//===-- X86InstrAVX512.td - AVX512 Instruction Set ---------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 AVX512 instruction set, defining the // instructions, and properties of the instructions which are needed for code // generation, machine code emission, and analysis. // //===----------------------------------------------------------------------===// // Group template arguments that can be derived from the vector type (EltNum x // EltVT). These are things like the register class for the writemask, etc. // The idea is to pass one of these as the template argument rather than the // individual arguments. // The template is also used for scalar types, in this case numelts is 1. class X86VectorVTInfo { RegisterClass RC = rc; ValueType EltVT = eltvt; int NumElts = numelts; // Corresponding mask register class. RegisterClass KRC = !cast("VK" # NumElts); // Corresponding write-mask register class. RegisterClass KRCWM = !cast("VK" # NumElts # "WM"); // The mask VT. ValueType KVT = !cast("v" # NumElts # "i1"); // Suffix used in the instruction mnemonic. string Suffix = suffix; // VTName is a string name for vector VT. For vector types it will be // v # NumElts # EltVT, so for vector of 8 elements of i32 it will be v8i32 // It is a little bit complex for scalar types, where NumElts = 1. // In this case we build v4f32 or v2f64 string VTName = "v" # !if (!eq (NumElts, 1), !if (!eq (EltVT.Size, 32), 4, !if (!eq (EltVT.Size, 64), 2, NumElts)), NumElts) # EltVT; // The vector VT. ValueType VT = !cast(VTName); string EltTypeName = !cast(EltVT); // Size of the element type in bits, e.g. 32 for v16i32. string EltSizeName = !subst("i", "", !subst("f", "", EltTypeName)); int EltSize = EltVT.Size; // "i" for integer types and "f" for floating-point types string TypeVariantName = !subst(EltSizeName, "", EltTypeName); // Size of RC in bits, e.g. 512 for VR512. int Size = VT.Size; // The corresponding memory operand, e.g. i512mem for VR512. X86MemOperand MemOp = !cast(TypeVariantName # Size # "mem"); X86MemOperand ScalarMemOp = !cast(EltVT # "mem"); // FP scalar memory operand for intrinsics - ssmem/sdmem. Operand IntScalarMemOp = !if (!eq (EltTypeName, "f32"), !cast("ssmem"), !if (!eq (EltTypeName, "f64"), !cast("sdmem"), ?)); // Load patterns // Note: For 128/256-bit integer VT we choose loadv2i64/loadv4i64 // due to load promotion during legalization PatFrag LdFrag = !cast("load" # !if (!eq (TypeVariantName, "i"), !if (!eq (Size, 128), "v2i64", !if (!eq (Size, 256), "v4i64", !if (!eq (Size, 512), "v8i64", VTName))), VTName)); PatFrag AlignedLdFrag = !cast("alignedload" # !if (!eq (TypeVariantName, "i"), !if (!eq (Size, 128), "v2i64", !if (!eq (Size, 256), "v4i64", !if (!eq (Size, 512), "v8i64", VTName))), VTName)); PatFrag ScalarLdFrag = !cast("load" # EltVT); ComplexPattern ScalarIntMemCPat = !if (!eq (EltTypeName, "f32"), !cast("sse_load_f32"), !if (!eq (EltTypeName, "f64"), !cast("sse_load_f64"), ?)); // The corresponding float type, e.g. v16f32 for v16i32 // Note: For EltSize < 32, FloatVT is illegal and TableGen // fails to compile, so we choose FloatVT = VT ValueType FloatVT = !cast( !if (!eq (!srl(EltSize,5),0), VTName, !if (!eq(TypeVariantName, "i"), "v" # NumElts # "f" # EltSize, VTName))); ValueType IntVT = !cast( !if (!eq (!srl(EltSize,5),0), VTName, !if (!eq(TypeVariantName, "f"), "v" # NumElts # "i" # EltSize, VTName))); // The string to specify embedded broadcast in assembly. string BroadcastStr = "{1to" # NumElts # "}"; // 8-bit compressed displacement tuple/subvector format. This is only // defined for NumElts <= 8. CD8VForm CD8TupleForm = !if (!eq (!srl(NumElts, 4), 0), !cast("CD8VT" # NumElts), ?); SubRegIndex SubRegIdx = !if (!eq (Size, 128), sub_xmm, !if (!eq (Size, 256), sub_ymm, ?)); Domain ExeDomain = !if (!eq (EltTypeName, "f32"), SSEPackedSingle, !if (!eq (EltTypeName, "f64"), SSEPackedDouble, SSEPackedInt)); RegisterClass FRC = !if (!eq (EltTypeName, "f32"), FR32X, FR64X); // A vector tye of the same width with element type i64. This is used to // create patterns for logic ops. ValueType i64VT = !cast("v" # !srl(Size, 6) # "i64"); // A vector type of the same width with element type i32. This is used to // create the canonical constant zero node ImmAllZerosV. ValueType i32VT = !cast("v" # !srl(Size, 5) # "i32"); dag ImmAllZerosV = (VT (bitconvert (i32VT immAllZerosV))); string ZSuffix = !if (!eq (Size, 128), "Z128", !if (!eq (Size, 256), "Z256", "Z")); } def v64i8_info : X86VectorVTInfo<64, i8, VR512, "b">; def v32i16_info : X86VectorVTInfo<32, i16, VR512, "w">; def v16i32_info : X86VectorVTInfo<16, i32, VR512, "d">; def v8i64_info : X86VectorVTInfo<8, i64, VR512, "q">; def v16f32_info : X86VectorVTInfo<16, f32, VR512, "ps">; def v8f64_info : X86VectorVTInfo<8, f64, VR512, "pd">; // "x" in v32i8x_info means RC = VR256X def v32i8x_info : X86VectorVTInfo<32, i8, VR256X, "b">; def v16i16x_info : X86VectorVTInfo<16, i16, VR256X, "w">; def v8i32x_info : X86VectorVTInfo<8, i32, VR256X, "d">; def v4i64x_info : X86VectorVTInfo<4, i64, VR256X, "q">; def v8f32x_info : X86VectorVTInfo<8, f32, VR256X, "ps">; def v4f64x_info : X86VectorVTInfo<4, f64, VR256X, "pd">; def v16i8x_info : X86VectorVTInfo<16, i8, VR128X, "b">; def v8i16x_info : X86VectorVTInfo<8, i16, VR128X, "w">; def v4i32x_info : X86VectorVTInfo<4, i32, VR128X, "d">; def v2i64x_info : X86VectorVTInfo<2, i64, VR128X, "q">; def v4f32x_info : X86VectorVTInfo<4, f32, VR128X, "ps">; def v2f64x_info : X86VectorVTInfo<2, f64, VR128X, "pd">; // We map scalar types to the smallest (128-bit) vector type // with the appropriate element type. This allows to use the same masking logic. def i32x_info : X86VectorVTInfo<1, i32, GR32, "si">; def i64x_info : X86VectorVTInfo<1, i64, GR64, "sq">; def f32x_info : X86VectorVTInfo<1, f32, VR128X, "ss">; def f64x_info : X86VectorVTInfo<1, f64, VR128X, "sd">; class AVX512VLVectorVTInfo { X86VectorVTInfo info512 = i512; X86VectorVTInfo info256 = i256; X86VectorVTInfo info128 = i128; } def avx512vl_i8_info : AVX512VLVectorVTInfo; def avx512vl_i16_info : AVX512VLVectorVTInfo; def avx512vl_i32_info : AVX512VLVectorVTInfo; def avx512vl_i64_info : AVX512VLVectorVTInfo; def avx512vl_f32_info : AVX512VLVectorVTInfo; def avx512vl_f64_info : AVX512VLVectorVTInfo; class X86KVectorVTInfo { RegisterClass KRC = _krc; RegisterClass KRCWM = _krcwm; ValueType KVT = _vt; } def v1i1_info : X86KVectorVTInfo; def v2i1_info : X86KVectorVTInfo; def v4i1_info : X86KVectorVTInfo; def v8i1_info : X86KVectorVTInfo; def v16i1_info : X86KVectorVTInfo; def v32i1_info : X86KVectorVTInfo; def v64i1_info : X86KVectorVTInfo; // This multiclass generates the masking variants from the non-masking // variant. It only provides the assembly pieces for the masking variants. // It assumes custom ISel patterns for masking which can be provided as // template arguments. multiclass AVX512_maskable_custom O, Format F, dag Outs, dag Ins, dag MaskingIns, dag ZeroMaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, list Pattern, list MaskingPattern, list ZeroMaskingPattern, InstrItinClass itin, string MaskingConstraint = "", bit IsCommutable = 0, bit IsKCommutable = 0> { let isCommutable = IsCommutable in def NAME: AVX512; // Prefer over VMOV*rrk Pat<> let isCommutable = IsKCommutable in def NAME#k: AVX512, EVEX_K { // In case of the 3src subclass this is overridden with a let. string Constraints = MaskingConstraint; } // Zero mask does not add any restrictions to commute operands transformation. // So, it is Ok to use IsCommutable instead of IsKCommutable. let isCommutable = IsCommutable in // Prefer over VMOV*rrkz Pat<> def NAME#kz: AVX512, EVEX_KZ; } // Common base class of AVX512_maskable and AVX512_maskable_3src. multiclass AVX512_maskable_common O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, dag MaskingIns, dag ZeroMaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskingRHS, InstrItinClass itin, SDNode Select = vselect, string MaskingConstraint = "", bit IsCommutable = 0, bit IsKCommutable = 0> : AVX512_maskable_custom; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the vector instruction. In the masking case, the // perserved vector elements come from a new dummy input operand tied to $dst. // This version uses a separate dag for non-masking and masking. multiclass AVX512_maskable_split O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskRHS, InstrItinClass itin, bit IsCommutable = 0, bit IsKCommutable = 0, SDNode Select = vselect> : AVX512_maskable_custom; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the vector instruction. In the masking case, the // perserved vector elements come from a new dummy input operand tied to $dst. multiclass AVX512_maskable O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, InstrItinClass itin, bit IsCommutable = 0, bit IsKCommutable = 0, SDNode Select = vselect> : AVX512_maskable_common; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the scalar instruction. multiclass AVX512_maskable_scalar O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, InstrItinClass itin, bit IsCommutable = 0> : AVX512_maskable; // Similar to AVX512_maskable but in this case one of the source operands // ($src1) is already tied to $dst so we just use that for the preserved // vector elements. NOTE that the NonTiedIns (the ins dag) should exclude // $src1. multiclass AVX512_maskable_3src O, Format F, X86VectorVTInfo _, dag Outs, dag NonTiedIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, InstrItinClass itin, bit IsCommutable = 0, bit IsKCommutable = 0, SDNode Select = vselect, bit MaskOnly = 0> : AVX512_maskable_common; multiclass AVX512_maskable_3src_scalar O, Format F, X86VectorVTInfo _, dag Outs, dag NonTiedIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, InstrItinClass itin, bit IsCommutable = 0, bit IsKCommutable = 0, bit MaskOnly = 0> : AVX512_maskable_3src; multiclass AVX512_maskable_in_asm O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, list Pattern, InstrItinClass itin> : AVX512_maskable_custom; // Instruction with mask that puts result in mask register, // like "compare" and "vptest" multiclass AVX512_maskable_custom_cmp O, Format F, dag Outs, dag Ins, dag MaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, list Pattern, list MaskingPattern, InstrItinClass itin, bit IsCommutable = 0> { let isCommutable = IsCommutable in def NAME: AVX512; def NAME#k: AVX512, EVEX_K; } multiclass AVX512_maskable_common_cmp O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, dag MaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskingRHS, InstrItinClass itin, bit IsCommutable = 0> : AVX512_maskable_custom_cmp; multiclass AVX512_maskable_cmp O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, InstrItinClass itin, bit IsCommutable = 0> : AVX512_maskable_common_cmp; multiclass AVX512_maskable_cmp_alt O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, InstrItinClass itin> : AVX512_maskable_custom_cmp; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the vector instruction. In the masking case, the // perserved vector elements come from a new dummy input operand tied to $dst. multiclass AVX512_maskable_logic O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskedRHS, InstrItinClass itin, bit IsCommutable = 0, SDNode Select = vselect> : AVX512_maskable_custom; // Alias instruction that maps zero vector to pxor / xorp* for AVX-512. // This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then // swizzled by ExecutionDepsFix to pxor. // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-zeros value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteZero] in { def AVX512_512_SET0 : I<0, Pseudo, (outs VR512:$dst), (ins), "", [(set VR512:$dst, (v16i32 immAllZerosV))]>; def AVX512_512_SETALLONES : I<0, Pseudo, (outs VR512:$dst), (ins), "", [(set VR512:$dst, (v16i32 immAllOnesV))]>; } // Alias instructions that allow VPTERNLOG to be used with a mask to create // a mix of all ones and all zeros elements. This is done this way to force // the same register to be used as input for all three sources. let isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteVecALU] in { def AVX512_512_SEXT_MASK_32 : I<0, Pseudo, (outs VR512:$dst), (ins VK16WM:$mask), "", [(set VR512:$dst, (vselect (v16i1 VK16WM:$mask), (v16i32 immAllOnesV), (v16i32 immAllZerosV)))]>; def AVX512_512_SEXT_MASK_64 : I<0, Pseudo, (outs VR512:$dst), (ins VK8WM:$mask), "", [(set VR512:$dst, (vselect (v8i1 VK8WM:$mask), (bc_v8i64 (v16i32 immAllOnesV)), (bc_v8i64 (v16i32 immAllZerosV))))]>; } let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteZero] in { def AVX512_128_SET0 : I<0, Pseudo, (outs VR128X:$dst), (ins), "", [(set VR128X:$dst, (v4i32 immAllZerosV))]>; def AVX512_256_SET0 : I<0, Pseudo, (outs VR256X:$dst), (ins), "", [(set VR256X:$dst, (v8i32 immAllZerosV))]>; } // Alias instructions that map fld0 to xorps for sse or vxorps for avx. // This is expanded by ExpandPostRAPseudos. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, SchedRW = [WriteZero], Predicates = [HasAVX512] in { def AVX512_FsFLD0SS : I<0, Pseudo, (outs FR32X:$dst), (ins), "", [(set FR32X:$dst, fp32imm0)]>; def AVX512_FsFLD0SD : I<0, Pseudo, (outs FR64X:$dst), (ins), "", [(set FR64X:$dst, fpimm0)]>; } //===----------------------------------------------------------------------===// // AVX-512 - VECTOR INSERT // // Supports two different pattern operators for mask and unmasked ops. Allows // null_frag to be passed for one. multiclass vinsert_for_size_split { let hasSideEffects = 0, ExeDomain = To.ExeDomain in { defm rr : AVX512_maskable_split, AVX512AIi8Base, EVEX_4V, Sched<[itins.Sched]>; let mayLoad = 1 in defm rm : AVX512_maskable_split, AVX512AIi8Base, EVEX_4V, EVEX_CD8, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } // Passes the same pattern operator for masked and unmasked ops. multiclass vinsert_for_size : vinsert_for_size_split; multiclass vinsert_for_size_lowering p> { let Predicates = p in { def : Pat<(vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm)), (To.VT (!cast(InstrStr#"rr") To.RC:$src1, From.RC:$src2, (INSERT_get_vinsert_imm To.RC:$ins)))>; def : Pat<(vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm)), (To.VT (!cast(InstrStr#"rm") To.RC:$src1, addr:$src2, (INSERT_get_vinsert_imm To.RC:$ins)))>; } } multiclass vinsert_for_type { let Predicates = [HasVLX] in defm NAME # "32x4Z256" : vinsert_for_size, X86VectorVTInfo< 8, EltVT32, VR256X>, vinsert128_insert, itins>, EVEX_V256; defm NAME # "32x4Z" : vinsert_for_size, X86VectorVTInfo<16, EltVT32, VR512>, vinsert128_insert, itins>, EVEX_V512; defm NAME # "64x4Z" : vinsert_for_size, X86VectorVTInfo< 8, EltVT64, VR512>, vinsert256_insert, itins>, VEX_W, EVEX_V512; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasVLX, HasDQI] in defm NAME # "64x2Z256" : vinsert_for_size_split, X86VectorVTInfo< 4, EltVT64, VR256X>, null_frag, vinsert128_insert, itins>, VEX_W, EVEX_V256; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasDQI] in { defm NAME # "64x2Z" : vinsert_for_size_split, X86VectorVTInfo< 8, EltVT64, VR512>, null_frag, vinsert128_insert, itins>, VEX_W, EVEX_V512; defm NAME # "32x8Z" : vinsert_for_size_split, X86VectorVTInfo<16, EltVT32, VR512>, null_frag, vinsert256_insert, itins>, EVEX_V512; } } // FIXME: Is there a better scheduler itinerary for VINSERTF/VINSERTI? let Sched = WriteFShuffle256 in def AVX512_VINSERTF : OpndItins< IIC_SSE_SHUFP, IIC_SSE_SHUFP >; let Sched = WriteShuffle256 in def AVX512_VINSERTI : OpndItins< IIC_SSE_PSHUF_RI, IIC_SSE_PSHUF_MI >; defm VINSERTF : vinsert_for_type; defm VINSERTI : vinsert_for_type; // Codegen pattern with the alternative types, // Even with AVX512DQ we'll still use these for unmasked operations. defm : vinsert_for_size_lowering<"VINSERTF32x4Z256", v2f64x_info, v4f64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v2i64x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_size_lowering<"VINSERTF32x4Z", v2f64x_info, v8f64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v2i64x_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTF64x4Z", v8f32x_info, v16f32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v8i32x_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; // Codegen pattern with the alternative types insert VEC128 into VEC256 defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v8i16x_info, v16i16x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v16i8x_info, v32i8x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; // Codegen pattern with the alternative types insert VEC128 into VEC512 defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v8i16x_info, v32i16_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v16i8x_info, v64i8_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; // Codegen pattern with the alternative types insert VEC256 into VEC512 defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v16i16x_info, v32i16_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v32i8x_info, v64i8_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; multiclass vinsert_for_mask_cast p> { let Predicates = p in { def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm))), Cast.RC:$src0)), (!cast(InstrStr#"rrk") Cast.RC:$src0, Cast.KRCWM:$mask, To.RC:$src1, From.RC:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm))), Cast.RC:$src0)), (!cast(InstrStr#"rmk") Cast.RC:$src0, Cast.KRCWM:$mask, To.RC:$src1, addr:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm))), Cast.ImmAllZerosV)), (!cast(InstrStr#"rrkz") Cast.KRCWM:$mask, To.RC:$src1, From.RC:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm))), Cast.ImmAllZerosV)), (!cast(InstrStr#"rmkz") Cast.KRCWM:$mask, To.RC:$src1, addr:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; } } defm : vinsert_for_mask_cast<"VINSERTF32x4Z256", v2f64x_info, v4f64x_info, v8f32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v4f32x_info, v8f32x_info, v4f64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v2i64x_info, v4i64x_info, v8i32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v8i16x_info, v16i16x_info, v8i32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v16i8x_info, v32i8x_info, v8i32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v4i32x_info, v8i32x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v8i16x_info, v16i16x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v16i8x_info, v32i8x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF32x4Z", v2f64x_info, v8f64_info, v16f32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z", v4f32x_info, v16f32_info, v8f64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v2i64x_info, v8i64_info, v16i32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v8i16x_info, v32i16_info, v16i32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v16i8x_info, v64i8_info, v16i32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v4i32x_info, v16i32_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v8i16x_info, v32i16_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v16i8x_info, v64i8_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTF32x8Z", v4f64x_info, v8f64_info, v16f32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTF64x4Z", v8f32x_info, v16f32_info, v8f64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v4i64x_info, v8i64_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v16i16x_info, v32i16_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v32i8x_info, v64i8_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v8i32x_info, v16i32_info, v8i64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v16i16x_info, v32i16_info, v8i64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v32i8x_info, v64i8_info, v8i64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; // vinsertps - insert f32 to XMM let ExeDomain = SSEPackedSingle in { def VINSERTPSZrr : AVX512AIi8<0x21, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2, u8imm:$src3), "vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR128X:$dst, (X86insertps VR128X:$src1, VR128X:$src2, imm:$src3))], IIC_SSE_INSERTPS_RR>, EVEX_4V, Sched<[WriteFShuffle]>; def VINSERTPSZrm: AVX512AIi8<0x21, MRMSrcMem, (outs VR128X:$dst), (ins VR128X:$src1, f32mem:$src2, u8imm:$src3), "vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR128X:$dst, (X86insertps VR128X:$src1, (v4f32 (scalar_to_vector (loadf32 addr:$src2))), imm:$src3))], IIC_SSE_INSERTPS_RM>, EVEX_4V, EVEX_CD8<32, CD8VT1>, Sched<[WriteFShuffleLd, ReadAfterLd]>; } //===----------------------------------------------------------------------===// // AVX-512 VECTOR EXTRACT //--- // Supports two different pattern operators for mask and unmasked ops. Allows // null_frag to be passed for one. multiclass vextract_for_size_split { let hasSideEffects = 0, ExeDomain = To.ExeDomain in { defm rr : AVX512_maskable_split, AVX512AIi8Base, EVEX, Sched<[itins.Sched]>; def mr : AVX512AIi8, EVEX, Sched<[itins.Sched.Folded, ReadAfterLd]>; let mayStore = 1, hasSideEffects = 0 in def mrk : AVX512AIi8, EVEX_K, EVEX, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } // Passes the same pattern operator for masked and unmasked ops. multiclass vextract_for_size : vextract_for_size_split; // Codegen pattern for the alternative types multiclass vextract_for_size_lowering p> { let Predicates = p in { def : Pat<(vextract_extract:$ext (From.VT From.RC:$src1), (iPTR imm)), (To.VT (!cast(InstrStr#"rr") From.RC:$src1, (EXTRACT_get_vextract_imm To.RC:$ext)))>; def : Pat<(store (To.VT (vextract_extract:$ext (From.VT From.RC:$src1), (iPTR imm))), addr:$dst), (!cast(InstrStr#"mr") addr:$dst, From.RC:$src1, (EXTRACT_get_vextract_imm To.RC:$ext))>; } } multiclass vextract_for_type { let Predicates = [HasAVX512] in { defm NAME # "32x4Z" : vextract_for_size, X86VectorVTInfo< 4, EltVT32, VR128X>, vextract128_extract, itins>, EVEX_V512, EVEX_CD8<32, CD8VT4>; defm NAME # "64x4Z" : vextract_for_size, X86VectorVTInfo< 4, EltVT64, VR256X>, vextract256_extract, itins>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT4>; } let Predicates = [HasVLX] in defm NAME # "32x4Z256" : vextract_for_size, X86VectorVTInfo< 4, EltVT32, VR128X>, vextract128_extract, itins>, EVEX_V256, EVEX_CD8<32, CD8VT4>; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasVLX, HasDQI] in defm NAME # "64x2Z256" : vextract_for_size_split, X86VectorVTInfo< 2, EltVT64, VR128X>, null_frag, vextract128_extract, itins>, VEX_W, EVEX_V256, EVEX_CD8<64, CD8VT2>; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasDQI] in { defm NAME # "64x2Z" : vextract_for_size_split, X86VectorVTInfo< 2, EltVT64, VR128X>, null_frag, vextract128_extract, itins>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT2>; defm NAME # "32x8Z" : vextract_for_size_split, X86VectorVTInfo< 8, EltVT32, VR256X>, null_frag, vextract256_extract, itins>, EVEX_V512, EVEX_CD8<32, CD8VT8>; } } // FIXME: Is there a better scheduler itinerary for VEXTRACTF/VEXTRACTI? let Sched = WriteFShuffle256 in def AVX512_VEXTRACTF : OpndItins< IIC_SSE_SHUFP, IIC_SSE_SHUFP >; let Sched = WriteShuffle256 in def AVX512_VEXTRACTI : OpndItins< IIC_SSE_PSHUF_RI, IIC_SSE_PSHUF_MI >; defm VEXTRACTF : vextract_for_type; defm VEXTRACTI : vextract_for_type; // extract_subvector codegen patterns with the alternative types. // Even with AVX512DQ we'll still use these for unmasked operations. defm : vextract_for_size_lowering<"VEXTRACTF32x4Z", v8f64_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v8i64_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTF64x4Z", v16f32_info, v8f32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v16i32_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTF32x4Z256", v4f64x_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v4i64x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; // Codegen pattern with the alternative types extract VEC128 from VEC256 defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v16i16x_info, v8i16x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v32i8x_info, v16i8x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; // Codegen pattern with the alternative types extract VEC128 from VEC512 defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v32i16_info, v8i16x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v64i8_info, v16i8x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; // Codegen pattern with the alternative types extract VEC256 from VEC512 defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v32i16_info, v16i16x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v64i8_info, v32i8x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; // A 128-bit extract from bits [255:128] of a 512-bit vector should use a // smaller extract to enable EVEX->VEX. let Predicates = [NoVLX] in { def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 2))), (v2i64 (VEXTRACTI128rr (v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 2))), (v2f64 (VEXTRACTF128rr (v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 4))), (v4i32 (VEXTRACTI128rr (v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 4))), (v4f32 (VEXTRACTF128rr (v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v8i16 (extract_subvector (v32i16 VR512:$src), (iPTR 8))), (v8i16 (VEXTRACTI128rr (v16i16 (EXTRACT_SUBREG (v32i16 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v16i8 (extract_subvector (v64i8 VR512:$src), (iPTR 16))), (v16i8 (VEXTRACTI128rr (v32i8 (EXTRACT_SUBREG (v64i8 VR512:$src), sub_ymm)), (iPTR 1)))>; } // A 128-bit extract from bits [255:128] of a 512-bit vector should use a // smaller extract to enable EVEX->VEX. let Predicates = [HasVLX] in { def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 2))), (v2i64 (VEXTRACTI32x4Z256rr (v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 2))), (v2f64 (VEXTRACTF32x4Z256rr (v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 4))), (v4i32 (VEXTRACTI32x4Z256rr (v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 4))), (v4f32 (VEXTRACTF32x4Z256rr (v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v8i16 (extract_subvector (v32i16 VR512:$src), (iPTR 8))), (v8i16 (VEXTRACTI32x4Z256rr (v16i16 (EXTRACT_SUBREG (v32i16 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v16i8 (extract_subvector (v64i8 VR512:$src), (iPTR 16))), (v16i8 (VEXTRACTI32x4Z256rr (v32i8 (EXTRACT_SUBREG (v64i8 VR512:$src), sub_ymm)), (iPTR 1)))>; } // Additional patterns for handling a bitcast between the vselect and the // extract_subvector. multiclass vextract_for_mask_cast p> { let Predicates = p in { def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (vextract_extract:$ext (From.VT From.RC:$src), (iPTR imm)))), To.RC:$src0)), (Cast.VT (!cast(InstrStr#"rrk") Cast.RC:$src0, Cast.KRCWM:$mask, From.RC:$src, (EXTRACT_get_vextract_imm To.RC:$ext)))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (vextract_extract:$ext (From.VT From.RC:$src), (iPTR imm)))), Cast.ImmAllZerosV)), (Cast.VT (!cast(InstrStr#"rrkz") Cast.KRCWM:$mask, From.RC:$src, (EXTRACT_get_vextract_imm To.RC:$ext)))>; } } defm : vextract_for_mask_cast<"VEXTRACTF32x4Z256", v4f64x_info, v2f64x_info, v4f32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTF64x2Z256", v8f32x_info, v4f32x_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v4i64x_info, v2i64x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v16i16x_info, v8i16x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v32i8x_info, v16i8x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v8i32x_info, v4i32x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v16i16x_info, v8i16x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v32i8x_info, v16i8x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTF32x4Z", v8f64_info, v2f64x_info, v4f32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTF64x2Z", v16f32_info, v4f32x_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v8i64_info, v2i64x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v32i16_info, v8i16x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v64i8_info, v16i8x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v16i32_info, v4i32x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v32i16_info, v8i16x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v64i8_info, v16i8x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTF32x8Z", v8f64_info, v4f64x_info, v8f32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTF64x4Z", v16f32_info, v8f32x_info, v4f64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v8i64_info, v4i64x_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v32i16_info, v16i16x_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v64i8_info, v32i8x_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v16i32_info, v8i32x_info, v4i64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v32i16_info, v16i16x_info, v4i64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v64i8_info, v32i8x_info, v4i64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; // vextractps - extract 32 bits from XMM def VEXTRACTPSZrr : AVX512AIi8<0x17, MRMDestReg, (outs GR32:$dst), (ins VR128X:$src1, u8imm:$src2), "vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2))], IIC_SSE_EXTRACTPS_RR>, EVEX, VEX_WIG, Sched<[WriteFShuffle]>; def VEXTRACTPSZmr : AVX512AIi8<0x17, MRMDestMem, (outs), (ins f32mem:$dst, VR128X:$src1, u8imm:$src2), "vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(store (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2), addr:$dst)], IIC_SSE_EXTRACTPS_RM>, EVEX, VEX_WIG, EVEX_CD8<32, CD8VT1>, Sched<[WriteFShuffleLd]>; //===---------------------------------------------------------------------===// // AVX-512 BROADCAST //--- // broadcast with a scalar argument. multiclass avx512_broadcast_scalar opc, string OpcodeStr, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo> { def : Pat<(DestInfo.VT (X86VBroadcast SrcInfo.FRC:$src)), (!cast(NAME#DestInfo.ZSuffix#r) (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC))>; def : Pat<(DestInfo.VT (vselect DestInfo.KRCWM:$mask, (X86VBroadcast SrcInfo.FRC:$src), DestInfo.RC:$src0)), (!cast(NAME#DestInfo.ZSuffix#rk) DestInfo.RC:$src0, DestInfo.KRCWM:$mask, (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC))>; def : Pat<(DestInfo.VT (vselect DestInfo.KRCWM:$mask, (X86VBroadcast SrcInfo.FRC:$src), DestInfo.ImmAllZerosV)), (!cast(NAME#DestInfo.ZSuffix#rkz) DestInfo.KRCWM:$mask, (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC))>; } // Split version to allow mask and broadcast node to be different types. This // helps support the 32x2 broadcasts. multiclass avx512_broadcast_rm_split opc, string OpcodeStr, SchedWrite SchedRR, SchedWrite SchedRM, X86VectorVTInfo MaskInfo, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo, SDPatternOperator UnmaskedOp = X86VBroadcast> { let ExeDomain = DestInfo.ExeDomain, hasSideEffects = 0 in { defm r : AVX512_maskable_split, T8PD, EVEX, Sched<[SchedRR]>; let mayLoad = 1 in defm m : AVX512_maskable_split, T8PD, EVEX, EVEX_CD8, Sched<[SchedRM]>; } def : Pat<(MaskInfo.VT (bitconvert (DestInfo.VT (UnmaskedOp (SrcInfo.VT (scalar_to_vector (SrcInfo.ScalarLdFrag addr:$src))))))), (!cast(NAME#MaskInfo.ZSuffix#m) addr:$src)>; def : Pat<(MaskInfo.VT (vselect MaskInfo.KRCWM:$mask, (bitconvert (DestInfo.VT (X86VBroadcast (SrcInfo.VT (scalar_to_vector (SrcInfo.ScalarLdFrag addr:$src)))))), MaskInfo.RC:$src0)), (!cast(NAME#DestInfo.ZSuffix#mk) MaskInfo.RC:$src0, MaskInfo.KRCWM:$mask, addr:$src)>; def : Pat<(MaskInfo.VT (vselect MaskInfo.KRCWM:$mask, (bitconvert (DestInfo.VT (X86VBroadcast (SrcInfo.VT (scalar_to_vector (SrcInfo.ScalarLdFrag addr:$src)))))), MaskInfo.ImmAllZerosV)), (!cast(NAME#MaskInfo.ZSuffix#mkz) MaskInfo.KRCWM:$mask, addr:$src)>; } // Helper class to force mask and broadcast result to same type. multiclass avx512_broadcast_rm opc, string OpcodeStr, SchedWrite SchedRR, SchedWrite SchedRM, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo> : avx512_broadcast_rm_split; multiclass avx512_fp_broadcast_sd opc, string OpcodeStr, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_broadcast_rm, avx512_broadcast_scalar, EVEX_V512; let Predicates = [HasVLX] in { defm Z256 : avx512_broadcast_rm, avx512_broadcast_scalar, EVEX_V256; } } multiclass avx512_fp_broadcast_ss opc, string OpcodeStr, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_broadcast_rm, avx512_broadcast_scalar, EVEX_V512; let Predicates = [HasVLX] in { defm Z256 : avx512_broadcast_rm, avx512_broadcast_scalar, EVEX_V256; defm Z128 : avx512_broadcast_rm, avx512_broadcast_scalar, EVEX_V128; } } defm VBROADCASTSS : avx512_fp_broadcast_ss<0x18, "vbroadcastss", avx512vl_f32_info>; defm VBROADCASTSD : avx512_fp_broadcast_sd<0x19, "vbroadcastsd", avx512vl_f64_info>, VEX_W; def : Pat<(int_x86_avx512_vbroadcast_ss_512 addr:$src), (VBROADCASTSSZm addr:$src)>; def : Pat<(int_x86_avx512_vbroadcast_sd_512 addr:$src), (VBROADCASTSDZm addr:$src)>; multiclass avx512_int_broadcast_reg opc, SchedWrite SchedRR, X86VectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC> { let ExeDomain = _.ExeDomain in defm r : AVX512_maskable, T8PD, EVEX, Sched<[SchedRR]>; } multiclass avx512_int_broadcastbw_reg opc, string Name, SchedWrite SchedRR, X86VectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC, SubRegIndex Subreg> { let hasSideEffects = 0, ExeDomain = _.ExeDomain in defm r : AVX512_maskable_custom, T8PD, EVEX, Sched<[SchedRR]>; def : Pat <(_.VT (OpNode SrcRC:$src)), (!cast(Name#r) (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>; def : Pat <(vselect _.KRCWM:$mask, (_.VT (OpNode SrcRC:$src)), _.RC:$src0), (!cast(Name#rk) _.RC:$src0, _.KRCWM:$mask, (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>; def : Pat <(vselect _.KRCWM:$mask, (_.VT (OpNode SrcRC:$src)), _.ImmAllZerosV), (!cast(Name#rkz) _.KRCWM:$mask, (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>; } multiclass avx512_int_broadcastbw_reg_vl opc, string Name, AVX512VLVectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC, SubRegIndex Subreg, Predicate prd> { let Predicates = [prd] in defm Z : avx512_int_broadcastbw_reg, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_int_broadcastbw_reg, EVEX_V256; defm Z128 : avx512_int_broadcastbw_reg, EVEX_V128; } } multiclass avx512_int_broadcast_reg_vl opc, AVX512VLVectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC, Predicate prd> { let Predicates = [prd] in defm Z : avx512_int_broadcast_reg, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_int_broadcast_reg, EVEX_V256; defm Z128 : avx512_int_broadcast_reg, EVEX_V128; } } defm VPBROADCASTBr : avx512_int_broadcastbw_reg_vl<0x7A, "VPBROADCASTBr", avx512vl_i8_info, X86VBroadcast, GR8, sub_8bit, HasBWI>; defm VPBROADCASTWr : avx512_int_broadcastbw_reg_vl<0x7B, "VPBROADCASTWr", avx512vl_i16_info, X86VBroadcast, GR16, sub_16bit, HasBWI>; defm VPBROADCASTDr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i32_info, X86VBroadcast, GR32, HasAVX512>; defm VPBROADCASTQr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i64_info, X86VBroadcast, GR64, HasAVX512>, VEX_W; def : Pat <(v16i32 (X86vzext VK16WM:$mask)), (VPBROADCASTDrZrkz VK16WM:$mask, (i32 (MOV32ri 0x1)))>; def : Pat <(v8i64 (X86vzext VK8WM:$mask)), (VPBROADCASTQrZrkz VK8WM:$mask, (i64 (MOV64ri 0x1)))>; // Provide aliases for broadcast from the same register class