//===- CloneFunction.cpp - Clone a function into another function ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CloneFunctionInto interface, which is used as the // low-level function cloner. This is used by the CloneFunction and function // inliner to do the dirty work of copying the body of a function around. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include using namespace llvm; /// See comments in Cloning.h. BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix, Function *F, ClonedCodeInfo *CodeInfo, DebugInfoFinder *DIFinder) { DenseMap Cache; BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); if (BB->hasName()) NewBB->setName(BB->getName() + NameSuffix); bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; Module *TheModule = F ? F->getParent() : nullptr; // Loop over all instructions, and copy them over. for (const Instruction &I : *BB) { if (DIFinder && TheModule) DIFinder->processInstruction(*TheModule, I); Instruction *NewInst = I.clone(); if (I.hasName()) NewInst->setName(I.getName() + NameSuffix); NewBB->getInstList().push_back(NewInst); VMap[&I] = NewInst; // Add instruction map to value. hasCalls |= (isa(I) && !isa(I)); if (const AllocaInst *AI = dyn_cast(&I)) { if (isa(AI->getArraySize())) hasStaticAllocas = true; else hasDynamicAllocas = true; } } if (CodeInfo) { CodeInfo->ContainsCalls |= hasCalls; CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && BB != &BB->getParent()->getEntryBlock(); } return NewBB; } // Clone OldFunc into NewFunc, transforming the old arguments into references to // VMap values. // void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl &Returns, const char *NameSuffix, ClonedCodeInfo *CodeInfo, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(NameSuffix && "NameSuffix cannot be null!"); #ifndef NDEBUG for (const Argument &I : OldFunc->args()) assert(VMap.count(&I) && "No mapping from source argument specified!"); #endif // Copy all attributes other than those stored in the AttributeList. We need // to remap the parameter indices of the AttributeList. AttributeList NewAttrs = NewFunc->getAttributes(); NewFunc->copyAttributesFrom(OldFunc); NewFunc->setAttributes(NewAttrs); // Fix up the personality function that got copied over. if (OldFunc->hasPersonalityFn()) NewFunc->setPersonalityFn( MapValue(OldFunc->getPersonalityFn(), VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, TypeMapper, Materializer)); SmallVector NewArgAttrs(NewFunc->arg_size()); AttributeList OldAttrs = OldFunc->getAttributes(); // Clone any argument attributes that are present in the VMap. for (const Argument &OldArg : OldFunc->args()) { if (Argument *NewArg = dyn_cast(VMap[&OldArg])) { NewArgAttrs[NewArg->getArgNo()] = OldAttrs.getParamAttributes(OldArg.getArgNo()); } } NewFunc->setAttributes( AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), OldAttrs.getRetAttributes(), NewArgAttrs)); bool MustCloneSP = OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); DISubprogram *SP = OldFunc->getSubprogram(); if (SP) { assert(!MustCloneSP || ModuleLevelChanges); // Add mappings for some DebugInfo nodes that we don't want duplicated // even if they're distinct. auto &MD = VMap.MD(); MD[SP->getUnit()].reset(SP->getUnit()); MD[SP->getType()].reset(SP->getType()); MD[SP->getFile()].reset(SP->getFile()); // If we're not cloning into the same module, no need to clone the // subprogram if (!MustCloneSP) MD[SP].reset(SP); } SmallVector, 1> MDs; OldFunc->getAllMetadata(MDs); for (auto MD : MDs) { NewFunc->addMetadata( MD.first, *MapMetadata(MD.second, VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, TypeMapper, Materializer)); } // When we remap instructions, we want to avoid duplicating inlined // DISubprograms, so record all subprograms we find as we duplicate // instructions and then freeze them in the MD map. // We also record information about dbg.value and dbg.declare to avoid // duplicating the types. DebugInfoFinder DIFinder; // Loop over all of the basic blocks in the function, cloning them as // appropriate. Note that we save BE this way in order to handle cloning of // recursive functions into themselves. // for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); BI != BE; ++BI) { const BasicBlock &BB = *BI; // Create a