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { if (!SE->isSCEVable(I->getType())) return false; // Get the symbolic expression for this instruction. const SCEV *S = SE->getSCEV(I); if (!SE->isLoopInvariant(S, L)) return false; // Do not generate something ridiculous even if S is loop invariant. if (Rewriter.isHighCostExpansion(S, L, I)) return false; auto *IP = GetLoopInvariantInsertPosition(L, I); auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); I->replaceAllUsesWith(Invariant); DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I << " with loop invariant: " << *S << '\n'); ++NumFoldedUser; Changed = true; DeadInsts.emplace_back(I); return true; } /// Eliminate any operation that SCEV can prove is an identity function. bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand) { if (!SE->isSCEVable(UseInst->getType()) || (UseInst->getType() != IVOperand->getType()) || (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) return false; // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the // dominator tree, even if X is an operand to Y. For instance, in // // %iv = phi i32 {0,+,1} // br %cond, label %left, label %merge // // left: // %X = add i32 %iv, 0 // br label %merge // // merge: // %M = phi (%X, %iv) // // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and // %M.replaceAllUsesWith(%X) would be incorrect. if (isa(UseInst)) // If UseInst is not a PHI node then we know that IVOperand dominates // UseInst directly from the legality of SSA. if (!DT || !DT->dominates(IVOperand, UseInst)) return false; if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) return false; DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); UseInst->replaceAllUsesWith(IVOperand); ++NumElimIdentity; Changed = true; DeadInsts.emplace_back(UseInst); return true; } /// Annotate BO with nsw / nuw if it provably does not signed-overflow / /// unsigned-overflow. Returns true if anything changed, false otherwise. bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, Value *IVOperand) { // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) return false; const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); switch (BO->getOpcode()) { default: return false; case Instruction::Add: GetExprForBO = &ScalarEvolution::getAddExpr; break; case Instruction::Sub: GetExprForBO = &ScalarEvolution::getMinusSCEV; break; case Instruction::Mul: GetExprForBO = &ScalarEvolution::getMulExpr; break; } unsigned BitWidth = cast(BO->getType())->getBitWidth(); Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); bool Changed = false; if (!BO->hasNoUnsignedWrap()) { const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); const SCEV *OpAfterExtend = (SE->*GetExprForBO)( SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap, 0u); if (ExtendAfterOp == OpAfterExtend) { BO->setHasNoUnsignedWrap(); SE->forgetValue(BO); Changed = true; } } if (!BO->hasNoSignedWrap()) { const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); const SCEV *OpAfterExtend = (SE->*GetExprForBO)( SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap, 0u); if (ExtendAfterOp == OpAfterExtend) { BO->setHasNoSignedWrap(); SE->forgetValue(BO); Changed = true; } } return Changed; } /// Annotate the Shr in (X << IVOperand) >> C as exact using the /// information from the IV's range. Returns true if anything changed, false /// otherwise. bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, Value *IVOperand) { using namespace llvm::PatternMatch; if (BO->getOpcode() == Instruction::Shl) { bool Changed = false; ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); for (auto *U : BO->users()) { const APInt *C; if (match(U, m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || match(U, m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { BinaryOperator *Shr = cast(U); if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { Shr->setIsExact(true); Changed = true; } } } return Changed; } return false; } /// Add all uses of Def to the current IV's worklist. static void pushIVUsers( Instruction *Def, Loop *L, SmallPtrSet &Simplified, SmallVectorImpl< std::pair > &SimpleIVUsers) { for (User *U : Def->users()) { Instruction *UI = cast(U); // Avoid infinite or exponential worklist processing. // Also ensure unique worklist users. // If Def is a LoopPhi, it may not be in the Simplified set, so check for // self edges first. if (UI == Def) continue; // Only change the current Loop, do not change the other parts (e.g. other // Loops). if (!L->contains(UI)) continue; // Do not push the same instruction more than once. if (!Simplified.insert(UI).second) continue; SimpleIVUsers.push_back(std::make_pair(UI, Def)); } } /// Return true if this instruction generates a simple SCEV /// expression in terms of that IV. /// /// This is similar to IVUsers' isInteresting() but processes each instruction /// non-recursively when the operand is already known to be a simpleIVUser. /// static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { if (!SE->isSCEVable(I->getType())) return false; // Get the symbolic expression for this instruction. const SCEV *S = SE->getSCEV(I); // Only consider affine recurrences. const SCEVAddRecExpr *AR = dyn_cast(S); if (AR && AR->getLoop() == L) return true; return false; } /// Iteratively perform simplification on a worklist of users /// of the specified induction variable. Each successive simplification may push /// more users which may themselves be candidates for simplification. /// /// This algorithm does not require IVUsers analysis. Instead, it simplifies /// instructions in-place during analysis. Rather than rewriting induction /// variables bottom-up from their users, it transforms a chain of IVUsers /// top-down, updating the IR only when it encounters a clear optimization /// opportunity. /// /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. /// void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { if (!SE->isSCEVable(CurrIV->getType())) return; // Instructions processed by SimplifyIndvar for CurrIV. SmallPtrSet Simplified; // Use-def pairs if IV users waiting to be processed for CurrIV. SmallVector, 8> SimpleIVUsers; // Push users of the current LoopPhi. In rare cases, pushIVUsers may be // called multiple times for the same LoopPhi. This is the proper thing to // do for loop header phis that use each other. pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); while (!SimpleIVUsers.empty()) { std::pair UseOper = SimpleIVUsers.pop_back_val(); Instruction *UseInst = UseOper.first; // Bypass back edges to avoid extra work. if (UseInst == CurrIV) continue; // Try to replace UseInst with a loop invariant before any other // simplifications. if (replaceIVUserWithLoopInvariant(UseInst)) continue; Instruction *IVOperand = UseOper.second; for (unsigned N = 0; IVOperand; ++N) { assert(N <= Simplified.size() && "runaway iteration"); Value *NewOper = foldIVUser(UseOper.first, IVOperand); if (!NewOper) break; // done folding IVOperand = dyn_cast(NewOper); } if (!IVOperand) continue; if (eliminateIVUser(UseOper.first, IVOperand)) { pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); continue; } if (BinaryOperator *BO = dyn_cast(UseOper.first)) { if ((isa(BO) && strengthenOverflowingOperation(BO, IVOperand)) || (isa(BO) && strengthenRightShift(BO, IVOperand))) { // re-queue uses of the now modified binary operator and fall // through to the checks that remain. pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); } } CastInst *Cast = dyn_cast(UseOper.first); if (V && Cast) { V->visitCast(Cast); continue; } if (isSimpleIVUser(UseOper.first, L, SE)) { pushIVUsers(UseOper.first, L, Simplified, SimpleIVUsers); } } } namespace llvm { void IVVisitor::anchor() { } /// Simplify instructions that use this induction variable /// by using ScalarEvolution to analyze the IV's recurrence. bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, SmallVectorImpl &Dead, SCEVExpander &Rewriter, IVVisitor *V) { SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter, Dead); SIV.simplifyUsers(CurrIV, V); return SIV.hasChanged(); } /// Simplify users of induction variables within this /// loop. This does not actually change or add IVs. bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, SmallVectorImpl &Dead) { SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); #ifndef NDEBUG Rewriter.setDebugType(DEBUG_TYPE); #endif bool Changed = false; for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) { Changed |= simplifyUsersOfIV(cast(I), SE, DT, LI, Dead, Rewriter); } return Changed; } } // namespace llvm