that // automatically does the extract. multiclass avx512_int_broadcast_rm_lowering { def : Pat<(DestInfo.VT (X86VBroadcast (SrcInfo.VT SrcInfo.RC:$src))), (!cast(NAME#DestInfo.ZSuffix#"r") (EXTRACT_SUBREG (SrcInfo.VT SrcInfo.RC:$src), sub_xmm))>; } multiclass avx512_int_broadcast_rm_vl opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd> { let Predicates = [prd] in { defm Z : avx512_broadcast_rm, avx512_int_broadcast_rm_lowering<_.info512, _.info256>, EVEX_V512; // Defined separately to avoid redefinition. defm Z_Alt : avx512_int_broadcast_rm_lowering<_.info512, _.info512>; } let Predicates = [prd, HasVLX] in { defm Z256 : avx512_broadcast_rm, avx512_int_broadcast_rm_lowering<_.info256, _.info256>, EVEX_V256; defm Z128 : avx512_broadcast_rm, EVEX_V128; } } defm VPBROADCASTB : avx512_int_broadcast_rm_vl<0x78, "vpbroadcastb", avx512vl_i8_info, HasBWI>; defm VPBROADCASTW : avx512_int_broadcast_rm_vl<0x79, "vpbroadcastw", avx512vl_i16_info, HasBWI>; defm VPBROADCASTD : avx512_int_broadcast_rm_vl<0x58, "vpbroadcastd", avx512vl_i32_info, HasAVX512>; defm VPBROADCASTQ : avx512_int_broadcast_rm_vl<0x59, "vpbroadcastq", avx512vl_i64_info, HasAVX512>, VEX_W; multiclass avx512_subvec_broadcast_rm opc, string OpcodeStr, X86VectorVTInfo _Dst, X86VectorVTInfo _Src> { defm rm : AVX512_maskable, AVX5128IBase, EVEX, Sched<[WriteShuffleLd]>; } // This should be used for the AVX512DQ broadcast instructions. It disables // the unmasked patterns so that we only use the DQ instructions when masking // is requested. multiclass avx512_subvec_broadcast_rm_dq opc, string OpcodeStr, X86VectorVTInfo _Dst, X86VectorVTInfo _Src> { let hasSideEffects = 0, mayLoad = 1 in defm rm : AVX512_maskable_split, AVX5128IBase, EVEX, Sched<[WriteShuffleLd]>; } let Predicates = [HasAVX512] in { // 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD. def : Pat<(v8i64 (X86VBroadcast (v8i64 (X86vzload addr:$src)))), (VPBROADCASTQZm addr:$src)>; } let Predicates = [HasVLX] in { // 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD. def : Pat<(v2i64 (X86VBroadcast (v2i64 (X86vzload addr:$src)))), (VPBROADCASTQZ128m addr:$src)>; def : Pat<(v4i64 (X86VBroadcast (v4i64 (X86vzload addr:$src)))), (VPBROADCASTQZ256m addr:$src)>; } let Predicates = [HasVLX, HasBWI] in { // loadi16 is tricky to fold, because !isTypeDesirableForOp, justifiably. // This means we'll encounter truncated i32 loads; match that here. def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), (VPBROADCASTWZ128m addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), (VPBROADCASTWZ256m addr:$src)>; def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (zextloadi16 addr:$src)))))), (VPBROADCASTWZ128m addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (zextloadi16 addr:$src)))))), (VPBROADCASTWZ256m addr:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 BROADCAST SUBVECTORS // defm VBROADCASTI32X4 : avx512_subvec_broadcast_rm<0x5a, "vbroadcasti32x4", v16i32_info, v4i32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT4>; defm VBROADCASTF32X4 : avx512_subvec_broadcast_rm<0x1a, "vbroadcastf32x4", v16f32_info, v4f32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT4>; defm VBROADCASTI64X4 : avx512_subvec_broadcast_rm<0x5b, "vbroadcasti64x4", v8i64_info, v4i64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT4>; defm VBROADCASTF64X4 : avx512_subvec_broadcast_rm<0x1b, "vbroadcastf64x4", v8f64_info, v4f64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT4>; let Predicates = [HasAVX512] in { def : Pat<(v16f32 (X86SubVBroadcast (loadv8f32 addr:$src))), (VBROADCASTF64X4rm addr:$src)>; def : Pat<(v16i32 (X86SubVBroadcast (bc_v8i32 (loadv4i64 addr:$src)))), (VBROADCASTI64X4rm addr:$src)>; def : Pat<(v32i16 (X86SubVBroadcast (bc_v16i16 (loadv4i64 addr:$src)))), (VBROADCASTI64X4rm addr:$src)>; def : Pat<(v64i8 (X86SubVBroadcast (bc_v32i8 (loadv4i64 addr:$src)))), (VBROADCASTI64X4rm addr:$src)>; // Provide fallback in case the load node that is used in the patterns above // is used by additional users, which prevents the pattern selection. def : Pat<(v8f64 (X86SubVBroadcast (v4f64 VR256X:$src))), (VINSERTF64x4Zrr (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v4f64 VR256X:$src), 1)>; def : Pat<(v16f32 (X86SubVBroadcast (v8f32 VR256X:$src))), (VINSERTF64x4Zrr (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v8f32 VR256X:$src), 1)>; def : Pat<(v8i64 (X86SubVBroadcast (v4i64 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v4i64 VR256X:$src), 1)>; def : Pat<(v16i32 (X86SubVBroadcast (v8i32 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v8i32 VR256X:$src), 1)>; def : Pat<(v32i16 (X86SubVBroadcast (v16i16 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v16i16 VR256X:$src), 1)>; def : Pat<(v64i8 (X86SubVBroadcast (v32i8 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v32i8 VR256X:$src), 1)>; def : Pat<(v8f64 (X86SubVBroadcast (loadv2f64 addr:$src))), (VBROADCASTF32X4rm addr:$src)>; def : Pat<(v8i64 (X86SubVBroadcast (loadv2i64 addr:$src))), (VBROADCASTI32X4rm addr:$src)>; def : Pat<(v32i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))), (VBROADCASTI32X4rm addr:$src)>; def : Pat<(v64i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))), (VBROADCASTI32X4rm addr:$src)>; } let Predicates = [HasVLX] in { defm VBROADCASTI32X4Z256 : avx512_subvec_broadcast_rm<0x5a, "vbroadcasti32x4", v8i32x_info, v4i32x_info>, EVEX_V256, EVEX_CD8<32, CD8VT4>; defm VBROADCASTF32X4Z256 : avx512_subvec_broadcast_rm<0x1a, "vbroadcastf32x4", v8f32x_info, v4f32x_info>, EVEX_V256, EVEX_CD8<32, CD8VT4>; def : Pat<(v4f64 (X86SubVBroadcast (loadv2f64 addr:$src))), (VBROADCASTF32X4Z256rm addr:$src)>; def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))), (VBROADCASTI32X4Z256rm addr:$src)>; def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))), (VBROADCASTI32X4Z256rm addr:$src)>; def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))), (VBROADCASTI32X4Z256rm addr:$src)>; // Provide fallback in case the load node that is used in the patterns above // is used by additional users, which prevents the pattern selection. def : Pat<(v4f64 (X86SubVBroadcast (v2f64 VR128X:$src))), (VINSERTF32x4Z256rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v2f64 VR128X:$src), 1)>; def : Pat<(v8f32 (X86SubVBroadcast (v4f32 VR128X:$src))), (VINSERTF32x4Z256rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v4f32 VR128X:$src), 1)>; def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v2i64 VR128X:$src), 1)>; def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v4i32 VR128X:$src), 1)>; def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v8i16 VR128X:$src), 1)>; def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v16i8 VR128X:$src), 1)>; } let Predicates = [HasVLX, HasDQI] in { defm VBROADCASTI64X2Z128 : avx512_subvec_broadcast_rm_dq<0x5a, "vbroadcasti64x2", v4i64x_info, v2i64x_info>, VEX_W, EVEX_V256, EVEX_CD8<64, CD8VT2>; defm VBROADCASTF64X2Z128 : avx512_subvec_broadcast_rm_dq<0x1a, "vbroadcastf64x2", v4f64x_info, v2f64x_info>, VEX_W, EVEX_V256, EVEX_CD8<64, CD8VT2>; } let Predicates = [HasDQI] in { defm VBROADCASTI64X2 : avx512_subvec_broadcast_rm_dq<0x5a, "vbroadcasti64x2", v8i64_info, v2i64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT2>; defm VBROADCASTI32X8 : avx512_subvec_broadcast_rm_dq<0x5b, "vbroadcasti32x8", v16i32_info, v8i32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT8>; defm VBROADCASTF64X2 : avx512_subvec_broadcast_rm_dq<0x1a, "vbroadcastf64x2", v8f64_info, v2f64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT2>; defm VBROADCASTF32X8 : avx512_subvec_broadcast_rm_dq<0x1b, "vbroadcastf32x8", v16f32_info, v8f32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT8>; } multiclass avx512_common_broadcast_32x2 opc, string OpcodeStr, AVX512VLVectorVTInfo _Dst, AVX512VLVectorVTInfo _Src> { let Predicates = [HasDQI] in defm Z : avx512_broadcast_rm_split, EVEX_V512; let Predicates = [HasDQI, HasVLX] in defm Z256 : avx512_broadcast_rm_split, EVEX_V256; } multiclass avx512_common_broadcast_i32x2 opc, string OpcodeStr, AVX512VLVectorVTInfo _Dst, AVX512VLVectorVTInfo _Src> : avx512_common_broadcast_32x2 { let Predicates = [HasDQI, HasVLX] in defm Z128 : avx512_broadcast_rm_split, EVEX_V128; } defm VBROADCASTI32X2 : avx512_common_broadcast_i32x2<0x59, "vbroadcasti32x2", avx512vl_i32_info, avx512vl_i64_info>; defm VBROADCASTF32X2 : avx512_common_broadcast_32x2<0x19, "vbroadcastf32x2", avx512vl_f32_info, avx512vl_f64_info>; let Predicates = [HasVLX] in { def : Pat<(v8f32 (X86VBroadcast (v8f32 VR256X:$src))), (VBROADCASTSSZ256r (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm))>; def : Pat<(v4f64 (X86VBroadcast (v4f64 VR256X:$src))), (VBROADCASTSDZ256r (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm))>; } def : Pat<(v16f32 (X86VBroadcast (v16f32 VR512:$src))), (VBROADCASTSSZr (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm))>; def : Pat<(v16f32 (X86VBroadcast (v8f32 VR256X:$src))), (VBROADCASTSSZr (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm))>; def : Pat<(v8f64 (X86VBroadcast (v8f64 VR512:$src))), (VBROADCASTSDZr (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm))>; def : Pat<(v8f64 (X86VBroadcast (v4f64 VR256X:$src))), (VBROADCASTSDZr (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm))>; //===----------------------------------------------------------------------===// // AVX-512 BROADCAST MASK TO VECTOR REGISTER //--- multiclass avx512_mask_broadcastm opc, string OpcodeStr, X86VectorVTInfo _, RegisterClass KRC> { def rr : AVX512XS8I, EVEX, Sched<[WriteShuffle]>; } multiclass avx512_mask_broadcast opc, string OpcodeStr, AVX512VLVectorVTInfo VTInfo, RegisterClass KRC> { let Predicates = [HasCDI] in defm Z : avx512_mask_broadcastm, EVEX_V512; let Predicates = [HasCDI, HasVLX] in { defm Z256 : avx512_mask_broadcastm, EVEX_V256; defm Z128 : avx512_mask_broadcastm, EVEX_V128; } } defm VPBROADCASTMW2D : avx512_mask_broadcast<0x3A, "vpbroadcastmw2d", avx512vl_i32_info, VK16>; defm VPBROADCASTMB2Q : avx512_mask_broadcast<0x2A, "vpbroadcastmb2q", avx512vl_i64_info, VK8>, VEX_W; //===----------------------------------------------------------------------===// // -- VPERMI2 - 3 source operands form -- let Sched = WriteFShuffle256 in def AVX512_PERM2_F : OpndItins< IIC_SSE_SHUFP, IIC_SSE_SHUFP >; let Sched = WriteShuffle256 in def AVX512_PERM2_I : OpndItins< IIC_SSE_PSHUF_RI, IIC_SSE_PSHUF_MI >; multiclass avx512_perm_i opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { // The index operand in the pattern should really be an integer type. However, // if we do that and it happens to come from a bitcast, then it becomes // difficult to find the bitcast needed to convert the index to the // destination type for the passthru since it will be folded with the bitcast // of the index operand. defm rr: AVX512_maskable_3src, EVEX_4V, AVX5128IBase, Sched<[itins.Sched]>; defm rm: AVX512_maskable_3src, EVEX_4V, AVX5128IBase, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_perm_i_mb opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in defm rmb: AVX512_maskable_3src, AVX5128IBase, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_perm_i_sizes opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo> { defm NAME: avx512_perm_i, avx512_perm_i_mb, EVEX_V512; let Predicates = [HasVLX] in { defm NAME#128: avx512_perm_i, avx512_perm_i_mb, EVEX_V128; defm NAME#256: avx512_perm_i, avx512_perm_i_mb, EVEX_V256; } } multiclass avx512_perm_i_sizes_bw opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate Prd> { let Predicates = [Prd] in defm NAME: avx512_perm_i, EVEX_V512; let Predicates = [Prd, HasVLX] in { defm NAME#128: avx512_perm_i, EVEX_V128; defm NAME#256: avx512_perm_i, EVEX_V256; } } defm