new basic block and copy instructions into it! BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, ModuleLevelChanges ? &DIFinder : nullptr); // Add basic block mapping. VMap[&BB] = CBB; // It is only legal to clone a function if a block address within that // function is never referenced outside of the function. Given that, we // want to map block addresses from the old function to block addresses in // the clone. (This is different from the generic ValueMapper // implementation, which generates an invalid blockaddress when // cloning a function.) if (BB.hasAddressTaken()) { Constant *OldBBAddr = BlockAddress::get(const_cast(OldFunc), const_cast(&BB)); VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); } // Note return instructions for the caller. if (ReturnInst *RI = dyn_cast(CBB->getTerminator())) Returns.push_back(RI); } for (DISubprogram *ISP : DIFinder.subprograms()) if (ISP != SP) VMap.MD()[ISP].reset(ISP); for (DICompileUnit *CU : DIFinder.compile_units()) VMap.MD()[CU].reset(CU); for (DIType *Type : DIFinder.types()) VMap.MD()[Type].reset(Type); // Loop over all of the instructions in the function, fixing up operand // references as we go. This uses VMap to do all the hard work. for (Function::iterator BB = cast(VMap[&OldFunc->front()])->getIterator(), BE = NewFunc->end(); BB != BE; ++BB) // Loop over all instructions, fixing each one as we find it... for (Instruction &II : *BB) RemapInstruction(&II, VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, TypeMapper, Materializer); } /// Return a copy of the specified function and add it to that function's /// module. Also, any references specified in the VMap are changed to refer to /// their mapped value instead of the original one. If any of the arguments to /// the function are in the VMap, the arguments are deleted from the resultant /// function. The VMap is updated to include mappings from all of the /// instructions and basicblocks in the function from their old to new values. /// Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo) { std::vector ArgTypes; // The user might be deleting arguments to the function by specifying them in // the VMap. If so, we need to not add the arguments to the arg ty vector // for (const Argument &I : F->args()) if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? ArgTypes.push_back(I.getType()); // Create a new function type... FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes, F->getFunctionType()->isVarArg()); // Create the new function... Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent()); // Loop over the arguments, copying the names of the mapped arguments over... Function::arg_iterator DestI = NewF->arg_begin(); for (const Argument & I : F->args()) if (VMap.count(&I) == 0) { // Is this argument preserved? DestI->setName(I.getName()); // Copy the name over... VMap[&I] = &*DestI++; // Add mapping to VMap } SmallVector Returns; // Ignore returns cloned. CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", CodeInfo); return NewF; } namespace { /// This is a private class used to implement CloneAndPruneFunctionInto. struct PruningFunctionCloner { Function *NewFunc; const Function *OldFunc; ValueToValueMapTy &VMap; bool ModuleLevelChanges; const char *NameSuffix; ClonedCodeInfo *CodeInfo; public: PruningFunctionCloner(Function *newFunc, const Function *oldFunc, ValueToValueMapTy &valueMap, bool moduleLevelChanges, const char *nameSuffix, ClonedCodeInfo *codeInfo) : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), CodeInfo(codeInfo) {} /// The specified block is found to be reachable, clone it and /// anything that it can reach. void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, std::vector &ToClone); }; } /// The specified block is found to be reachable, clone it and /// anything that it can reach. void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, std::vector &ToClone){ WeakTrackingVH &BBEntry = VMap[BB]; // Have we already cloned this block? if (BBEntry) return; // Nope, clone it now. BasicBlock *NewBB; BBEntry = NewBB = BasicBlock::Create(BB->getContext()); if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); // It is only legal to clone a function if a block address within that // function is never referenced outside of the