//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Function evaluator for LLVM IR. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Evaluator.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #define DEBUG_TYPE "evaluator" using namespace llvm; static inline bool isSimpleEnoughValueToCommit(Constant *C, SmallPtrSetImpl &SimpleConstants, const DataLayout &DL); /// Return true if the specified constant can be handled by the code generator. /// We don't want to generate something like: /// void *X = &X/42; /// because the code generator doesn't have a relocation that can handle that. /// /// This function should be called if C was not found (but just got inserted) /// in SimpleConstants to avoid having to rescan the same constants all the /// time. static bool isSimpleEnoughValueToCommitHelper(Constant *C, SmallPtrSetImpl &SimpleConstants, const DataLayout &DL) { // Simple global addresses are supported, do not allow dllimport or // thread-local globals. if (auto *GV = dyn_cast(C)) return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); // Simple integer, undef, constant aggregate zero, etc are all supported. if (C->getNumOperands() == 0 || isa(C)) return true; // Aggregate values are safe if all their elements are. if (isa(C)) { for (Value *Op : C->operands()) if (!isSimpleEnoughValueToCommit(cast(Op), SimpleConstants, DL)) return false; return true; } // We don't know exactly what relocations are allowed in constant expressions, // so we allow &global+constantoffset, which is safe and uniformly supported // across targets. ConstantExpr *CE = cast(C); switch (CE->getOpcode()) { case Instruction::BitCast: // Bitcast is fine if the casted value is fine. return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); case Instruction::IntToPtr: case Instruction::PtrToInt: // int <=> ptr is fine if the int type is the same size as the // pointer type. if (DL.getTypeSizeInBits(CE->getType()) != DL.getTypeSizeInBits(CE->getOperand(0)->getType())) return false; return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); // GEP is fine if it is simple + constant offset. case Instruction::GetElementPtr: for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) if (!isa(CE->getOperand(i))) return false; return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); case Instruction::Add: // We allow simple+cst. if (!isa(CE->getOperand(1))) return false; return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); } return false; } static inline bool isSimpleEnoughValueToCommit(Constant *C, SmallPtrSetImpl &SimpleConstants, const DataLayout &DL) { // If we already checked this constant, we win. if (!SimpleConstants.insert(C).second) return true; // Check the constant. return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); } /// Return true if this constant is simple enough for us to understand. In /// particular, if it is a cast to anything other than from one pointer type to /// another pointer type, we punt. We basically just support direct accesses to /// globals and GEP's of globals. This should be kept up to date with /// CommitValueTo. static bool isSimpleEnoughPointerToCommit(Constant *C) { // Conservatively, avoid aggregate types. This is because we don't // want to worry about them partially overlapping other stores. if (!cast(C->getType())->getElementType()->isSingleValueType()) return false; if (GlobalVariable *GV = dyn_cast(C)) // Do not allow weak/*_odr/linkonce linkage or external globals. return GV->hasUniqueInitializer(); if (ConstantExpr *CE = dyn_cast(C)) { // Handle a constantexpr gep. if (CE->getOpcode() == Instruction::GetElementPtr && isa(CE->getOperand(0)) && cast(CE)->isInBounds()) { GlobalVariable *GV = cast(CE->getOperand(0)); // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or // external globals. if (!GV->hasUniqueInitializer()) return false; // The first index must be zero. ConstantInt *CI = dyn_cast(*std::next(CE->op_begin())); if (!CI || !CI->isZero()) return false; // The remaining indices must be compile-time known integers within the // notional bounds of the corresponding static array types. if (!CE->isGEPWithNoNotionalOverIndexing()) return false; return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); // A constantexpr bitcast from a pointer to another pointer is a no-op, // and we know how to evaluate it by moving the bitcast from the pointer // operand to the value operand. } else if (CE->getOpcode() == Instruction::BitCast && isa(CE->getOperand(0))) { // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or // external globals. return cast(CE->getOperand(0))->hasUniqueInitializer(); } } return false; } /// Return the value that would be computed by a load from P after the stores /// reflected by 'memory' have been performed. If we can't decide, return null. Constant *Evaluator::ComputeLoadResult(Constant *P) { // If this memory location has been recently stored, use the stored value: it // is the most up-to-date. DenseMap::const_iterator I = MutatedMemory.find(P); if (I != MutatedMemory.end()) return I->second; // Access it. if (GlobalVariable *GV = dyn_cast(P)) { if (GV->hasDefinitiveInitializer()) return GV->getInitializer(); return nullptr; } // Handle a constantexpr getelementptr. if (ConstantExpr *CE = dyn_cast(P)) if (CE->getOpcode() == Instruction::GetElementPtr && isa(CE->getOperand(0))) { GlobalVariable *GV = cast(CE->getOperand(0)); if (GV->hasDefinitiveInitializer()) return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); } return nullptr; // don't know how to evaluate. } /// Evaluate all instructions in block BB, returning true if successful, false /// if we can't evaluate it. NewBB returns the next BB that control flows into, /// or null upon return. bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB) { // This is the main evaluation loop. while (true) { Constant *InstResult = nullptr; DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); if (StoreInst *SI = dyn_cast(CurInst)) { if (!SI->isSimple()) { DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); return false; // no volatile/atomic accesses. } Constant *Ptr = getVal(SI->getOperand(1)); if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); Ptr = FoldedPtr; DEBUG(dbgs() << "; To: " << *Ptr << "\n"); } if (!isSimpleEnoughPointerToCommit(Ptr)) { // If this is too complex for us to commit, reject it. DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); return false; } Constant *Val = getVal(SI->getOperand(0)); // If this might be too difficult for the backend to handle (e.g. the addr // of one global variable divided by another) then we can't commit it. if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val << "\n"); return false; } if (ConstantExpr *CE = dyn_cast(Ptr)) { if (CE->getOpcode() == Instruction::BitCast) { DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); // If we're evaluating a store through a bitcast, then we need // to pull the bitcast off the pointer type and push it onto the // stored value. Ptr = CE->getOperand(0); Type *NewTy = cast(Ptr->getType())->getElementType(); // In order to push the bitcast onto the stored value, a bitcast // from NewTy to Val's type must be legal. If it's not, we can try // introspecting NewTy to find a legal conversion. while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { // If NewTy is a struct, we can convert the pointer to the struct // into a pointer to its first member. // FIXME: This could be extended to support arrays as well. if (StructType *STy = dyn_cast(NewTy)) { NewTy = STy->getTypeAtIndex(0U); IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); Constant * const IdxList[] = {IdxZero, IdxZero}; Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList); if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) Ptr = FoldedPtr; // If we can't improve the situation by introspecting NewTy, // we have to give up. } else { DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " "evaluate.\n"); return false; } } // If we found compatible types, go ahead and push the bitcast // onto the stored value. Val = ConstantExpr::getBitCast(Val, NewTy); DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); } } MutatedMemory[Ptr] = Val; } else if (BinaryOperator *BO = dyn_cast(CurInst)) { InstResult = ConstantExpr::get(BO->getOpcode(), getVal(BO->getOperand(0)), getVal(BO->getOperand(1))); DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult << "\n"); } else if (CmpInst *CI = dyn_cast(CurInst)) { InstResult = ConstantExpr::getCompare(CI->getPredicate(), getVal(CI->getOperand(0)), getVal(CI->getOperand(1))); DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult << "\n"); } else if (CastInst *CI = dyn_cast(CurInst)) { InstResult = ConstantExpr::getCast(CI->getOpcode(), getVal(CI->getOperand(0)), CI->getType()); DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult << "\n"); } else if (SelectInst *SI = dyn_cast(CurInst)) { InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), getVal(SI->getOperand(1)), getVal(SI->getOperand(2))); DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult << "\n"); } else if (auto *EVI = dyn_cast(CurInst)) { InstResult = ConstantExpr::getExtractValue( getVal(EVI->getAggregateOperand()), EVI->getIndices()); DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult << "\n"); } else if (auto *IVI = dyn_cast(CurInst)) { InstResult = ConstantExpr::getInsertValue( getVal(IVI->getAggregateOperand()), getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult << "\n"); } else if (GetElementPtrInst *GEP = dyn_cast(CurInst)) { Constant *P = getVal(GEP->getOperand(0)); SmallVector GEPOps; for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; ++i) GEPOps.push_back(getVal(*i)); InstResult = ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, cast(GEP)->isInBounds()); DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n"); } else if (LoadInst *LI = dyn_cast(CurInst)) { if (!LI->isSimple()) { DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); return false; // no volatile/atomic accesses. } Constant *Ptr = getVal(LI->getOperand(0)); if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { Ptr = FoldedPtr; DEBUG(dbgs() << "Found a constant pointer expression, constant " "folding: " << *Ptr << "\n"); } InstResult = ComputeLoadResult(Ptr); if (!InstResult) { DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." "\n"); return false; // Could not evaluate load. } DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); } else if (AllocaInst *AI = dyn_cast(CurInst)) { if (AI->isArrayAllocation()) { DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); return false; // Cannot handle array allocs. } Type *Ty = AI->getAllocatedType(); AllocaTmps.push_back(llvm::make_unique( Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), AI->getName())); InstResult = AllocaTmps.back().get(); DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); } else if (isa(CurInst) || isa(CurInst)) { CallSite CS(&*CurInst); // Debug info can safely be ignored here. if (isa(CS.getInstruction())) { DEBUG(dbgs() << "Ignoring debug info.\n"); ++CurInst; continue; } // Cannot handle inline asm. if (isa(CS.getCalledValue())) { DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); return false; } if (IntrinsicInst *II = dyn_cast(CS.getInstruction())) { if (MemSetInst *MSI = dyn_cast(II)) { if (MSI->isVolatile()) { DEBUG(dbgs() << "Can not optimize a volatile memset " << "intrinsic.\n"); return false; } Constant *Ptr = getVal(MSI->getDest()); Constant *Val = getVal(MSI->getValue()); Constant *DestVal = ComputeLoadResult(getVal(Ptr)); if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { // This memset is a no-op. DEBUG(dbgs() << "Ignoring no-op memset.\n"); ++CurInst; continue; } } if (II->getIntrinsicID() == Intrinsic::lifetime_start || II->getIntrinsicID() == Intrinsic::lifetime_end) { DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); ++CurInst; continue; } if (II->getIntrinsicID() == Intrinsic::invariant_start) { // We don't insert an entry into Values, as it doesn't have a // meaningful return value. if (!II->use_empty()) { DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); return false; } ConstantInt *Size = cast(II->getArgOperand(0)); Value *PtrArg = getVal(II->getArgOperand(1)); Value *Ptr = PtrArg->stripPointerCasts(); if (GlobalVariable *GV = dyn_cast(Ptr)) { Type *ElemTy = GV->getValueType(); if (!Size->isMinusOne() && Size->getValue().getLimitedValue() >= DL.getTypeStoreSize(ElemTy)) { Invariants.insert(GV); DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV << "\n"); } else { DEBUG(dbgs() << "Found a global var, but can not treat it as an " "invariant.\n"); } } // Continue even if we do nothing. ++CurInst; continue; } else if (II->getIntrinsicID() == Intrinsic::assume) { DEBUG(dbgs() << "Skipping assume intrinsic.\n"); ++CurInst; continue; } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); ++CurInst; continue; } DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); return false; } // Resolve function pointers. Function *Callee = dyn_cast(getVal(CS.getCalledValue())); if (!Callee || Callee->isInterposable()) { DEBUG(dbgs() << "Can not resolve function pointer.