VPERMI2D : avx512_perm_i_sizes<0x76, "vpermi2d", AVX512_PERM2_I, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VPERMI2Q : avx512_perm_i_sizes<0x76, "vpermi2q", AVX512_PERM2_I, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; defm VPERMI2W : avx512_perm_i_sizes_bw<0x75, "vpermi2w", AVX512_PERM2_I, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPERMI2B : avx512_perm_i_sizes_bw<0x75, "vpermi2b", AVX512_PERM2_I, avx512vl_i8_info, HasVBMI>, EVEX_CD8<8, CD8VF>; defm VPERMI2PS : avx512_perm_i_sizes<0x77, "vpermi2ps", AVX512_PERM2_F, avx512vl_f32_info>, EVEX_CD8<32, CD8VF>; defm VPERMI2PD : avx512_perm_i_sizes<0x77, "vpermi2pd", AVX512_PERM2_F, avx512vl_f64_info>, VEX_W, EVEX_CD8<64, CD8VF>; // VPERMT2 multiclass avx512_perm_t opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _, X86VectorVTInfo IdxVT> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rr: AVX512_maskable_3src, EVEX_4V, AVX5128IBase, Sched<[itins.Sched]>; defm rm: AVX512_maskable_3src, EVEX_4V, AVX5128IBase, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_perm_t_mb opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _, X86VectorVTInfo IdxVT> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in defm rmb: AVX512_maskable_3src, AVX5128IBase, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_perm_t_sizes opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo, AVX512VLVectorVTInfo ShuffleMask> { defm NAME: avx512_perm_t, avx512_perm_t_mb, EVEX_V512; let Predicates = [HasVLX] in { defm NAME#128: avx512_perm_t, avx512_perm_t_mb, EVEX_V128; defm NAME#256: avx512_perm_t, avx512_perm_t_mb, EVEX_V256; } } multiclass avx512_perm_t_sizes_bw opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo, AVX512VLVectorVTInfo Idx, Predicate Prd> { let Predicates = [Prd] in defm NAME: avx512_perm_t, EVEX_V512; let Predicates = [Prd, HasVLX] in { defm NAME#128: avx512_perm_t, EVEX_V128; defm NAME#256: avx512_perm_t, EVEX_V256; } } defm VPERMT2D : avx512_perm_t_sizes<0x7E, "vpermt2d", AVX512_PERM2_I, avx512vl_i32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VPERMT2Q : avx512_perm_t_sizes<0x7E, "vpermt2q", AVX512_PERM2_I, avx512vl_i64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; defm VPERMT2W : avx512_perm_t_sizes_bw<0x7D, "vpermt2w", AVX512_PERM2_I, avx512vl_i16_info, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPERMT2B : avx512_perm_t_sizes_bw<0x7D, "vpermt2b", AVX512_PERM2_I, avx512vl_i8_info, avx512vl_i8_info, HasVBMI>, EVEX_CD8<8, CD8VF>; defm VPERMT2PS : avx512_perm_t_sizes<0x7F, "vpermt2ps", AVX512_PERM2_F, avx512vl_f32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VPERMT2PD : avx512_perm_t_sizes<0x7F, "vpermt2pd", AVX512_PERM2_F, avx512vl_f64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; //===----------------------------------------------------------------------===// // AVX-512 - BLEND using mask // let Sched = WriteFVarBlend in def AVX512_BLENDM : OpndItins< IIC_SSE_ALU_F32P_RR, IIC_SSE_ALU_F32P_RM >; let Sched = WriteVarBlend in def AVX512_PBLENDM : OpndItins< IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM >; multiclass avx512_blendmask opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain, hasSideEffects = 0 in { def rr : AVX5128I, EVEX_4V, Sched<[itins.Sched]>; def rrk : AVX5128I, EVEX_4V, EVEX_K, Sched<[itins.Sched]>; def rrkz : AVX5128I, EVEX_4V, EVEX_KZ, Sched<[itins.Sched]>; let mayLoad = 1 in { def rm : AVX5128I, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmk : AVX5128I, EVEX_4V, EVEX_K, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmkz : AVX5128I, EVEX_4V, EVEX_KZ, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } } multiclass avx512_blendmask_rmb opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _> { let mayLoad = 1, hasSideEffects = 0 in { def rmbk : AVX5128I, EVEX_4V, EVEX_K, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmb : AVX5128I, EVEX_4V, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass blendmask_dq opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo> { defm Z : avx512_blendmask , avx512_blendmask_rmb , EVEX_V512; let Predicates = [HasVLX] in { defm Z256 : avx512_blendmask, avx512_blendmask_rmb, EVEX_V256; defm Z128 : avx512_blendmask, avx512_blendmask_rmb, EVEX_V128; } } multiclass blendmask_bw opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo> { let Predicates = [HasBWI] in defm Z : avx512_blendmask, EVEX_V512; let Predicates = [HasBWI, HasVLX] in { defm Z256 : avx512_blendmask, EVEX_V256; defm Z128 : avx512_blendmask, EVEX_V128; } } defm VBLENDMPS : blendmask_dq <0x65, "vblendmps", AVX512_BLENDM, avx512vl_f32_info>; defm VBLENDMPD : blendmask_dq <0x65, "vblendmpd", AVX512_BLENDM, avx512vl_f64_info>, VEX_W; defm VPBLENDMD : blendmask_dq <0x64, "vpblendmd", AVX512_PBLENDM, avx512vl_i32_info>; defm VPBLENDMQ : blendmask_dq <0x64, "vpblendmq", AVX512_PBLENDM, avx512vl_i64_info>, VEX_W; defm VPBLENDMB : blendmask_bw <0x66, "vpblendmb", AVX512_PBLENDM, avx512vl_i8_info>; defm VPBLENDMW : blendmask_bw <0x66, "vpblendmw", AVX512_PBLENDM, avx512vl_i16_info>, VEX_W; //===----------------------------------------------------------------------===// // Compare Instructions //===----------------------------------------------------------------------===// // avx512_cmp_scalar - AVX512 CMPSS and CMPSD multiclass avx512_cmp_scalar { defm rr_Int : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc), itins.rr>, EVEX_4V, Sched<[itins.Sched]>; let mayLoad = 1 in defm rm_Int : AVX512_maskable_cmp<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), _.ScalarIntMemCPat:$src2, imm:$cc), itins.rm>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rrb_Int : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (OpNodeRnd (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc, (i32 FROUND_NO_EXC)), itins.rr>, EVEX_4V, EVEX_B, Sched<[itins.Sched]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0 in { defm rri_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs VK1:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc", itins.rr>, EVEX_4V, Sched<[itins.Sched]>; let mayLoad = 1 in defm rmi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc", itins.rm>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rrb_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, {sae}, $src2, $src1","$src1, $src2, {sae}, $cc", itins.rr>, EVEX_4V, EVEX_B, Sched<[itins.Sched]>; }// let isAsmParserOnly = 1, hasSideEffects = 0 let isCodeGenOnly = 1 in { let isCommutable = 1 in def rr : AVX512Ii8<0xC2, MRMSrcReg, (outs _.KRC:$dst), (ins _.FRC:$src1, _.FRC:$src2, AVXCC:$cc), !strconcat("vcmp${cc}", _.Suffix, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2, imm:$cc))], itins.rr>, EVEX_4V, Sched<[itins.Sched]>; def rm : AVX512Ii8<0xC2, MRMSrcMem, (outs _.KRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2, AVXCC:$cc), !strconcat("vcmp${cc}", _.Suffix, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2), imm:$cc))], itins.rm>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } let Predicates = [HasAVX512] in { let ExeDomain = SSEPackedSingle in defm VCMPSSZ : avx512_cmp_scalar, AVX512XSIi8Base; let ExeDomain = SSEPackedDouble in defm VCMPSDZ : avx512_cmp_scalar, AVX512XDIi8Base, VEX_W; } multiclass avx512_icmp_packed opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _, bit IsCommutable> { let isCommutable = IsCommutable in def rr : AVX512BI, EVEX_4V, Sched<[itins.Sched]>; def rm : AVX512BI, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; let isCommutable = IsCommutable in def rrk : AVX512BI, EVEX_4V, EVEX_K, Sched<[itins.Sched]>; def rmk : AVX512BI, EVEX_4V, EVEX_K, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_icmp_packed_rmb opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _, bit IsCommutable> : avx512_icmp_packed { def rmb : AVX512BI, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmbk : AVX512BI, EVEX_4V, EVEX_K, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_icmp_packed_vl opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_icmp_packed, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_packed, EVEX_V256; defm Z128 : avx512_icmp_packed, EVEX_V128; } } multiclass avx512_icmp_packed_rmb_vl opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_icmp_packed_rmb, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_packed_rmb, EVEX_V256; defm Z128 : avx512_icmp_packed_rmb, EVEX_V128; } } // FIXME: Is there a better scheduler itinerary for VPCMP? defm VPCMPEQB : avx512_icmp_packed_vl<0x74, "vpcmpeqb", X86pcmpeqm, SSE_ALU_F32P, avx512vl_i8_info, HasBWI, 1>, EVEX_CD8<8, CD8VF>, VEX_WIG; defm VPCMPEQW : avx512_icmp_packed_vl<0x75, "vpcmpeqw", X86pcmpeqm, SSE_ALU_F32P, avx512vl_i16_info, HasBWI, 1>, EVEX_CD8<16, CD8VF>, VEX_WIG; defm VPCMPEQD : avx512_icmp_packed_rmb_vl<0x76, "vpcmpeqd", X86pcmpeqm, SSE_ALU_F32P, avx512vl_i32_info, HasAVX512, 1>, EVEX_CD8<32, CD8VF>; defm VPCMPEQQ : avx512_icmp_packed_rmb_vl<0x29, "vpcmpeqq", X86pcmpeqm, SSE_ALU_F32P, avx512vl_i64_info, HasAVX512, 1>, T8PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VPCMPGTB : avx512_icmp_packed_vl<0x64, "vpcmpgtb", X86pcmpgtm, SSE_ALU_F32P, avx512vl_i8_info, HasBWI>, EVEX_CD8<8, CD8VF>, VEX_WIG; defm VPCMPGTW : avx512_icmp_packed_vl<0x65, "vpcmpgtw", X86pcmpgtm, SSE_ALU_F32P, avx512vl_i16_info, HasBWI>, EVEX_CD8<16, CD8VF>, VEX_WIG; defm VPCMPGTD : avx512_icmp_packed_rmb_vl<0x66, "vpcmpgtd", X86pcmpgtm, SSE_ALU_F32P, avx512vl_i32_info, HasAVX512>, EVEX_CD8<32, CD8VF>; defm VPCMPGTQ : avx512_icmp_packed_rmb_vl<0x37, "vpcmpgtq", X86pcmpgtm, SSE_ALU_F32P, avx512vl_i64_info, HasAVX512>, T8PD, VEX_W, EVEX_CD8<64, CD8VF>; // Transforms to swizzle an immediate to help matching memory operand in first // operand. def CommutePCMPCC : SDNodeXFormgetZExtValue() & 0x7; switch (Imm) { default: llvm_unreachable("Unreachable!"); case 0x01: Imm = 0x06; break; // LT -> NLE case 0x02: Imm = 0x05; break; // LE -> NLT case 0x05: Imm = 0x02; break; // NLT -> LE case 0x06: Imm = 0x01; break; // NLE -> LT case 0x00: // EQ case 0x03: // FALSE case 0x04: // NE case 0x07: // TRUE break; } return getI8Imm(Imm, SDLoc(N)); }]>; multiclass avx512_icmp_cc opc, string Suffix, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let isCommutable = 1 in def rri : AVX512AIi8, EVEX_4V, Sched<[itins.Sched]>; def rmi : AVX512AIi8, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; let isCommutable = 1 in def rrik : AVX512AIi8, EVEX_4V, EVEX_K, Sched<[itins.Sched]>; def rmik : AVX512AIi8, EVEX_4V, EVEX_K, Sched<[itins.Sched.Folded, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0 in { def rri_alt : AVX512AIi8, EVEX_4V, Sched<[itins.Sched]>; let mayLoad = 1 in def rmi_alt : AVX512AIi8, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rrik_alt : AVX512AIi8, EVEX_4V, EVEX_K, Sched<[itins.Sched]>; let mayLoad = 1 in def rmik_alt : AVX512AIi8, EVEX_4V, EVEX_K, Sched<[itins.Sched.Folded, ReadAfterLd]>; } def : Pat<(OpNode (bitconvert (_.LdFrag addr:$src2)), (_.VT _.RC:$src1), imm:$cc), (!cast(NAME#_.ZSuffix#"rmi") _.RC:$src1, addr:$src2, (CommutePCMPCC imm:$cc))>; def : Pat<(and _.KRCWM:$mask, (OpNode (bitconvert (_.LdFrag addr:$src2)), (_.VT _.RC:$src1), imm:$cc)), (!cast(NAME#_.ZSuffix#"rmik") _.KRCWM:$mask, _.RC:$src1, addr:$src2, (CommutePCMPCC imm:$cc))>; } multiclass avx512_icmp_cc_rmb opc, string Suffix, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> : avx512_icmp_cc { def rmib : AVX512AIi8, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmibk : AVX512AIi8, EVEX_4V, EVEX_K, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 1 in { def rmib_alt : AVX512AIi8, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmibk_alt : AVX512AIi8, EVEX_4V, EVEX_K, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } def : Pat<(OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), imm:$cc), (!cast(NAME#_.ZSuffix#"rmib") _.RC:$src1, addr:$src2, (CommutePCMPCC imm:$cc))>; def : Pat<(and _.KRCWM:$mask, (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), imm:$cc)), (!cast(NAME#_.ZSuffix#"rmibk") _.KRCWM:$mask, _.RC:$src1, addr:$src2, (CommutePCMPCC imm:$cc))>; } multiclass avx512_icmp_cc_vl opc, string Suffix, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_icmp_cc, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_cc, EVEX_V256; defm Z128 : avx512_icmp_cc, EVEX_V128; } } multiclass avx512_icmp_cc_rmb_vl opc, string Suffix, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_icmp_cc_rmb, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_cc_rmb, EVEX_V256; defm Z128 : avx512_icmp_cc_rmb, EVEX_V128; } } // FIXME: Is there a better scheduler itinerary for VPCMP/VPCMPU? defm VPCMPB : avx512_icmp_cc_vl<0x3F, "b", X86cmpm, SSE_ALU_F32P, avx512vl_i8_info, HasBWI>, EVEX_CD8<8, CD8VF>; defm VPCMPUB : avx512_icmp_cc_vl<0x3E, "ub", X86cmpmu, SSE_ALU_F32P, avx512vl_i8_info, HasBWI>, EVEX_CD8<8, CD8VF>; defm VPCMPW : avx512_icmp_cc_vl<0x3F, "w", X86cmpm, SSE_ALU_F32P, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPCMPUW : avx512_icmp_cc_vl<0x3E, "uw", X86cmpmu, SSE_ALU_F32P, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPCMPD : avx512_icmp_cc_rmb_vl<0x1F, "d", X86cmpm, SSE_ALU_F32P, avx512vl_i32_info, HasAVX512>, EVEX_CD8<32, CD8VF>; defm VPCMPUD : avx512_icmp_cc_rmb_vl<0x1E, "ud", X86cmpmu, SSE_ALU_F32P, avx512vl_i32_info, HasAVX512>, EVEX_CD8<32, CD8VF>; defm VPCMPQ : avx512_icmp_cc_rmb_vl<0x1F, "q", X86cmpm, SSE_ALU_F32P, avx512vl_i64_info, HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>; defm VPCMPUQ : avx512_icmp_cc_rmb_vl<0x1E, "uq", X86cmpmu, SSE_ALU_F32P, avx512vl_i64_info, HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>; multiclass avx512_vcmp_common { defm rri : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2,AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (X86cmpm (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc), itins.rr, 1>, Sched<[itins.Sched]>; defm rmi : AVX512_maskable_cmp<0xC2, MRMSrcMem, _, (outs _.KRC:$dst),(ins _.RC:$src1, _.MemOp:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (X86cmpm (_.VT _.RC:$src1), (_.VT (bitconvert (_.LdFrag addr:$src2))), imm:$cc), itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable_cmp<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (X86cmpm (_.VT _.RC:$src1), (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))), imm:$cc), itins.rm>, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0 in { defm rri_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc", itins.rr>, Sched<[itins.Sched]>; let mayLoad = 1 in { defm rmi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc", itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmbi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, ${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr##", $cc", itins.rm>, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } // Patterns for selecting with loads in other operand. def : Pat<(X86cmpm (_.LdFrag addr:$src2), (_.VT _.RC:$src1), CommutableCMPCC:$cc), (!cast(NAME#_.ZSuffix#"rmi") _.RC:$src1, addr:$src2, imm:$cc)>; def : Pat<(and _.KRCWM:$mask, (X86cmpm (_.LdFrag addr:$src2), (_.VT _.RC:$src1), CommutableCMPCC:$cc)), (!cast(NAME#_.ZSuffix#"rmik") _.KRCWM:$mask, _.RC:$src1, addr:$src2, imm:$cc)>; def : Pat<(X86cmpm (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), CommutableCMPCC:$cc), (!cast(NAME#_.ZSuffix#"rmbi") _.RC:$src1, addr:$src2, imm:$cc)>; def : Pat<(and _.KRCWM:$mask, (X86cmpm (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), CommutableCMPCC:$cc)), (!cast(NAME#_.ZSuffix#"rmbik") _.KRCWM:$mask, _.RC:$src1, addr:$src2, imm:$cc)>; } multiclass avx512_vcmp_sae { // comparison code form (VCMP[EQ/LT/LE/...] defm rrib : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst),(ins _.RC:$src1, _.RC:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (X86cmpmRnd (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc, (i32 FROUND_NO_EXC)), itins.rr>, EVEX_B, Sched<[itins.Sched]>; let isAsmParserOnly = 1, hasSideEffects = 0 in { defm rrib_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, {sae}, $src2, $src1", "$src1, $src2, {sae}, $cc", itins.rr>, EVEX_B, Sched<[itins.Sched]>; } } multiclass avx512_vcmp { let Predicates = [HasAVX512] in { defm Z : avx512_vcmp_common, avx512_vcmp_sae, EVEX_V512; } let Predicates = [HasAVX512,HasVLX] in { defm Z128 : avx512_vcmp_common, EVEX_V128; defm Z256 : avx512_vcmp_common, EVEX_V256; } } defm VCMPPD : avx512_vcmp, AVX512PDIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; defm VCMPPS : avx512_vcmp, AVX512PSIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; // Patterns to select fp compares with load as first operand. let Predicates = [HasAVX512] in { def : Pat<(v1i1 (X86cmpms (loadf64 addr:$src2), FR64X:$src1, CommutableCMPCC:$cc)), (VCMPSDZrm FR64X:$src1, addr:$src2, imm:$cc)>; def : Pat<(v1i1 (X86cmpms (loadf32 addr:$src2), FR32X:$src1, CommutableCMPCC:$cc)), (VCMPSSZrm FR32X:$src1, addr:$src2, imm:$cc)>; } // ---------------------------------------------------------------- // FPClass //handle fpclass instruction mask = op(reg_scalar,imm) // op(mem_scalar,imm) multiclass avx512_scalar_fpclass opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _, Predicate prd> { let Predicates = [prd], ExeDomain = _.ExeDomain in { def rr : AVX512, Sched<[itins.Sched]>; def rrk : AVX512, EVEX_K, Sched<[itins.Sched]>; def rm : AVX512, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmk : AVX512, EVEX_K, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } //handle fpclass instruction mask = fpclass(reg_vec, reg_vec, imm) // fpclass(reg_vec, mem_vec, imm) // fpclass(reg_vec, broadcast(eltVt), imm) multiclass avx512_vector_fpclass opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _, string mem, string broadcast>{ let ExeDomain = _.ExeDomain in { def rr : AVX512, Sched<[itins.Sched]>; def rrk : AVX512, EVEX_K, Sched<[itins.Sched]>; def rm : AVX512, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmk : AVX512, EVEX_K, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmb : AVX512, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; def rmbk : AVX512, EVEX_B, EVEX_K, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_vector_fpclass_all opc, SDNode OpNode, OpndItins itins, Predicate prd, string broadcast>{ let Predicates = [prd] in { defm Z : avx512_vector_fpclass, EVEX_V512; } let Predicates = [prd, HasVLX] in { defm Z128 : avx512_vector_fpclass, EVEX_V128; defm Z256 : avx512_vector_fpclass, EVEX_V256; } } // FIXME: Is there a better scheduler itinerary for VFPCLASS? multiclass avx512_fp_fpclass_all opcVec, bits<8> opcScalar, SDNode VecOpNode, SDNode ScalarOpNode, Predicate prd>{ defm PS : avx512_vector_fpclass_all, EVEX_CD8<32, CD8VF>; defm PD : avx512_vector_fpclass_all, EVEX_CD8<64, CD8VF> , VEX_W; defm SS : avx512_scalar_fpclass, EVEX_CD8<32, CD8VT1>; defm SD : avx512_scalar_fpclass, EVEX_CD8<64, CD8VT1>, VEX_W; } defm VFPCLASS : avx512_fp_fpclass_all<"vfpclass", 0x66, 0x67, X86Vfpclass, X86Vfpclasss, HasDQI>, AVX512AIi8Base,EVEX; //----------------------------------------------------------------- // Mask register copy, including // - copy between mask registers // - load/store mask registers // - copy from GPR to mask register and vice versa // multiclass avx512_mask_mov opc_kk, bits<8> opc_km, bits<8> opc_mk, string OpcodeStr, RegisterClass KRC, ValueType vvt, X86MemOperand x86memop> { let hasSideEffects = 0, SchedRW = [WriteMove] in def kk : I; def km : I; def mk : I; } multiclass avx512_mask_mov_gpr opc_kr, bits<8> opc_rk, string OpcodeStr, RegisterClass KRC, RegisterClass GRC> { let hasSideEffects = 0 in { def kr : I, Sched<[WriteMove]>; def rk : I, Sched<[WriteMove]>; } } let Predicates = [HasDQI] in defm KMOVB : avx512_mask_mov<0x90, 0x90, 0x91, "kmovb", VK8, v8i1, i8mem>, avx512_mask_mov_gpr<0x92, 0x93, "kmovb", VK8, GR32>, VEX, PD; let Predicates = [HasAVX512] in defm KMOVW : avx512_mask_mov<0x90, 0x90, 0x91, "kmovw", VK16, v16i1, i16mem>, avx512_mask_mov_gpr<0x92, 0x93, "kmovw", VK16, GR32>, VEX, PS; let Predicates = [HasBWI] in { defm KMOVD : avx512_mask_mov<0x90, 0x90, 0x91, "kmovd", VK32, v32i1,i32mem>, VEX, PD, VEX_W; defm KMOVD : avx512_mask_mov_gpr<0x92, 0x93, "kmovd", VK32, GR32>, VEX, XD; defm KMOVQ : avx512_mask_mov<0x90, 0x90, 0x91, "kmovq", VK64, v64i1, i64mem>, VEX, PS, VEX_W; defm KMOVQ : avx512_mask_mov_gpr<0x92, 0x93, "kmovq", VK64, GR64>, VEX, XD, VEX_W; } // GR from/to mask register def : Pat<(v16i1 (bitconvert (i16 GR16:$src))), (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR16:$src, sub_16bit)), VK16)>; def : Pat<(i16 (bitconvert (v16i1 VK16:$src))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK16:$src, GR32)), sub_16bit)>; def : Pat<(v8i1 (bitconvert (i8 GR8:$src))), (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR8:$src, sub_8bit)), VK8)>; def : Pat<(i8 (bitconvert (v8i1 VK8:$src))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK8:$src, GR32)), sub_8bit)>; def : Pat<(i32 (zext (i16 (bitconvert (v16i1 VK16:$src))))), (KMOVWrk VK16:$src)>; def : Pat<(i32 (anyext (i16 (bitconvert (v16i1 VK16:$src))))), (COPY_TO_REGCLASS VK16:$src, GR32)>; def : Pat<(i32 (zext (i8 (bitconvert (v8i1 VK8:$src))))), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK8:$src, GR32)), sub_8bit))>, Requires<[NoDQI]>; def : Pat<(i32 (zext (i8 (bitconvert (v8i1 VK8:$src))))), (KMOVBrk VK8:$src)>, Requires<[HasDQI]>; def : Pat<(i32 (anyext (i8 (bitconvert (v8i1 VK8:$src))))), (COPY_TO_REGCLASS VK8:$src, GR32)>; def : Pat<(v32i1 (bitconvert (i32 GR32:$src))), (COPY_TO_REGCLASS GR32:$src, VK32)>; def : Pat<(i32 (bitconvert (v32i1 VK32:$src))), (COPY_TO_REGCLASS VK32:$src, GR32)>; def : Pat<(v64i1 (bitconvert (i64 GR64:$src))), (COPY_TO_REGCLASS GR64:$src, VK64)>; def : Pat<(i64 (bitconvert (v64i1 VK64:$src))), (COPY_TO_REGCLASS VK64:$src, GR64)>; // Load/store kreg let Predicates = [HasDQI] in { def : Pat<(store VK4:$src, addr:$dst), (KMOVBmk addr:$dst, (COPY_TO_REGCLASS VK4:$src, VK8))>; def : Pat<(store VK2:$src, addr:$dst), (KMOVBmk addr:$dst, (COPY_TO_REGCLASS VK2:$src, VK8))>; def : Pat<(store VK1:$src, addr:$dst), (KMOVBmk addr:$dst, (COPY_TO_REGCLASS VK1:$src, VK8))>; def : Pat<(v2i1 (load addr:$src)), (COPY_TO_REGCLASS (KMOVBkm addr:$src), VK2)>; def : Pat<(v4i1 (load addr:$src)), (COPY_TO_REGCLASS (KMOVBkm addr:$src), VK4)>; } let Predicates = [HasAVX512, NoDQI] in { def : Pat<(store VK1:$src, addr:$dst), (MOV8mr addr:$dst, (i8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK1:$src, GR32)), sub_8bit)))>; def : Pat<(store VK2:$src, addr:$dst), (MOV8mr addr:$dst, (i8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK2:$src, GR32)), sub_8bit)))>; def : Pat<(store VK4:$src, addr:$dst), (MOV8mr addr:$dst, (i8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK4:$src, GR32)), sub_8bit)))>; def : Pat<(store VK8:$src, addr:$dst), (MOV8mr addr:$dst, (i8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK8:$src, GR32)), sub_8bit)))>; def : Pat<(v8i1 (load addr:$src)), (COPY_TO_REGCLASS (MOVZX32rm8 addr:$src), VK8)>; def : Pat<(v2i1 (load addr:$src)), (COPY_TO_REGCLASS (MOVZX32rm8 addr:$src), VK2)>; def : Pat<(v4i1 (load addr:$src)), (COPY_TO_REGCLASS (MOVZX32rm8 addr:$src), VK4)>; } let Predicates = [HasAVX512] in { def : Pat<(v1i1 (load addr:$src)), (COPY_TO_REGCLASS (MOVZX32rm8 addr:$src), VK1)>; def : Pat<(v8i1 (bitconvert (i8 (load addr:$src)))), (COPY_TO_REGCLASS (MOVZX32rm8 addr:$src), VK8)>; } let Predicates = [HasAVX512] in { multiclass operation_gpr_mask_copy_lowering { def : Pat<(maskVT (scalar_to_vector GR32:$src)), (COPY_TO_REGCLASS