//===- FunctionComparator.h - Function Comparator -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the FunctionComparator and GlobalNumberState classes // which are used by the MergeFunctions pass for comparing functions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/FunctionComparator.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "functioncomparator" int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { if (L < R) return -1; if (L > R) return 1; return 0; } int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { if ((int)L < (int)R) return -1; if ((int)L > (int)R) return 1; return 0; } int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) return Res; if (L.ugt(R)) return 1; if (R.ugt(L)) return -1; return 0; } int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { // Floats are ordered first by semantics (i.e. float, double, half, etc.), // then by value interpreted as a bitstring (aka APInt). const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), APFloat::semanticsPrecision(SR))) return Res; if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), APFloat::semanticsMaxExponent(SR))) return Res; if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), APFloat::semanticsMinExponent(SR))) return Res; if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), APFloat::semanticsSizeInBits(SR))) return Res; return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); } int FunctionComparator::cmpMem(StringRef L, StringRef R) const { // Prevent heavy comparison, compare sizes first. if (int Res = cmpNumbers(L.size(), R.size())) return Res; // Compare strings lexicographically only when it is necessary: only when // strings are equal in size. return L.compare(R); } int FunctionComparator::cmpAttrs(const AttributeList L, const AttributeList R) const { if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) return Res; for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { AttributeSet LAS = L.getAttributes(i); AttributeSet RAS = R.getAttributes(i); AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); for (; LI != LE && RI != RE; ++LI, ++RI) { Attribute LA = *LI; Attribute RA = *RI; if (LA < RA) return -1; if (RA < LA) return 1; } if (LI != LE) return 1; if (RI != RE) return -1; } return 0; } int FunctionComparator::cmpRangeMetadata(const MDNode *L, const MDNode *R) const { if (L == R) return 0; if (!L) return -1; if (!R) return 1; // Range metadata is a sequence of numbers. Make sure they are the same // sequence. // TODO: Note that as this is metadata, it is possible to drop and/or merge // this data when considering functions to merge. Thus this comparison would // return 0 (i.e. equivalent), but merging would become more complicated // because the ranges would need to be unioned. It is not likely that // functions differ ONLY in this metadata if they are actually the same // function semantically. if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) return Res; for (size_t I = 0; I < L->getNumOperands(); ++I) { ConstantInt *LLow = mdconst::extract(L->getOperand(I)); ConstantInt *RLow = mdconst::extract(R->getOperand(I)); if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) return Res; } return 0; } int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const { ImmutableCallSite LCS(L); ImmutableCallSite RCS(R); assert(LCS && RCS && "Must be calls or invokes!"); assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); if (int Res = cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) return Res; for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { auto OBL = LCS.getOperandBundleAt(i); auto OBR = RCS.getOperandBundleAt(i); if (int Res = OBL.getTagName().compare(OBR.getTagName())) return Res; if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) return Res; } return 0; } /// Constants comparison: /// 1. Check whether type of L constant could be losslessly bitcasted to R /// type. /// 2. Compare constant contents. /// For more details see declaration comments. int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) const { Type *TyL = L->getType(); Type *TyR = R->getType(); // Check whether types are bitcastable. This part is just re-factored // Type::canLosslesslyBitCastTo method, but instead of returning true/false, // we also pack into result which type is "less" for us. int TypesRes = cmpTypes(TyL, TyR); if (TypesRes != 0) { // Types are different, but check whether we can bitcast them. if (!TyL->isFirstClassType()) { if (TyR->isFirstClassType()) return -1; // Neither TyL nor TyR are values of first class type. Return the result // of comparing the types return TypesRes; } if (!TyR->isFirstClassType()) { if (TyL->isFirstClassType()) return 1; return TypesRes; } // Vector -> Vector conversions are always lossless if the two vector types // have the same size, otherwise not. unsigned TyLWidth = 0; unsigned TyRWidth = 0; if (auto *VecTyL = dyn_cast(TyL)) TyLWidth = VecTyL->getBitWidth(); if (auto *VecTyR = dyn_cast(TyR)) TyRWidth = VecTyR->getBitWidth(); if (TyLWidth != TyRWidth) return cmpNumbers(TyLWidth, TyRWidth); // Zero bit-width means neither TyL nor TyR are vectors. if (!TyLWidth) { PointerType *PTyL = dyn_cast(TyL); PointerType *PTyR = dyn_cast(TyR); if (PTyL && PTyR) { unsigned AddrSpaceL = PTyL->getAddressSpace(); unsigned AddrSpaceR = PTyR->getAddressSpace(); if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) return Res; } if (PTyL) return 1; if (PTyR) return -1; // TyL and TyR aren't vectors, nor pointers. We don't know how to // bitcast them. return TypesRes; } } // OK, types are bitcastable, now check constant contents. if (L->isNullValue() && R->isNullValue()) return TypesRes; if (L->isNullValue() && !R->isNullValue()) return 1; if (!L->isNullValue() && R->isNullValue()) return -1; auto GlobalValueL = const_cast(dyn_cast(L)); auto GlobalValueR = const_cast(dyn_cast(R)); if (GlobalValueL && GlobalValueR) { return cmpGlobalValues(GlobalValueL, GlobalValueR); } if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) return Res; if (const auto *SeqL = dyn_cast(L)) { const auto *SeqR = cast(R); // This handles ConstantDataArray and ConstantDataVector. Note that we // compare the two raw data arrays, which might differ depending on the host // endianness. This isn't a problem though, because the endiness of a module // will affect the order of the constants, but this order is the same // for a given input module and host platform. return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); } switch (L->getValueID()) { case Value::UndefValueVal: case Value::ConstantTokenNoneVal: return TypesRes; case Value::ConstantIntVal: { const APInt &LInt = cast(L)->getValue(); const APInt &RInt = cast(R)->getValue(); return cmpAPInts(LInt, RInt); } case Value::ConstantFPVal: { const APFloat &LAPF = cast(L)->getValueAPF(); const APFloat &RAPF = cast(R)->getValueAPF(); return cmpAPFloats(LAPF, RAPF); } case Value::ConstantArrayVal: { const ConstantArray *LA = cast(L); const ConstantArray *RA = cast(R); uint64_t NumElementsL = cast(TyL)->getNumElements(); uint64_t NumElementsR = cast(TyR)->getNumElements(); if (int Res = cmpNumbers(NumElementsL, NumElementsR)) return Res; for (uint64_t i = 0; i < NumElementsL; ++i) { if (int Res = cmpConstants(cast(LA->getOperand(i)), cast(RA->getOperand(i)))) return Res; } return 0; } case Value::ConstantStructVal: { const ConstantStruct *LS = cast(L); const ConstantStruct *RS = cast(R); unsigned NumElementsL = cast(TyL)->getNumElements(); unsigned NumElementsR = cast(TyR)->getNumElements(); if (int Res = cmpNumbers(NumElementsL, NumElementsR)) return Res; for (unsigned i = 0; i != NumElementsL; ++i) { if (int Res = cmpConstants(cast(LS->getOperand(i)), cast(RS->getOperand(i)))) return Res; } return 0; } case Value::ConstantVectorVal: { const ConstantVector *LV = cast(L); const ConstantVector *RV = cast(R); unsigned NumElementsL = cast(TyL)->getNumElements(); unsigned NumElementsR = cast(TyR)->getNumElements(); if (int Res = cmpNumbers(NumElementsL, NumElementsR)) return Res; for (uint64_t i = 0; i < NumElementsL; ++i) { if (int Res = cmpConstants(cast(LV->getOperand(i)), cast(RV->getOperand(i)))) return Res; } return 0; } case Value::ConstantExprVal: { const ConstantExpr *LE = cast(L); const ConstantExpr *RE = cast(R); unsigned NumOperandsL = LE->getNumOperands(); unsigned NumOperandsR = RE->getNumOperands(); if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) return Res; for (unsigned i = 0; i < NumOperandsL; ++i) { if (int Res = cmpConstants(cast(LE->getOperand(i)), cast(RE->getOperand(i)))) return Res; } return 0; } case Value::BlockAddressVal: { const BlockAddress *LBA = cast(L); const BlockAddress *RBA = cast(R); if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) return Res; if (LBA->getFunction() == RBA->getFunction()) { // They are BBs in the same function. Order by which comes first in the // BB order of the function. This order is deterministic. Function* F = LBA->getFunction(); BasicBlock *LBB = LBA->getBasicBlock(); BasicBlock *RBB = RBA->getBasicBlock(); if (LBB == RBB) return 0; for(BasicBlock &BB : F->getBasicBlockList()) { if (&BB == LBB) { assert(&BB != RBB); return -1; } if (&BB == RBB) return 1; } llvm_unreachable("Basic Block Address does not point to a basic block in " "its function."); return -1; } else { // cmpValues said the functions are the same. So because they aren't // literally the same pointer, they must respectively be the left and // right functions. assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); // cmpValues will tell us if these are equivalent BasicBlocks, in the // context of their respective functions. return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); } } default: // Unknown constant, abort. DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); llvm_unreachable("Constant ValueID not recognized."); return -1; } } int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { uint64_t LNumber = GlobalNumbers->getNumber(L); uint64_t RNumber = GlobalNumbers->getNumber(R); return cmpNumbers(LNumber, RNumber); } /// cmpType - compares two types, /// defines total ordering among the types set. /// See method declaration comments for more details. int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { PointerType *PTyL = dyn_cast(TyL); PointerType *PTyR = dyn_cast(TyR); const DataLayout &DL = FnL->getParent()->getDataLayout(); if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL.getIntPtrType(TyL); if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL.getIntPtrType(TyR); if (TyL == TyR) return 0; if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) return Res; switch (TyL->getTypeID()) { default: llvm_unreachable("Unknown type!"); // Fall through in Release mode. LLVM_FALLTHROUGH; case Type::IntegerTyID: return cmpNumbers(cast(TyL)->getBitWidth(), cast(TyR)->getBitWidth()); // TyL == TyR would have returned true earlier, because types are uniqued. case Type::VoidTyID: case Type::FloatTyID: case Type::DoubleTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: case Type::LabelTyID: case Type::MetadataTyID: case Type::TokenTyID: return 0; case Type::PointerTyID: assert(PTyL && PTyR && "Both types must be pointers here."); return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); case Type::StructTyID: { StructType *STyL = cast(TyL); StructType *STyR = cast(TyR); if (STyL->getNumElements() != STyR->getNumElements()) return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); if (STyL->isPacked() != STyR->isPacked()) return cmpNumbers(STyL->isPacked(), STyR->isPacked()); for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) return Res; } return 0; } case Type::FunctionTyID: { FunctionType *FTyL = cast(TyL); FunctionType *FTyR = cast(TyR); if (FTyL->getNumParams() != FTyR->getNumParams()) return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); if (FTyL->isVarArg() != FTyR->isVarArg()) return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) return Res; for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) return Res; } return 0; } case Type::ArrayTyID: case Type::VectorTyID: { auto *STyL = cast(TyL); auto *STyR = cast(TyR); if (STyL->getNumElements() != STyR->getNumElements()) return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); return cmpTypes(STyL->getElementType(), STyR->getElementType()); } } } // Determine whether the two operations are the same except that pointer-to-A // and pointer-to-B are equivalent. This should be kept in sync with // Instruction::isSameOperationAs. // Read method declaration comments for more details. int FunctionComparator::cmpOperations(const Instruction *L, const Instruction *R, bool &needToCmpOperands) const { needToCmpOperands = true; if (int Res = cmpValues(L, R)) return Res; // Differences from Instruction::isSameOperationAs: // * replace type comparison with calls to cmpTypes. // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. // * because