//===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements some loop unrolling utilities for peeling loops // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for // unrolling loops with compile-time constant trip counts. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "loop-unroll" STATISTIC(NumPeeled, "Number of loops peeled"); static cl::opt UnrollPeelMaxCount( "unroll-peel-max-count", cl::init(7), cl::Hidden, cl::desc("Max average trip count which will cause loop peeling.")); static cl::opt UnrollForcePeelCount( "unroll-force-peel-count", cl::init(0), cl::Hidden, cl::desc("Force a peel count regardless of profiling information.")); // Designates that a Phi is estimated to become invariant after an "infinite" // number of loop iterations (i.e. only may become an invariant if the loop is // fully unrolled). static const unsigned InfiniteIterationsToInvariance = std::numeric_limits::max(); // Check whether we are capable of peeling this loop. bool llvm::canPeel(Loop *L) { // Make sure the loop is in simplified form if (!L->isLoopSimplifyForm()) return false; // Only peel loops that contain a single exit if (!L->getExitingBlock() || !L->getUniqueExitBlock()) return false; // Don't try to peel loops where the latch is not the exiting block. // This can be an indication of two different things: // 1) The loop is not rotated. // 2) The loop contains irreducible control flow that involves the latch. if (L->getLoopLatch() != L->getExitingBlock()) return false; return true; } // This function calculates the number of iterations after which the given Phi // becomes an invariant. The pre-calculated values are memorized in the map. The // function (shortcut is I) is calculated according to the following definition: // Given %x = phi , ..., [%y, %back.edge]. // If %y is a loop invariant, then I(%x) = 1. // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. // Otherwise, I(%x) is infinite. // TODO: Actually if %y is an expression that depends only on Phi %z and some // loop invariants, we can estimate I(%x) = I(%z) + 1. The example // looks like: // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. // %y = phi(0, 5), // %a = %y + 1. static unsigned calculateIterationsToInvariance( PHINode *Phi, Loop *L, BasicBlock *BackEdge, SmallDenseMap &IterationsToInvariance) { assert(Phi->getParent() == L->getHeader() && "Non-loop Phi should not be checked for turning into invariant."); assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); // If we already know the answer, take it from the map. auto I = IterationsToInvariance.find(Phi); if (I != IterationsToInvariance.end()) return I->second; // Otherwise we need to analyze the input from the back edge. Value *Input = Phi->getIncomingValueForBlock(BackEdge); // Place infinity to map to avoid infinite recursion for cycled Phis. Such // cycles can never stop on an invariant. IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; unsigned ToInvariance = InfiniteIterationsToInvariance; if (L->isLoopInvariant(Input)) ToInvariance = 1u; else if (PHINode *IncPhi = dyn_cast(Input)) { // Only consider Phis in header block. if (IncPhi->getParent() != L->getHeader()) return InfiniteIterationsToInvariance; // If the input becomes an invariant after X iterations, then our Phi // becomes an invariant after X + 1 iterations. unsigned InputToInvariance = calculateIterationsToInvariance( IncPhi, L, BackEdge, IterationsToInvariance); if (InputToInvariance != InfiniteIterationsToInvariance) ToInvariance = InputToInvariance + 1u; } // If we found that this Phi lies in an invariant chain, update the map. if (ToInvariance != InfiniteIterationsToInvariance) IterationsToInvariance[Phi] = ToInvariance; return ToInvariance; } // Return the number of iterations to peel off that make conditions in the // body true/false. For example, if we peel 2 iterations off the loop below, // the condition i < 2 can be evaluated at compile time. // for (i = 0; i < n; i++) // if (i < 2) // .. // else // .. // } static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, ScalarEvolution &SE) { assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); unsigned DesiredPeelCount = 0; for (auto *BB : L.blocks()) { auto *BI = dyn_cast(BB->getTerminator()); if (!BI || BI->isUnconditional()) continue; // Ignore loop exit condition. if (L.getLoopLatch() == BB) continue; Value *Condition = BI->getCondition(); Value *LeftVal, *RightVal; CmpInst::Predicate Pred; if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) continue; const SCEV *LeftSCEV = SE.getSCEV(LeftVal); const SCEV *RightSCEV = SE.getSCEV(RightVal); // Do not consider predicates that are known to be true or false // independently of the loop iteration. if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) || SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV, RightSCEV)) continue; // Check if we have a condition with one AddRec and one non AddRec // expression. Normalize LeftSCEV to be the AddRec. if (!isa(LeftSCEV)) { if (isa(RightSCEV)) { std::swap(LeftSCEV, RightSCEV); Pred = ICmpInst::getSwappedPredicate(Pred); } else continue; } const SCEVAddRecExpr *LeftAR = cast(LeftSCEV); // Avoid huge SCEV computations in the loop below, make sure we only // consider AddRecs of the loop we are trying to peel and avoid // non-monotonic predicates, as we will not be able to simplify the loop // body. // FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can // simplify the loop, if we peel 1 additional iteration, if there // is no wrapping. bool Increasing; if (!LeftAR->isAffine() || LeftAR->getLoop() != &L || !SE.isMonotonicPredicate(LeftAR, Pred, Increasing)) continue; (void)Increasing; // Check if extending the current DesiredPeelCount lets us evaluate Pred // or !Pred in the loop body statically. unsigned NewPeelCount = DesiredPeelCount; const SCEV *IterVal = LeftAR->evaluateAtIteration( SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); // If the original condition is not known, get the negated predicate // (which holds on the else branch) and check if it is known. This allows // us to peel of iterations that make the original condition false. if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) Pred = ICmpInst::getInversePredicate(Pred); const SCEV *Step = LeftAR->getStepRecurrence(SE); while (NewPeelCount < MaxPeelCount && SE.isKnownPredicate(Pred, IterVal, RightSCEV)) { IterVal = SE.getAddExpr(IterVal, Step); NewPeelCount++; } // Only peel the loop if the monotonic predicate !Pred becomes known in the // first iteration of the loop body after peeling. if (NewPeelCount > DesiredPeelCount && SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, RightSCEV)) DesiredPeelCount = NewPeelCount; } return DesiredPeelCount; } // Return the number of iterations we want to peel off. void llvm::computePeelCount(Loop *L, unsigned LoopSize, TargetTransformInfo::UnrollingPreferences &UP, unsigned &TripCount, ScalarEvolution &SE) { assert(LoopSize > 0 && "Zero loop size is not allowed!"); // Save the UP.PeelCount value set by the target in // TTI.getUnrollingPreferences or by the flag -unroll-peel-count. unsigned TargetPeelCount = UP.PeelCount; UP.PeelCount = 0; if (!canPeel(L)) return; // Only try to peel innermost loops. if (!L->empty()) return; // If the user provided a peel count, use that. bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; if (UserPeelCount) { LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount << " iterations.\n"); UP.PeelCount = UnrollForcePeelCount; return; } // Skip peeling if it's disabled. if (!UP.AllowPeeling) return; // Here we try to get rid of Phis which become invariants after 1, 2, ..., N // iterations of the loop. For this we compute the number for iterations after // which every Phi is guaranteed to become an invariant, and try to peel the // maximum number of iterations among these values, thus turning all those // Phis into invariants. // First, check that we can peel at least one iteration. if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) { // Store the pre-calculated values here. SmallDenseMap IterationsToInvariance; // Now go through all Phis to calculate their the number of iterations they // need to become invariants. // Start the max computation with the UP.PeelCount value set by the target // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. unsigned DesiredPeelCount = TargetPeelCount; BasicBlock *BackEdge = L->getLoopLatch(); assert(BackEdge && "Loop is not in simplified form?"); for (auto BI = L->getHeader()->begin(); isa(&*BI); ++BI) { PHINode *Phi = cast(&*BI); unsigned ToInvariance = calculateIterationsToInvariance( Phi, L, BackEdge, IterationsToInvariance); if (ToInvariance != InfiniteIterationsToInvariance) DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); } // Pay respect to limitations implied by loop size and the max peel count. unsigned MaxPeelCount = UnrollPeelMaxCount; MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1); DesiredPeelCount = std::max(DesiredPeelCount, countToEliminateCompares(*L, MaxPeelCount, SE)); if (DesiredPeelCount > 0) { DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); // Consider max peel count limitation. assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount << " iteration(s) to turn" << " some Phis into invariants.