GR32:$src, maskRC)>; def : Pat<(i32 (X86kextract maskRC:$src, (iPTR 0))), (COPY_TO_REGCLASS maskRC:$src, GR32)>; def : Pat<(maskVT (scalar_to_vector GR8:$src)), (COPY_TO_REGCLASS (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit), maskRC)>; } defm : operation_gpr_mask_copy_lowering; defm : operation_gpr_mask_copy_lowering; defm : operation_gpr_mask_copy_lowering; defm : operation_gpr_mask_copy_lowering; defm : operation_gpr_mask_copy_lowering; defm : operation_gpr_mask_copy_lowering; defm : operation_gpr_mask_copy_lowering; def : Pat<(X86kshiftr (X86kshiftl (v1i1 (scalar_to_vector GR8:$src)), (i8 15)), (i8 15)) , (COPY_TO_REGCLASS (KMOVWkr (AND32ri8 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit), (i32 1))), VK1)>; def : Pat<(X86kshiftr (X86kshiftl (v16i1 (scalar_to_vector GR8:$src)), (i8 15)), (i8 15)) , (COPY_TO_REGCLASS (KMOVWkr (AND32ri8 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit), (i32 1))), VK16)>; def : Pat<(X86kshiftr (X86kshiftl (v8i1 (scalar_to_vector GR8:$src)), (i8 15)), (i8 15)) , (COPY_TO_REGCLASS (KMOVWkr (AND32ri8 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit), (i32 1))), VK8)>; } // Mask unary operation // - KNOT multiclass avx512_mask_unop opc, string OpcodeStr, RegisterClass KRC, SDPatternOperator OpNode, OpndItins itins, Predicate prd> { let Predicates = [prd] in def rr : I, Sched<[itins.Sched]>; } multiclass avx512_mask_unop_all opc, string OpcodeStr, SDPatternOperator OpNode, OpndItins itins> { defm B : avx512_mask_unop, VEX, PD; defm W : avx512_mask_unop, VEX, PS; defm D : avx512_mask_unop, VEX, PD, VEX_W; defm Q : avx512_mask_unop, VEX, PS, VEX_W; } defm KNOT : avx512_mask_unop_all<0x44, "knot", vnot, SSE_BIT_ITINS_P>; // KNL does not support KMOVB, 8-bit mask is promoted to 16-bit let Predicates = [HasAVX512, NoDQI] in def : Pat<(vnot VK8:$src), (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$src, VK16)), VK8)>; def : Pat<(vnot VK4:$src), (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK4:$src, VK16)), VK4)>; def : Pat<(vnot VK2:$src), (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK2:$src, VK16)), VK2)>; // Mask binary operation // - KAND, KANDN, KOR, KXNOR, KXOR multiclass avx512_mask_binop opc, string OpcodeStr, RegisterClass KRC, SDPatternOperator OpNode, OpndItins itins, Predicate prd, bit IsCommutable> { let Predicates = [prd], isCommutable = IsCommutable in def rr : I, Sched<[itins.Sched]>; } multiclass avx512_mask_binop_all opc, string OpcodeStr, SDPatternOperator OpNode, OpndItins itins, bit IsCommutable, Predicate prdW = HasAVX512> { defm B : avx512_mask_binop, VEX_4V, VEX_L, PD; defm W : avx512_mask_binop, VEX_4V, VEX_L, PS; defm D : avx512_mask_binop, VEX_4V, VEX_L, VEX_W, PD; defm Q : avx512_mask_binop, VEX_4V, VEX_L, VEX_W, PS; } def andn : PatFrag<(ops node:$i0, node:$i1), (and (not node:$i0), node:$i1)>; def xnor : PatFrag<(ops node:$i0, node:$i1), (not (xor node:$i0, node:$i1))>; // These nodes use 'vnot' instead of 'not' to support vectors. def vandn : PatFrag<(ops node:$i0, node:$i1), (and (vnot node:$i0), node:$i1)>; def vxnor : PatFrag<(ops node:$i0, node:$i1), (vnot (xor node:$i0, node:$i1))>; defm KAND : avx512_mask_binop_all<0x41, "kand", and, SSE_BIT_ITINS_P, 1>; defm KOR : avx512_mask_binop_all<0x45, "kor", or, SSE_BIT_ITINS_P, 1>; defm KXNOR : avx512_mask_binop_all<0x46, "kxnor", vxnor, SSE_BIT_ITINS_P, 1>; defm KXOR : avx512_mask_binop_all<0x47, "kxor", xor, SSE_BIT_ITINS_P, 1>; defm KANDN : avx512_mask_binop_all<0x42, "kandn", vandn, SSE_BIT_ITINS_P, 0>; defm KADD : avx512_mask_binop_all<0x4A, "kadd", add, SSE_BIT_ITINS_P, 1, HasDQI>; multiclass avx512_binop_pat { // With AVX512F, 8-bit mask is promoted to 16-bit mask, // for the DQI set, this type is legal and KxxxB instruction is used let Predicates = [NoDQI] in def : Pat<(VOpNode VK8:$src1, VK8:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK8:$src1, VK16), (COPY_TO_REGCLASS VK8:$src2, VK16)), VK8)>; // All types smaller than 8 bits require conversion anyway def : Pat<(OpNode VK1:$src1, VK1:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK1:$src1, VK16), (COPY_TO_REGCLASS VK1:$src2, VK16)), VK1)>; def : Pat<(VOpNode VK2:$src1, VK2:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK2:$src1, VK16), (COPY_TO_REGCLASS VK2:$src2, VK16)), VK1)>; def : Pat<(VOpNode VK4:$src1, VK4:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK4:$src1, VK16), (COPY_TO_REGCLASS VK4:$src2, VK16)), VK1)>; } defm : avx512_binop_pat; defm : avx512_binop_pat; defm : avx512_binop_pat; defm : avx512_binop_pat; defm : avx512_binop_pat; // Mask unpacking multiclass avx512_mask_unpck { let Predicates = [prd] in { let hasSideEffects = 0 in def rr : I<0x4b, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2), "kunpck"#Suffix#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], itins.rr>, VEX_4V, VEX_L, Sched<[itins.Sched]>; def : Pat<(VT (concat_vectors KRCSrc:$src1, KRCSrc:$src2)), (!cast(NAME##rr) (COPY_TO_REGCLASS KRCSrc:$src2, KRC), (COPY_TO_REGCLASS KRCSrc:$src1, KRC))>; } } defm KUNPCKBW : avx512_mask_unpck<"bw", VK16, v16i1, VK8, SSE_UNPCK, HasAVX512>, PD; defm KUNPCKWD : avx512_mask_unpck<"wd", VK32, v32i1, VK16, SSE_UNPCK, HasBWI>, PS; defm KUNPCKDQ : avx512_mask_unpck<"dq", VK64, v64i1, VK32, SSE_UNPCK, HasBWI>, PS, VEX_W; // Mask bit testing multiclass avx512_mask_testop opc, string OpcodeStr, RegisterClass KRC, SDNode OpNode, OpndItins itins, Predicate prd> { let Predicates = [prd], Defs = [EFLAGS] in def rr : I, Sched<[itins.Sched]>; } multiclass avx512_mask_testop_w opc, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prdW = HasAVX512> { defm B : avx512_mask_testop, VEX, PD; defm W : avx512_mask_testop, VEX, PS; defm Q : avx512_mask_testop, VEX, PS, VEX_W; defm D : avx512_mask_testop, VEX, PD, VEX_W; } defm KORTEST : avx512_mask_testop_w<0x98, "kortest", X86kortest, SSE_PTEST>; defm KTEST : avx512_mask_testop_w<0x99, "ktest", X86ktest, SSE_PTEST, HasDQI>; // Mask shift multiclass avx512_mask_shiftop opc, string OpcodeStr, RegisterClass KRC, SDNode OpNode, OpndItins itins> { let Predicates = [HasAVX512] in def ri : Ii8, Sched<[itins.Sched]>; } multiclass avx512_mask_shiftop_w opc1, bits<8> opc2, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm W : avx512_mask_shiftop, VEX, TAPD, VEX_W; let Predicates = [HasDQI] in defm B : avx512_mask_shiftop, VEX, TAPD; let Predicates = [HasBWI] in { defm Q : avx512_mask_shiftop, VEX, TAPD, VEX_W; defm D : avx512_mask_shiftop, VEX, TAPD; } } defm KSHIFTL : avx512_mask_shiftop_w<0x32, 0x33, "kshiftl", X86kshiftl, SSE_PSHUF>; defm KSHIFTR : avx512_mask_shiftop_w<0x30, 0x31, "kshiftr", X86kshiftr, SSE_PSHUF>; multiclass axv512_icmp_packed_no_vlx_lowering { def : Pat<(v8i1 (OpNode (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))), (COPY_TO_REGCLASS (!cast(InstStr##Zrr) (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm))), VK8)>; def : Pat<(v8i1 (and VK8:$mask, (OpNode (v8i32 VR256X:$src1), (v8i32 VR256X:$src2)))), (COPY_TO_REGCLASS (!cast(InstStr##Zrrk) (COPY_TO_REGCLASS VK8:$mask, VK16), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm))), VK8)>; } multiclass axv512_icmp_packed_cc_no_vlx_lowering { def : Pat<(v8i1 (OpNode (_.info256.VT VR256X:$src1), (_.info256.VT VR256X:$src2), imm:$cc)), (COPY_TO_REGCLASS (!cast(InstStr##Zrri) (_.info512.VT (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (_.info512.VT (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)), imm:$cc), VK8)>; def : Pat<(v8i1 (and VK8:$mask, (OpNode (_.info256.VT VR256X:$src1), (_.info256.VT VR256X:$src2), imm:$cc))), (COPY_TO_REGCLASS (!cast(InstStr##Zrrik) (COPY_TO_REGCLASS VK8:$mask, VK16), (_.info512.VT (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (_.info512.VT (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)), imm:$cc), VK8)>; } let Predicates = [HasAVX512, NoVLX] in { defm : axv512_icmp_packed_no_vlx_lowering; defm : axv512_icmp_packed_no_vlx_lowering; defm : axv512_icmp_packed_cc_no_vlx_lowering; defm : axv512_icmp_packed_cc_no_vlx_lowering; defm : axv512_icmp_packed_cc_no_vlx_lowering; } // Mask setting all 0s or 1s multiclass avx512_mask_setop { let Predicates = [HasAVX512] in let isReMaterializable = 1, isAsCheapAsAMove = 1, isPseudo = 1, SchedRW = [WriteZero] in def #NAME# : I<0, Pseudo, (outs KRC:$dst), (ins), "", [(set KRC:$dst, (VT Val))]>; } multiclass avx512_mask_setop_w { defm W : avx512_mask_setop; defm D : avx512_mask_setop; defm Q : avx512_mask_setop; } defm KSET0 : avx512_mask_setop_w; defm KSET1 : avx512_mask_setop_w; // With AVX-512 only, 8-bit mask is promoted to 16-bit mask. let Predicates = [HasAVX512] in { def : Pat<(v8i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK8)>; def : Pat<(v4i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK4)>; def : Pat<(v2i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK2)>; def : Pat<(v1i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK1)>; def : Pat<(v8i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK8)>; def : Pat<(v4i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK4)>; def : Pat<(v2i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK2)>; def : Pat<(v1i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK1)>; } // Patterns for kmask insert_subvector/extract_subvector to/from index=0 multiclass operation_subvector_mask_lowering { def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))), (subVT (COPY_TO_REGCLASS RC:$src, subRC))>; def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))), (VT (COPY_TO_REGCLASS subRC:$src, RC))>; } defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; defm : operation_subvector_mask_lowering; //===----------------------------------------------------------------------===// // AVX-512 - Aligned and unaligned load and store // multiclass avx512_load opc, string OpcodeStr, MoveLoadStoreItins itins, X86VectorVTInfo _, PatFrag ld_frag, PatFrag mload, bit NoRMPattern = 0, SDPatternOperator SelectOprr = vselect> { let hasSideEffects = 0 in { def rr : AVX512PI, EVEX, Sched<[WriteMove]>; def rrkz : AVX512PI, EVEX, EVEX_KZ, Sched<[WriteMove]>; let mayLoad = 1, canFoldAsLoad = 1, isReMaterializable = 1 in def rm : AVX512PI, EVEX, Sched<[WriteLoad]>; let Constraints = "$src0 = $dst", isConvertibleToThreeAddress = 1 in { def rrk : AVX512PI, EVEX, EVEX_K, Sched<[WriteMove]>; def rmk : AVX512PI, EVEX, EVEX_K, Sched<[WriteLoad]>; } def rmkz : AVX512PI, EVEX, EVEX_KZ, Sched<[WriteLoad]>; } def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, undef)), (!cast(NAME#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$ptr)>; def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, _.ImmAllZerosV)), (!cast(NAME#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$ptr)>; def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, (_.VT _.RC:$src0))), (!cast(NAME#_.ZSuffix##rmk) _.RC:$src0, _.KRCWM:$mask, addr:$ptr)>; } multiclass avx512_alignedload_vl opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd> { let Predicates = [prd] in defm Z : avx512_load, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_load, EVEX_V256; defm Z128 : avx512_load, EVEX_V128; } } multiclass avx512_load_vl opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd, bit NoRMPattern = 0, SDPatternOperator SelectOprr = vselect> { let Predicates = [prd] in defm Z : avx512_load, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_load, EVEX_V256; defm Z128 : avx512_load, EVEX_V128; } } multiclass avx512_store opc, string OpcodeStr, MoveLoadStoreItins itins, X86VectorVTInfo _, PatFrag st_frag, PatFrag mstore, string Name, bit NoMRPattern = 0> { let hasSideEffects = 0 in { def rr_REV : AVX512PI, EVEX, FoldGenData, Sched<[WriteMove]>; def rrk_REV : AVX512PI, EVEX, EVEX_K, FoldGenData, Sched<[WriteMove]>; def