of the above, we don't test for the tail bit on calls later on. if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) return Res; if (const GetElementPtrInst *GEPL = dyn_cast(L)) { needToCmpOperands = false; const GetElementPtrInst *GEPR = cast(R); if (int Res = cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) return Res; return cmpGEPs(GEPL, GEPR); } if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) return Res; if (int Res = cmpTypes(L->getType(), R->getType())) return Res; if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), R->getRawSubclassOptionalData())) return Res; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { if (int Res = cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) return Res; } // Check special state that is a part of some instructions. if (const AllocaInst *AI = dyn_cast(L)) { if (int Res = cmpTypes(AI->getAllocatedType(), cast(R)->getAllocatedType())) return Res; return cmpNumbers(AI->getAlignment(), cast(R)->getAlignment()); } if (const LoadInst *LI = dyn_cast(L)) { if (int Res = cmpNumbers(LI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpNumbers(LI->getAlignment(), cast(R)->getAlignment())) return Res; if (int Res = cmpOrderings(LI->getOrdering(), cast(R)->getOrdering())) return Res; if (int Res = cmpNumbers(LI->getSyncScopeID(), cast(R)->getSyncScopeID())) return Res; return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), cast(R)->getMetadata(LLVMContext::MD_range)); } if (const StoreInst *SI = dyn_cast(L)) { if (int Res = cmpNumbers(SI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpNumbers(SI->getAlignment(), cast(R)->getAlignment())) return Res; if (int Res = cmpOrderings(SI->getOrdering(), cast(R)->getOrdering())) return Res; return cmpNumbers(SI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const CmpInst *CI = dyn_cast(L)) return cmpNumbers(CI->getPredicate(), cast(R)->getPredicate()); if (const CallInst *CI = dyn_cast(L)) { if (int Res = cmpNumbers(CI->getCallingConv(), cast(R)->getCallingConv())) return Res; if (int Res = cmpAttrs(CI->getAttributes(), cast(R)->getAttributes())) return Res; if (int Res = cmpOperandBundlesSchema(CI, R)) return Res; return cmpRangeMetadata( CI->getMetadata(LLVMContext::MD_range), cast(R)->getMetadata(LLVMContext::MD_range)); } if (const InvokeInst *II = dyn_cast(L)) { if (int Res = cmpNumbers(II->getCallingConv(), cast(R)->getCallingConv())) return Res; if (int Res = cmpAttrs(II->getAttributes(), cast(R)->getAttributes())) return Res; if (int Res = cmpOperandBundlesSchema(II, R)) return Res; return cmpRangeMetadata( II->getMetadata(LLVMContext::MD_range), cast(R)->getMetadata(LLVMContext::MD_range)); } if (const InsertValueInst *IVI = dyn_cast(L)) { ArrayRef LIndices = IVI->getIndices(); ArrayRef RIndices = cast(R)->getIndices(); if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) return Res; for (size_t i = 0, e = LIndices.size(); i != e; ++i) { if (int Res = cmpNumbers(LIndices[i], RIndices[i])) return Res; } return 0; } if (const ExtractValueInst *EVI = dyn_cast(L)) { ArrayRef LIndices = EVI->getIndices(); ArrayRef RIndices = cast(R)->getIndices(); if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) return Res; for (size_t i = 0, e = LIndices.size(); i != e; ++i) { if (int Res = cmpNumbers(LIndices[i], RIndices[i])) return Res; } } if (const FenceInst *FI = dyn_cast(L)) { if (int Res = cmpOrderings(FI->getOrdering(), cast(R)->getOrdering())) return Res; return cmpNumbers(FI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const AtomicCmpXchgInst *CXI = dyn_cast(L)) { if (int Res = cmpNumbers(CXI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpNumbers(CXI->isWeak(), cast(R)->isWeak())) return Res; if (int Res = cmpOrderings(CXI->getSuccessOrdering(), cast(R)->getSuccessOrdering())) return Res; if (int Res = cmpOrderings(CXI->getFailureOrdering(), cast(R)->getFailureOrdering())) return Res; return cmpNumbers(CXI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const AtomicRMWInst *RMWI = dyn_cast(L)) { if (int Res = cmpNumbers(RMWI->getOperation(), cast(R)->getOperation())) return Res; if (int Res = cmpNumbers(RMWI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpOrderings(RMWI->getOrdering(), cast(R)->getOrdering())) return Res; return