\n"); UP.PeelCount = DesiredPeelCount; return; } } // Bail if we know the statically calculated trip count. // In this case we rather prefer partial unrolling. if (TripCount) return; // If we don't know the trip count, but have reason to believe the average // trip count is low, peeling should be beneficial, since we will usually // hit the peeled section. // We only do this in the presence of profile information, since otherwise // our estimates of the trip count are not reliable enough. if (L->getHeader()->getParent()->hasProfileData()) { Optional PeelCount = getLoopEstimatedTripCount(L); if (!PeelCount) return; LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount << "\n"); if (*PeelCount) { if ((*PeelCount <= UnrollPeelMaxCount) && (LoopSize * (*PeelCount + 1) <= UP.Threshold)) { LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount << " iterations.\n"); UP.PeelCount = *PeelCount; return; } LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) << "\n"); LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n"); } } } /// Update the branch weights of the latch of a peeled-off loop /// iteration. /// This sets the branch weights for the latch of the recently peeled off loop /// iteration correctly. /// Our goal is to make sure that: /// a) The total weight of all the copies of the loop body is preserved. /// b) The total weight of the loop exit is preserved. /// c) The body weight is reasonably distributed between the peeled iterations. /// /// \param Header The copy of the header block that belongs to next iteration. /// \param LatchBR The copy of the latch branch that belongs to this iteration. /// \param IterNumber The serial number of the iteration that was just /// peeled off. /// \param AvgIters The average number of iterations we expect the loop to have. /// \param[in,out] PeeledHeaderWeight The total number of dynamic loop /// iterations that are unaccounted for. As an input, it represents the number /// of times we expect to enter the header of the iteration currently being /// peeled off. The output is the number of times we expect to enter the /// header of the next iteration. static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, unsigned IterNumber, unsigned AvgIters, uint64_t &PeeledHeaderWeight) { // FIXME: Pick a more realistic distribution. // Currently the proportion of weight we assign to the fall-through // side of the branch drops linearly with the iteration number, and we use // a 0.9 fudge factor to make the drop-off less sharp... if (PeeledHeaderWeight) { uint64_t FallThruWeight = PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9); uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight; PeeledHeaderWeight -= ExitWeight; unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); MDBuilder MDB(LatchBR->getContext()); MDNode *WeightNode = HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight) : MDB.createBranchWeights(FallThruWeight, ExitWeight); LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); } } /// Clones the body of the loop L, putting it between \p InsertTop and \p /// InsertBot. /// \param IterNumber The serial number of the iteration currently being /// peeled off. /// \param Exit The exit block of the original loop. /// \param[out] NewBlocks A list of the blocks in the newly created clone /// \param[out] VMap The value map between the loop and the new clone. /// \param LoopBlocks A helper for DFS-traversal of the loop. /// \param LVMap A value-map that maps instructions from the original loop to /// instructions in the last peeled-off iteration. static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, BasicBlock *Exit, SmallVectorImpl &NewBlocks, LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, LoopInfo *LI) { BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); BasicBlock *PreHeader = L->getLoopPreheader(); Function *F = Header->getParent(); LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); Loop *ParentLoop = L->getParentLoop(); // For each block in the original loop, create a new copy, // and update the value map with the newly created values. for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); NewBlocks.push_back(NewBB); if (ParentLoop) ParentLoop->addBasicBlockToLoop(NewBB, *LI); VMap[*BB] = NewBB; // If dominator tree is available, insert nodes to represent cloned blocks. if (DT) { if (Header == *BB) DT->addNewBlock(NewBB, InsertTop); else { DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); // VMap must contain entry for IDom, as the iteration order is RPO. DT->addNewBlock(NewBB, cast(VMap[IDom->getBlock()])); } } } // Hook-up the control flow for the newly inserted blocks. // The new header is hooked up directly to the "top", which is either // the original loop preheader (for the first iteration) or the previous // iteration's exiting block (for every other iteration) InsertTop->getTerminator()->setSuccessor(0, cast(VMap[Header])); // Similarly, for the latch: // The original exiting edge is still hooked up to the loop exit. // The backedge now goes to the "bottom", which is either the loop's real // header (for the last peeled iteration) or the copied header of the next // iteration (for every other iteration) BasicBlock *NewLatch = cast(VMap[Latch]); BranchInst *LatchBR = cast(NewLatch->getTerminator()); unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); LatchBR->setSuccessor(HeaderIdx, InsertBot); LatchBR->setSuccessor(1 - HeaderIdx, Exit); if (DT) DT->changeImmediateDominator(InsertBot, NewLatch); // The new copy of the loop body starts with a bunch of PHI nodes // that pick an incoming value from either the preheader, or the previous // loop iteration. Since this copy is no longer part of the loop, we // resolve this statically: // For the first iteration, we use the value from the preheader directly. // For any other iteration, we replace the phi with the value generated by // the immediately preceding clone of the loop body (which represents // the previous iteration). for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *NewPHI = cast(VMap[&*I]); if (IterNumber == 0) { VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); } else { Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); Instruction *LatchInst = dyn_cast(LatchVal); if (LatchInst && L->contains(LatchInst)) VMap[&*I] = LVMap[LatchInst]; else VMap[&*I] = LatchVal; } cast(VMap[Header])->getInstList().erase(NewPHI); } // Fix up the outgoing values - we need to add a value for the iteration // we've just created. Note that this must happen *after* the incoming // values are adjusted, since the value going out of the latch may also be // a value coming into the header. for (BasicBlock::iterator I = Exit->begin(); isa(I); ++I) { PHINode *PHI = cast(I); Value *LatchVal = PHI->getIncomingValueForBlock(Latch); Instruction *LatchInst = dyn_cast(LatchVal); if (LatchInst && L->contains(LatchInst)) LatchVal = VMap[LatchVal]; PHI->addIncoming(LatchVal, cast(VMap[Latch])); } // LastValueMap is updated with the values for the current loop // which are used the next time this function is called. for (const auto &KV : VMap) LVMap[KV.first] = KV.second; } /// Peel off the first \p PeelCount iterations of loop \p L. /// /// Note that this does not peel them off as a single straight-line block. /// Rather, each iteration is peeled off separately, and needs to check the /// exit condition. /// For loops that dynamically execute \p PeelCount iterations or less /// this provides a benefit, since the peeled off iterations, which account /// for the bulk of dynamic execution, can be further simplified by scalar /// optimizations. bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, bool PreserveLCSSA) { assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); LoopBlocksDFS LoopBlocks(L); LoopBlocks.perform(LI); BasicBlock *Header = L->getHeader(); BasicBlock *PreHeader = L->getLoopPreheader(); BasicBlock *Latch = L->getLoopLatch(); BasicBlock *Exit = L->getUniqueExitBlock(); Function *F = Header->getParent(); // Set up all the necessary basic blocks. It is convenient to split the // preheader into 3 parts - two blocks to anchor the peeled copy of the loop // body, and a new preheader for the "real" loop. // Peeling the first iteration transforms. // // PreHeader: // ... // Header: // LoopBody // If (cond) goto Header // Exit: // // into // // InsertTop: // LoopBody // If (!cond) goto Exit // InsertBot: // NewPreHeader: // ... // Header: // LoopBody // If (cond) goto Header // Exit: // // Each following iteration will split the current bottom anchor in two, // and put the new copy of the loop body between these two blocks. That is, // after peeling another iteration from the example above, we'll split // InsertBot, and get: // // InsertTop: // LoopBody // If (!cond) goto Exit // InsertBot: // LoopBody // If (!cond) goto Exit // InsertBot.next: // NewPreHeader: // ... // Header: // LoopBody // If (cond) goto Header // Exit: BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); BasicBlock *InsertBot = SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); BasicBlock *NewPreHeader = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); InsertTop->setName(Header->getName() + ".peel.begin"); InsertBot->setName(Header->getName() + ".peel.next"); NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); ValueToValueMapTy LVMap; // If we have branch weight information, we'll want to update it for the // newly created branches. BranchInst *LatchBR = cast(cast(Latch)->getTerminator()); unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); uint64_t TrueWeight, FalseWeight; uint64_t ExitWeight = 0, CurHeaderWeight = 0; if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) { ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; // The # of times the loop body executes is the sum of the exit block // weight and the # of times the backedges are taken. CurHeaderWeight = TrueWeight + FalseWeight; } // For each peeled-off iteration, make a copy of the loop. for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { SmallVector NewBlocks; ValueToValueMapTy VMap; // Subtract the exit weight from the current header weight -- the exit // weight is exactly the weight of the previous iteration's header. // FIXME: due to the way the distribution is constructed, we need a // guard here to make sure we don't end up with non-positive weights. if (ExitWeight < CurHeaderWeight) CurHeaderWeight -= ExitWeight; else CurHeaderWeight = 1; cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit, NewBlocks, LoopBlocks, VMap, LVMap, DT, LI); // Remap to use values from the current iteration instead of the // previous one. remapInstructionsInBlocks(NewBlocks, VMap); if (DT) { // Latches of the cloned loops dominate over the loop exit, so idom of the // latter is the first cloned loop body, as original PreHeader dominates // the original loop body. if (Iter == 0) DT->changeImmediateDominator(Exit, cast(LVMap[Latch])); assert(DT->verify(DominatorTree::VerificationLevel::Fast)); } updateBranchWeights(InsertBot, cast(VMap[LatchBR]), Iter, PeelCount, ExitWeight); InsertTop = InsertBot; InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); InsertBot->setName(Header->getName() + ".peel.next"); F->getBasicBlockList().splice(InsertTop->getIterator(), F->getBasicBlockList(), NewBlocks[0]->getIterator(), F->end()); } // Now adjust the phi nodes in the loop header to get their initial values // from the last peeled-off iteration instead of the preheader. for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PHI = cast(I); Value *NewVal = PHI->getIncomingValueForBlock(Latch); Instruction *LatchInst = dyn_cast(NewVal); if (LatchInst && L->contains(LatchInst)) NewVal = LVMap[LatchInst]; PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal); } // Adjust the branch weights on the loop exit. if (ExitWeight) { // The backedge count is the difference of current header weight and // current loop exit weight. If the current header weight is smaller than // the current loop exit weight, we mark the loop backedge weight as 1. uint64_t BackEdgeWeight = 0; if (ExitWeight < CurHeaderWeight) BackEdgeWeight = CurHeaderWeight - ExitWeight; else BackEdgeWeight = 1; MDBuilder MDB(LatchBR->getContext()); MDNode *WeightNode = HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); } // If the loop is nested, we changed the parent loop, update SE. if (Loop *ParentLoop = L->getParentLoop()) { SE->forgetLoop(ParentLoop); // FIXME: Incrementally update loop-simplify simplifyLoop(ParentLoop, DT, LI, SE, AC, PreserveLCSSA); } else { // FIXME: Incrementally update loop-simplify simplifyLoop(L, DT, LI, SE, AC, PreserveLCSSA); } NumPeeled++; return true; }