function. Given that, we // want to map block addresses from the old function to block addresses in // the clone. (This is different from the generic ValueMapper // implementation, which generates an invalid blockaddress when // cloning a function.) // // Note that we don't need to fix the mapping for unreachable blocks; // the default mapping there is safe. if (BB->hasAddressTaken()) { Constant *OldBBAddr = BlockAddress::get(const_cast(OldFunc), const_cast(BB)); VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); } bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; // Loop over all instructions, and copy them over, DCE'ing as we go. This // loop doesn't include the terminator. for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE; ++II) { Instruction *NewInst = II->clone(); // Eagerly remap operands to the newly cloned instruction, except for PHI // nodes for which we defer processing until we update the CFG. if (!isa(NewInst)) { RemapInstruction(NewInst, VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); // If we can simplify this instruction to some other value, simply add // a mapping to that value rather than inserting a new instruction into // the basic block. if (Value *V = SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { // On the off-chance that this simplifies to an instruction in the old // function, map it back into the new function. if (NewFunc != OldFunc) if (Value *MappedV = VMap.lookup(V)) V = MappedV; if (!NewInst->mayHaveSideEffects()) { VMap[&*II] = V; NewInst->deleteValue(); continue; } } } if (II->hasName()) NewInst->setName(II->getName()+NameSuffix); VMap[&*II] = NewInst; // Add instruction map to value. NewBB->getInstList().push_back(NewInst); hasCalls |= (isa(II) && !isa(II)); if (CodeInfo) if (auto CS = ImmutableCallSite(&*II)) if (CS.hasOperandBundles()) CodeInfo->OperandBundleCallSites.push_back(NewInst); if (const AllocaInst *AI = dyn_cast(II)) { if (isa(AI->getArraySize())) hasStaticAllocas = true; else hasDynamicAllocas = true; } } // Finally, clone over the terminator. const TerminatorInst *OldTI = BB->getTerminator(); bool TerminatorDone = false; if (const BranchInst *BI = dyn_cast(OldTI)) { if (BI->isConditional()) { // If the condition was a known constant in the callee... ConstantInt *Cond = dyn_cast(BI->getCondition()); // Or is a known constant in the caller... if (!Cond) { Value *V = VMap.lookup(BI->getCondition()); Cond = dyn_cast_or_null(V); } // Constant fold to uncond branch! if (Cond) { BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); VMap[OldTI] = BranchInst::Create(Dest, NewBB); ToClone.push_back(Dest); TerminatorDone = true; } } } else if (const SwitchInst *SI = dyn_cast(OldTI)) { // If switching on a value known constant in the caller. ConstantInt *Cond = dyn_cast(SI->getCondition()); if (!Cond) { // Or known constant after constant prop in the callee... Value *V = VMap.lookup(SI->getCondition()); Cond = dyn_cast_or_null(V); } if (Cond) { // Constant fold to uncond branch! SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); BasicBlock *Dest = const_cast(Case.getCaseSuccessor()); VMap[OldTI] = BranchInst::Create(Dest, NewBB); ToClone.push_back(Dest); TerminatorDone = true; } } if (!TerminatorDone) { Instruction *NewInst = OldTI->clone(); if (OldTI->hasName()) NewInst->setName(OldTI->getName()+NameSuffix); NewBB->getInstList().push_back(NewInst); VMap[OldTI] = NewInst; // Add instruction map to value. if (CodeInfo) if (auto CS = ImmutableCallSite(OldTI)) if (CS.hasOperandBundles()) CodeInfo->OperandBundleCallSites.push_back(NewInst); // Recursively clone any reachable successor blocks. const TerminatorInst *TI = BB->getTerminator(); for (const BasicBlock *Succ : TI->successors()) ToClone.push_back(Succ); } if (CodeInfo) { CodeInfo->ContainsCalls |= hasCalls; CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && BB != &BB->getParent()->front(); } } /// This works like CloneAndPruneFunctionInto, except that it does not clone the /// entire function. Instead it starts at an instruction provided by the caller /// and copies (and prunes) only the code reachable from that instruction. void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl &Returns, const char *NameSuffix, ClonedCodeInfo *CodeInfo) { assert(NameSuffix && "NameSuffix cannot be null!"); ValueMapTypeRemapper *TypeMapper = nullptr; ValueMaterializer *Materializer = nullptr; #ifndef NDEBUG // If the cloning starts at the beginning of the function, verify that // the function arguments are mapped. if (!StartingInst) for (const Argument &II : OldFunc->args()) assert(VMap.count(&II) && "No mapping from source argument specified!"); #endif PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, NameSuffix, CodeInfo); const BasicBlock *StartingBB; if (StartingInst) StartingBB = StartingInst->getParent(); else { StartingBB = &OldFunc->getEntryBlock(); StartingInst = &StartingBB->front(); } // Clone the entry block, and anything recursively reachable from it. std::vector CloneWorklist; PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); while (!CloneWorklist.empty()) { const BasicBlock *BB = CloneWorklist.back(); CloneWorklist.pop_back(); PFC.CloneBlock(BB, BB->begin(), CloneWorklist); } // Loop over all of the basic blocks in the old function. If the block was // reachable, we have cloned it and the old block is now in the value map: // insert it into the new function in the right order. If not, ignore it. // // Defer PHI resolution until rest of function is resolved. SmallVector PHIToResolve; for (const BasicBlock &BI : *OldFunc) { Value *V = VMap.lookup(&BI); BasicBlock *NewBB = cast_or_null(V); if (!NewBB) continue; // Dead block. // Add the new block to the new function. NewFunc->getBasicBlockList().push_back(NewBB); // Handle PHI nodes specially, as we have to remove references to dead // blocks. for (const PHINode &PN : BI.phis()) { // PHI nodes may have been remapped to non-PHI nodes by the caller or // during the cloning process. if (isa(VMap[&PN])) PHIToResolve.push_back(&PN); else break; } // Finally, remap the terminator instructions, as those can't be remapped // until all BBs are mapped. RemapInstruction(NewBB->getTerminator(), VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, TypeMapper, Materializer); } // Defer PHI resolution until rest of function is resolved, PHI resolution // requires the CFG to be up-to-date. for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { const PHINode *OPN = PHIToResolve[phino]; unsigned NumPreds = OPN->getNumIncomingValues(); const BasicBlock *OldBB = OPN->getParent(); BasicBlock *NewBB = cast(VMap[OldBB]); // Map operands for blocks that are live and remove operands for blocks // that are dead. for (; phino != PHIToResolve.size() && PHIToResolve[phino]->getParent() == OldBB; ++phino) { OPN = PHIToResolve[phino]; PHINode *PN = cast(VMap[OPN]); for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { Value *V = VMap.lookup(PN->getIncomingBlock(pred)); if (BasicBlock *MappedBlock = cast_or_null(V)) { Value *InVal = MapValue(PN->getIncomingValue(pred), VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); assert(InVal && "Unknown input value?"); PN->setIncomingValue(pred, InVal); PN->setIncomingBlock(pred, MappedBlock); } else { PN->removeIncomingValue(pred, false); --pred; // Revisit the next entry. --e; } } } // The loop above has removed PHI entries for those blocks that are dead // and has updated others. However, if a block is live (i.e. copied over) // but its terminator has been changed to not go to this block, then our // phi nodes will have invalid entries. Update the PHI nodes in this // case. PHINode *PN = cast(NewBB->begin()); NumPreds = pred_size(NewBB); if (NumPreds != PN->getNumIncomingValues()) { assert(NumPreds < PN->getNumIncomingValues()); // Count how many times each predecessor comes to this block. std::map PredCount; for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI) --PredCount[*PI]; // Figure out how many entries to remove from each PHI. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) ++PredCount[PN->getIncomingBlock(i)]; // At this point, the excess predecessor entries are positive in the // map. Loop over all of the PHIs and remove excess predecessor // entries. BasicBlock::iterator I = NewBB->begin(); for (; (PN = dyn_cast(I)); ++I) { for (const auto &PCI : PredCount) { BasicBlock *Pred = PCI.first; for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) PN->removeIncomingValue(Pred, false); } } } // If the loops above have made these phi nodes have 0 or 1 operand, // replace them with undef or the input value. We must do this for // correctness, because 0-operand phis are not valid. PN = cast(NewBB->begin()); if (PN->getNumIncomingValues() == 0) { BasicBlock::iterator I = NewBB->begin(); BasicBlock::const_iterator OldI = OldBB->begin(); while ((PN = dyn_cast(I++))) { Value *NV = UndefValue::get(PN->getType()); PN->replaceAllUsesWith(NV); assert(VMap[&*OldI] == PN && "VMap mismatch"); VMap[&*OldI] = NV; PN->eraseFromParent(); ++OldI; } } } // Make a second pass over the PHINodes now that all of them have been // remapped into the new function, simplifying the PHINode and performing any // recursive simplifications exposed. This will transparently update the // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce // two PHINodes, the iteration over the old PHIs remains valid, and the // mapping will just map us to the new node (which may not even be a PHI // node). const DataLayout &DL = NewFunc->getParent()->getDataLayout(); SmallSetVector Worklist; for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) if (isa(VMap[PHIToResolve[Idx]])) Worklist.insert(PHIToResolve[Idx]); // Note that we must test the size on each iteration, the worklist can grow. for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { const Value *OrigV = Worklist[Idx]; auto *I = dyn_cast_or_null(VMap.lookup(OrigV)); if (!I) continue; // Skip over non-intrinsic callsites, we don't want to remove any nodes from // the CGSCC. CallSite CS = CallSite(I); if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) continue; // See if this instruction simplifies. Value *SimpleV = SimplifyInstruction(I, DL); if (!SimpleV) continue; // Stash away all the uses of the old instruction so we can check them for // recursive simplifications after a RAUW. This is cheaper than checking all // uses of To on the recursive step in most cases. for (const User *U : OrigV->users()) Worklist.insert(cast(U)); // Replace the instruction with its simplified value. I->replaceAllUsesWith(SimpleV); // If the original instruction had no side effects, remove it. if (isInstructionTriviallyDead(I)) I->eraseFromParent(); else VMap[OrigV] = I; } // Now that the inlined function body has been fully constructed, go through // and zap unconditional fall-through branches. This happens all the time when // specializing code: code specialization turns conditional branches into // uncond branches, and this code folds them. Function::iterator Begin = cast(VMap[StartingBB])->getIterator(); Function::iterator I = Begin; while (I != NewFunc->end()) { // Check if this block has become dead during inlining or other // simplifications. Note that the first block will appear dead, as it has // not yet been wired up properly. if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || I->getSinglePredecessor() == &*I)) { BasicBlock *DeadBB = &*I++; DeleteDeadBlock(DeadBB); continue; } // We need to simplify conditional branches and switches with a constant // operand. We try to prune these out when cloning, but if the // simplification required looking through PHI nodes, those are only // available after forming the full basic block. That may leave some here, // and we still want to prune the dead code as early as possible. ConstantFoldTerminator(&*I); BranchInst *BI = dyn_cast(I->getTerminator()); if (!BI || BI->isConditional()) { ++I; continue; } BasicBlock *Dest = BI->getSuccessor(0); if (!Dest->getSinglePredecessor()) { ++I; continue; } // We shouldn't be able to get single-entry PHI nodes here, as instsimplify // above should have zapped all of them.. assert(!isa(Dest->begin())); // We know all single-entry PHI nodes in the inlined function have been // removed, so we just need to splice the blocks. BI->eraseFromParent(); // Make all PHI nodes that referred to Dest now refer to I as their source. Dest->replaceAllUsesWith(&*I); // Move all the instructions in the succ to the pred. I->getInstList().splice(I->end(), Dest->getInstList()); // Remove the dest block. Dest->eraseFromParent(); // Do not increment I, iteratively merge all things this block branches to. } // Make a final pass over the basic blocks from the old function to gather // any return instructions which survived folding. We have to do