cmpNumbers(RMWI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const PHINode *PNL = dyn_cast(L)) { const PHINode *PNR = cast(R); // Ensure that in addition to the incoming values being identical // (checked by the caller of this function), the incoming blocks // are also identical. for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { if (int Res = cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) return Res; } } return 0; } // Determine whether two GEP operations perform the same underlying arithmetic. // Read method declaration comments for more details. int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const { unsigned int ASL = GEPL->getPointerAddressSpace(); unsigned int ASR = GEPR->getPointerAddressSpace(); if (int Res = cmpNumbers(ASL, ASR)) return Res; // When we have target data, we can reduce the GEP down to the value in bytes // added to the address. const DataLayout &DL = FnL->getParent()->getDataLayout(); unsigned BitWidth = DL.getPointerSizeInBits(ASL); APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); if (GEPL->accumulateConstantOffset(DL, OffsetL) && GEPR->accumulateConstantOffset(DL, OffsetR)) return cmpAPInts(OffsetL, OffsetR); if (int Res = cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) return Res; if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) return Res; for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) return Res; } return 0; } int FunctionComparator::cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const { // InlineAsm's are uniqued. If they are the same pointer, obviously they are // the same, otherwise compare the fields. if (L == R) return 0; if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) return Res; if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) return Res; if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) return Res; if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) return Res; if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) return Res; if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) return Res; llvm_unreachable("InlineAsm blocks were not uniqued."); return 0; } /// Compare two values used by the two functions under pair-wise comparison. If /// this is the first time the values are seen, they're added to the mapping so /// that we will detect mismatches on next use. /// See comments in declaration for more details. int FunctionComparator::cmpValues(const Value *L, const Value *R) const { // Catch self-reference case. if (L == FnL) { if (R == FnR) return 0; return -1; } if (R == FnR) { if (L == FnL) return 0; return 1; } const Constant *ConstL = dyn_cast(L); const Constant *ConstR = dyn_cast(R); if (ConstL && ConstR) { if (L == R) return 0; return cmpConstants(ConstL, ConstR); } if (ConstL) return 1; if (ConstR) return -1; const InlineAsm *InlineAsmL = dyn_cast(L); const InlineAsm *InlineAsmR = dyn_cast(R); if (InlineAsmL && InlineAsmR) return cmpInlineAsm(InlineAsmL, InlineAsmR); if (InlineAsmL) return 1; if (InlineAsmR) return -1; auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); return cmpNumbers(LeftSN.first->second, RightSN.first->second); } // Test whether two basic blocks have equivalent behaviour. int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const { BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); do { bool needToCmpOperands = true; if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) return Res; if (needToCmpOperands) { assert(InstL->getNumOperands() == InstR->getNumOperands()); for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { Value *OpL = InstL->getOperand(i); Value *OpR = InstR->getOperand(i); if (int Res = cmpValues(OpL, OpR)) return Res; // cmpValues should ensure this is true. assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); } } ++InstL; ++InstR; } while (InstL != InstLE && InstR != InstRE); if (InstL != InstLE && InstR == InstRE) return 1; if (InstL == InstLE && InstR != InstRE) return -1; return 0; } int FunctionComparator::compareSignature() const { if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) return Res; if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) return Res; if (FnL->hasGC()) { if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) return Res; } if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) return Res; if (FnL->hasSection()) { if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) return Res; } if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) return Res; // TODO: if it's internal and only used in direct calls, we could handle this // case too. if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) return Res; if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) return Res; assert(FnL->arg_size() == FnR->arg_size() && "Identically typed functions have different numbers of args!"); // Visit the arguments so that they get enumerated in the order they're // passed in. for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), ArgRI = FnR->arg_begin(), ArgLE = FnL->arg_end(); ArgLI != ArgLE; ++ArgLI, ++ArgRI) { if (cmpValues(&*ArgLI, &*ArgRI) != 0) llvm_unreachable("Arguments repeat!"); } return 0; } // Test whether the two functions have equivalent behaviour. int FunctionComparator::compare() { beginCompare(); if (int Res = compareSignature()) return Res; // We do a CFG-ordered walk since the actual ordering of the blocks in the // linked list is immaterial. Our walk starts at the entry block for both // functions, then takes each block from each terminator in order. As an // artifact, this also means that unreachable blocks are ignored. SmallVector FnLBBs, FnRBBs; SmallPtrSet VisitedBBs; // in terms of F1. FnLBBs.push_back(&FnL->getEntryBlock()); FnRBBs.push_back(&FnR->getEntryBlock()); VisitedBBs.insert(FnLBBs[0]); while (!FnLBBs.empty()) { const BasicBlock *BBL = FnLBBs.pop_back_val(); const BasicBlock *BBR = FnRBBs.pop_back_val(); if (int Res = cmpValues(BBL, BBR)) return Res; if (int Res = cmpBasicBlocks(BBL, BBR)) return Res; const TerminatorInst *TermL = BBL->getTerminator(); const TerminatorInst *TermR = BBR->getTerminator(); assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) continue; FnLBBs.push_back(TermL->getSuccessor(i)); FnRBBs.push_back(TermR->getSuccessor(i)); } } return 0; } namespace { // Accumulate the hash of a sequence of 64-bit integers. This is similar to a // hash of a sequence of 64bit ints, but the entire input does not need to be // available at once. This interface is necessary for functionHash because it // needs to accumulate the hash as the structure of the function is traversed // without saving these values to an intermediate buffer. This form of hashing // is not often needed, as usually the object to hash is just read from a // buffer. class HashAccumulator64 { uint64_t Hash; public: // Initialize to random constant, so the state isn't zero. HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } // No finishing is required, because the entire hash value is used. uint64_t getHash() { return Hash; } }; } // end anonymous namespace // A function hash is calculated by considering only the number of arguments and // whether a function is varargs, the order of basic blocks (given by the // successors of each basic block in depth first order), and the order of // opcodes of each instruction within each of these basic blocks. This mirrors // the strategy compare() uses to compare functions by walking the BBs in depth // first order and comparing each instruction in sequence. Because this hash // does not look at the operands, it is insensitive to things such as the // target of calls and the constants used in the function, which makes it useful // when possibly merging functions which are the same modulo constants and call // targets. FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { HashAccumulator64 H; H.add(F.isVarArg()); H.add(F.arg_size()); SmallVector BBs; SmallSet VisitedBBs; // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), // accumulating the hash of the function "structure." (BB and opcode sequence) BBs.push_back(&F.getEntryBlock()); VisitedBBs.insert(BBs[0]); while (!BBs.empty()) { const BasicBlock *BB = BBs.pop_back_val(); // This random value acts as a block header, as otherwise the partition of // opcodes into BBs wouldn't affect the hash, only the order of the opcodes H.add(45798); for (auto &Inst : *BB) { H.add(Inst.getOpcode()); } const TerminatorInst *Term = BB->getTerminator(); for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { if (!VisitedBBs.insert(Term->getSuccessor(i)).second) continue; BBs.push_back(Term->getSuccessor(i)); } } return H.getHash(); }