\n"); return false; // Cannot resolve. } SmallVector Formals; for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) Formals.push_back(getVal(*i)); if (Callee->isDeclaration()) { // If this is a function we can constant fold, do it. if (Constant *C = ConstantFoldCall(CS, Callee, Formals, TLI)) { InstResult = C; DEBUG(dbgs() << "Constant folded function call. Result: " << *InstResult << "\n"); } else { DEBUG(dbgs() << "Can not constant fold function call.\n"); return false; } } else { if (Callee->getFunctionType()->isVarArg()) { DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); return false; } Constant *RetVal = nullptr; // Execute the call, if successful, use the return value. ValueStack.emplace_back(); if (!EvaluateFunction(Callee, RetVal, Formals)) { DEBUG(dbgs() << "Failed to evaluate function.\n"); return false; } ValueStack.pop_back(); InstResult = RetVal; if (InstResult) { DEBUG(dbgs() << "Successfully evaluated function. Result: " << *InstResult << "\n\n"); } else { DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); } } } else if (isa(CurInst)) { DEBUG(dbgs() << "Found a terminator instruction.\n"); if (BranchInst *BI = dyn_cast(CurInst)) { if (BI->isUnconditional()) { NextBB = BI->getSuccessor(0); } else { ConstantInt *Cond = dyn_cast(getVal(BI->getCondition())); if (!Cond) return false; // Cannot determine. NextBB = BI->getSuccessor(!Cond->getZExtValue()); } } else if (SwitchInst *SI = dyn_cast(CurInst)) { ConstantInt *Val = dyn_cast(getVal(SI->getCondition())); if (!Val) return false; // Cannot determine. NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); } else if (IndirectBrInst *IBI = dyn_cast(CurInst)) { Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); if (BlockAddress *BA = dyn_cast(Val)) NextBB = BA->getBasicBlock(); else return false; // Cannot determine. } else if (isa(CurInst)) { NextBB = nullptr; } else { // invoke, unwind, resume, unreachable. DEBUG(dbgs() << "Can not handle terminator."); return false; // Cannot handle this terminator. } // We succeeded at evaluating this block! DEBUG(dbgs() << "Successfully evaluated block.\n"); return true; } else { // Did not know how to evaluate this! DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." "\n"); return false; } if (!CurInst->use_empty()) { if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI)) InstResult = FoldedInstResult; setVal(&*CurInst, InstResult); } // If we just processed an invoke, we finished evaluating the block. if (InvokeInst *II = dyn_cast(CurInst)) { NextBB = II->getNormalDest(); DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); return true; } // Advance program counter. ++CurInst; } } /// Evaluate a call to function F, returning true if successful, false if we /// can't evaluate it. ActualArgs contains the formal arguments for the /// function. bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, const SmallVectorImpl &ActualArgs) { // Check to see if this function is already executing (recursion). If so, // bail out. TODO: we might want to accept limited recursion. if (is_contained(CallStack, F)) return false; CallStack.push_back(F); // Initialize arguments to the incoming values specified. unsigned ArgNo = 0; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++ArgNo) setVal(&*AI, ActualArgs[ArgNo]); // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, // we can only evaluate any one basic block at most once. This set keeps // track of what we have executed so we can detect recursive cases etc. SmallPtrSet ExecutedBlocks; // CurBB - The current basic block we're evaluating. BasicBlock *CurBB = &F->front(); BasicBlock::iterator CurInst = CurBB->begin(); while (true) { BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); if (!EvaluateBlock(CurInst, NextBB)) return false; if (!NextBB) { // Successfully running until there's no next block means that we found // the return. Fill it the return value and pop the call stack. ReturnInst *RI = cast(CurBB->getTerminator()); if (RI->getNumOperands()) RetVal = getVal(RI->getOperand(0)); CallStack.pop_back(); return true; } // Okay, we succeeded in evaluating this control flow. See if we have // executed the new block before. If so, we have a looping function, // which we cannot evaluate in reasonable time. if (!ExecutedBlocks.insert(NextBB).second) return false; // looped! // Okay, we have never been in this block before. Check to see if there // are any PHI nodes. If so, evaluate them with information about where // we came from. PHINode *PN = nullptr; for (CurInst = NextBB->begin(); (PN = dyn_cast(CurInst)); ++CurInst) setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); // Advance to the next block. CurBB = NextBB; } }