this here // because we can iteratively remove and merge returns above. for (Function::iterator I = cast(VMap[StartingBB])->getIterator(), E = NewFunc->end(); I != E; ++I) if (ReturnInst *RI = dyn_cast(I->getTerminator())) Returns.push_back(RI); } /// This works exactly like CloneFunctionInto, /// except that it does some simple constant prop and DCE on the fly. The /// effect of this is to copy significantly less code in cases where (for /// example) a function call with constant arguments is inlined, and those /// constant arguments cause a significant amount of code in the callee to be /// dead. Since this doesn't produce an exact copy of the input, it can't be /// used for things like CloneFunction or CloneModule. void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl &Returns, const char *NameSuffix, ClonedCodeInfo *CodeInfo, Instruction *TheCall) { CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, ModuleLevelChanges, Returns, NameSuffix, CodeInfo); } /// Remaps instructions in \p Blocks using the mapping in \p VMap. void llvm::remapInstructionsInBlocks( const SmallVectorImpl &Blocks, ValueToValueMapTy &VMap) { // Rewrite the code to refer to itself. for (auto *BB : Blocks) for (auto &Inst : *BB) RemapInstruction(&Inst, VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); } /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p /// Blocks. /// /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl &Blocks) { assert(OrigLoop->getSubLoops().empty() && "Loop to be cloned cannot have inner loop"); Function *F = OrigLoop->getHeader()->getParent(); Loop *ParentLoop = OrigLoop->getParentLoop(); Loop *NewLoop = LI->AllocateLoop(); if (ParentLoop) ParentLoop->addChildLoop(NewLoop); else LI->addTopLevelLoop(NewLoop); BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); assert(OrigPH && "No preheader"); BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); // To rename the loop PHIs. VMap[OrigPH] = NewPH; Blocks.push_back(NewPH); // Update LoopInfo. if (ParentLoop) ParentLoop->addBasicBlockToLoop(NewPH, *LI); // Update DominatorTree. DT->addNewBlock(NewPH, LoopDomBB); for (BasicBlock *BB : OrigLoop->getBlocks()) { BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); VMap[BB] = NewBB; // Update LoopInfo. NewLoop->addBasicBlockToLoop(NewBB, *LI); // Add DominatorTree node. After seeing all blocks, update to correct IDom. DT->addNewBlock(NewBB, NewPH); Blocks.push_back(NewBB); } for (BasicBlock *BB : OrigLoop->getBlocks()) { // Update DominatorTree. BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); DT->changeImmediateDominator(cast(VMap[BB]), cast(VMap[IDomBB])); } // Move them physically from the end of the block list. F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), NewPH); F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), NewLoop->getHeader()->getIterator(), F->end()); return NewLoop; } /// Duplicate non-Phi instructions from the beginning of block up to /// StopAt instruction into a split block between BB and its predecessor. BasicBlock * llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DominatorTree *DT) { // We are going to have to map operands from the original BB block to the new // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to // account for entry from PredBB. BasicBlock::iterator BI = BB->begin(); for (; PHINode *PN = dyn_cast(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); BasicBlock *NewBB = SplitEdge(PredBB, BB, DT); NewBB->setName(PredBB->getName() + ".split"); Instruction *NewTerm = NewBB->getTerminator(); // Clone the non-phi instructions of BB into NewBB, keeping track of the // mapping and using it to remap operands in the cloned instructions. // Stop once we see the terminator too. This covers the case where BB's // terminator gets replaced and StopAt == BB's terminator. for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { Instruction *New = BI->clone(); New->setName(BI->getName()); New->insertBefore(NewTerm); ValueMapping[&*BI] = New; // Remap operands to patch up intra-block references. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) if (Instruction *Inst = dyn_cast(New->getOperand(i))) { auto I = ValueMapping.find(Inst); if (I != ValueMapping.end()) New->setOperand(i, I->second); } } return NewBB; }