rrkz_REV : AVX512PI, EVEX, EVEX_KZ, FoldGenData, Sched<[WriteMove]>; } let hasSideEffects = 0, mayStore = 1 in def mr : AVX512PI, EVEX, Sched<[WriteStore]>; def mrk : AVX512PI, EVEX, EVEX_K, Sched<[WriteStore]>; def: Pat<(mstore addr:$ptr, _.KRCWM:$mask, (_.VT _.RC:$src)), (!cast(NAME#_.ZSuffix##mrk) addr:$ptr, _.KRCWM:$mask, _.RC:$src)>; } multiclass avx512_store_vl< bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd, string Name, bit NoMRPattern = 0> { let Predicates = [prd] in defm Z : avx512_store, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_store, EVEX_V256; defm Z128 : avx512_store, EVEX_V128; } } multiclass avx512_alignedstore_vl opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd, string Name> { let Predicates = [prd] in defm Z : avx512_store, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_store, EVEX_V256; defm Z128 : avx512_store, EVEX_V128; } } defm VMOVAPS : avx512_alignedload_vl<0x28, "vmovaps", avx512vl_f32_info, HasAVX512>, avx512_alignedstore_vl<0x29, "vmovaps", avx512vl_f32_info, HasAVX512, "VMOVAPS">, PS, EVEX_CD8<32, CD8VF>; defm VMOVAPD : avx512_alignedload_vl<0x28, "vmovapd", avx512vl_f64_info, HasAVX512>, avx512_alignedstore_vl<0x29, "vmovapd", avx512vl_f64_info, HasAVX512, "VMOVAPD">, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VMOVUPS : avx512_load_vl<0x10, "vmovups", avx512vl_f32_info, HasAVX512, 0, null_frag>, avx512_store_vl<0x11, "vmovups", avx512vl_f32_info, HasAVX512, "VMOVUPS">, PS, EVEX_CD8<32, CD8VF>; defm VMOVUPD : avx512_load_vl<0x10, "vmovupd", avx512vl_f64_info, HasAVX512, 0, null_frag>, avx512_store_vl<0x11, "vmovupd", avx512vl_f64_info, HasAVX512, "VMOVUPD">, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VMOVDQA32 : avx512_alignedload_vl<0x6F, "vmovdqa32", avx512vl_i32_info, HasAVX512>, avx512_alignedstore_vl<0x7F, "vmovdqa32", avx512vl_i32_info, HasAVX512, "VMOVDQA32">, PD, EVEX_CD8<32, CD8VF>; defm VMOVDQA64 : avx512_alignedload_vl<0x6F, "vmovdqa64", avx512vl_i64_info, HasAVX512>, avx512_alignedstore_vl<0x7F, "vmovdqa64", avx512vl_i64_info, HasAVX512, "VMOVDQA64">, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VMOVDQU8 : avx512_load_vl<0x6F, "vmovdqu8", avx512vl_i8_info, HasBWI, 1>, avx512_store_vl<0x7F, "vmovdqu8", avx512vl_i8_info, HasBWI, "VMOVDQU8", 1>, XD, EVEX_CD8<8, CD8VF>; defm VMOVDQU16 : avx512_load_vl<0x6F, "vmovdqu16", avx512vl_i16_info, HasBWI, 1>, avx512_store_vl<0x7F, "vmovdqu16", avx512vl_i16_info, HasBWI, "VMOVDQU16", 1>, XD, VEX_W, EVEX_CD8<16, CD8VF>; defm VMOVDQU32 : avx512_load_vl<0x6F, "vmovdqu32", avx512vl_i32_info, HasAVX512, 0, null_frag>, avx512_store_vl<0x7F, "vmovdqu32", avx512vl_i32_info, HasAVX512, "VMOVDQU32">, XS, EVEX_CD8<32, CD8VF>; defm VMOVDQU64 : avx512_load_vl<0x6F, "vmovdqu64", avx512vl_i64_info, HasAVX512, 0, null_frag>, avx512_store_vl<0x7F, "vmovdqu64", avx512vl_i64_info, HasAVX512, "VMOVDQU64">, XS, VEX_W, EVEX_CD8<64, CD8VF>; // Special instructions to help with spilling when we don't have VLX. We need // to load or store from a ZMM register instead. These are converted in // expandPostRAPseudos. let isReMaterializable = 1, canFoldAsLoad = 1, isPseudo = 1, SchedRW = [WriteLoad], mayLoad = 1, hasSideEffects = 0 in { def VMOVAPSZ128rm_NOVLX : I<0, Pseudo, (outs VR128X:$dst), (ins f128mem:$src), "", [], IIC_SSE_MOVA_P_RM>; def VMOVAPSZ256rm_NOVLX : I<0, Pseudo, (outs VR256X:$dst), (ins f256mem:$src), "", [], IIC_SSE_MOVA_P_RM>; def VMOVUPSZ128rm_NOVLX : I<0, Pseudo, (outs VR128X:$dst), (ins f128mem:$src), "", [], IIC_SSE_MOVA_P_RM>; def VMOVUPSZ256rm_NOVLX : I<0, Pseudo, (outs VR256X:$dst), (ins f256mem:$src), "", [], IIC_SSE_MOVA_P_RM>; } let isPseudo = 1, SchedRW = [WriteStore], mayStore = 1, hasSideEffects = 0 in { def VMOVAPSZ128mr_NOVLX : I<0, Pseudo, (outs), (ins f128mem:$dst, VR128X:$src), "", [], IIC_SSE_MOVA_P_MR>; def VMOVAPSZ256mr_NOVLX : I<0, Pseudo, (outs), (ins f256mem:$dst, VR256X:$src), "", [], IIC_SSE_MOVA_P_MR>; def VMOVUPSZ128mr_NOVLX : I<0, Pseudo, (outs), (ins f128mem:$dst, VR128X:$src), "", [], IIC_SSE_MOVA_P_MR>; def VMOVUPSZ256mr_NOVLX : I<0, Pseudo, (outs), (ins f256mem:$dst, VR256X:$src), "", [], IIC_SSE_MOVA_P_MR>; } def : Pat<(v8i64 (vselect VK8WM:$mask, (bc_v8i64 (v16i32 immAllZerosV)), (v8i64 VR512:$src))), (VMOVDQA64Zrrkz (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$mask, VK16)), VK8), VR512:$src)>; def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 immAllZerosV), (v16i32 VR512:$src))), (VMOVDQA32Zrrkz (KNOTWrr VK16WM:$mask), VR512:$src)>; // These patterns exist to prevent the above patterns from introducing a second // mask inversion when one already exists. def : Pat<(v8i64 (vselect (xor VK8:$mask, (v8i1 immAllOnesV)), (bc_v8i64 (v16i32 immAllZerosV)), (v8i64 VR512:$src))), (VMOVDQA64Zrrkz VK8:$mask, VR512:$src)>; def : Pat<(v16i32 (vselect (xor VK16:$mask, (v16i1 immAllOnesV)), (v16i32 immAllZerosV), (v16i32 VR512:$src))), (VMOVDQA32Zrrkz VK16WM:$mask, VR512:$src)>; multiclass mask_move_lowering { def : Pat<(Narrow.VT (vselect (Narrow.KVT Narrow.KRCWM:$mask), Narrow.RC:$src1, Narrow.RC:$src0)), (EXTRACT_SUBREG (Wide.VT (!cast(InstrStr#"rrk") (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src0, Narrow.SubRegIdx)), (COPY_TO_REGCLASS Narrow.KRCWM:$mask, Wide.KRCWM), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)))), Narrow.SubRegIdx)>; def : Pat<(Narrow.VT (vselect (Narrow.KVT Narrow.KRCWM:$mask), Narrow.RC:$src1, Narrow.ImmAllZerosV)), (EXTRACT_SUBREG (Wide.VT (!cast(InstrStr#"rrkz") (COPY_TO_REGCLASS Narrow.KRCWM:$mask, Wide.KRCWM), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)))), Narrow.SubRegIdx)>; } // Patterns for handling v8i1 selects of 256-bit vectors when VLX isn't // available. Use a 512-bit operation and extract. let Predicates = [HasAVX512, NoVLX] in { defm : mask_move_lowering<"VMOVAPSZ", v8f32x_info, v16f32_info>; defm : mask_move_lowering<"VMOVDQA32Z", v8i32x_info, v16i32_info>; } let Predicates = [HasAVX512] in { // 512-bit store. def : Pat<(alignedstore (v32i16 VR512:$src), addr:$dst), (VMOVDQA32Zmr addr:$dst, VR512:$src)>; def : Pat<(alignedstore (v64i8 VR512:$src), addr:$dst), (VMOVDQA32Zmr addr:$dst, VR512:$src)>; def : Pat<(store (v32i16 VR512:$src), addr:$dst), (VMOVDQU32Zmr addr:$dst, VR512:$src)>; def : Pat<(store (v64i8 VR512:$src), addr:$dst), (VMOVDQU32Zmr addr:$dst, VR512:$src)>; } let Predicates = [HasVLX] in { // 128-bit store. def : Pat<(alignedstore (v8i16 VR128X:$src), addr:$dst), (VMOVDQA32Z128mr addr:$dst, VR128X:$src)>; def : Pat<(alignedstore (v16i8 VR128X:$src), addr:$dst), (VMOVDQA32Z128mr addr:$dst, VR128X:$src)>; def : Pat<(store (v8i16 VR128X:$src), addr:$dst), (VMOVDQU32Z128mr addr:$dst, VR128X:$src)>; def : Pat<(store (v16i8 VR128X:$src), addr:$dst), (VMOVDQU32Z128mr addr:$dst, VR128X:$src)>; // 256-bit store. def : Pat<(alignedstore (v16i16 VR256X:$src), addr:$dst), (VMOVDQA32Z256mr addr:$dst, VR256X:$src)>; def : Pat<(alignedstore (v32i8 VR256X:$src), addr:$dst), (VMOVDQA32Z256mr addr:$dst, VR256X:$src)>; def : Pat<(store (v16i16 VR256X:$src), addr:$dst), (VMOVDQU32Z256mr addr:$dst, VR256X:$src)>; def : Pat<(store (v32i8 VR256X:$src), addr:$dst), (VMOVDQU32Z256mr addr:$dst, VR256X:$src)>; } multiclass masked_move_for_extract { def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (extract_subvector (From.VT From.RC:$src), (iPTR 0)))), To.RC:$src0)), (Cast.VT (!cast(InstrStr#"rrk") Cast.RC:$src0, Cast.KRCWM:$mask, (EXTRACT_SUBREG From.RC:$src, To.SubRegIdx)))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (extract_subvector (From.VT From.RC:$src), (iPTR 0)))), Cast.ImmAllZerosV)), (Cast.VT (!cast(InstrStr#"rrkz") Cast.KRCWM:$mask, (EXTRACT_SUBREG From.RC:$src, To.SubRegIdx)))>; } let Predicates = [HasVLX] in { // A masked extract from the first 128-bits of a 256-bit vector can be // implemented with masked move. defm : masked_move_for_extract<"VMOVDQA64Z128", v4i64x_info, v2i64x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v8i32x_info, v4i32x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v16i16x_info, v8i16x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v32i8x_info, v16i8x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v4i64x_info, v2i64x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v8i32x_info, v4i32x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v16i16x_info, v8i16x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v32i8x_info, v16i8x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v4f64x_info, v2f64x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v8f32x_info, v4f32x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v4f64x_info, v2f64x_info, v4f32x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v8f32x_info, v4f32x_info, v4f32x_info>; // A masked extract from the first 128-bits of a 512-bit vector can be // implemented with masked move. defm : masked_move_for_extract<"VMOVDQA64Z128", v8i64_info, v2i64x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v16i32_info, v4i32x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v32i16_info, v8i16x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v64i8_info, v16i8x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v8i64_info, v2i64x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v16i32_info, v4i32x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v32i16_info, v8i16x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v64i8_info, v16i8x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v8f64_info, v2f64x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v16f32_info, v4f32x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v8f64_info, v2f64x_info, v4f32x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v16f32_info, v4f32x_info, v4f32x_info>; // A masked extract from the first 256-bits of a 512-bit vector can be // implemented with masked move. defm : masked_move_for_extract<"VMOVDQA64Z256", v8i64_info, v4i64x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z256", v16i32_info, v8i32x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z256", v32i16_info, v16i16x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z256", v64i8_info, v32i8x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v8i64_info, v4i64x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v16i32_info, v8i32x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v32i16_info, v16i16x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v64i8_info, v32i8x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVAPDZ256", v8f64_info, v4f64x_info, v4f64x_info>; defm : masked_move_for_extract<"VMOVAPDZ256", v16f32_info, v8f32x_info, v4f64x_info>; defm : masked_move_for_extract<"VMOVAPSZ256", v8f64_info, v4f64x_info, v8f32x_info>; defm : masked_move_for_extract<"VMOVAPSZ256", v16f32_info, v8f32x_info, v8f32x_info>; } // Move Int Doubleword to Packed Double Int // let ExeDomain = SSEPackedInt in { def VMOVDI2PDIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR32:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>, EVEX, Sched<[WriteMove]>; def VMOVDI2PDIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst), (ins i32mem:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))], IIC_SSE_MOVDQ>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteLoad]>; def VMOV64toPQIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR64:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v2i64 (scalar_to_vector GR64:$src)))], IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteMove]>; let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in def VMOV64toPQIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVDQ>, EVEX, VEX_W, EVEX_CD8<64, CD8VT1>, Sched<[WriteLoad]>; let isCodeGenOnly = 1 in { def VMOV64toSDZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR64X:$dst), (ins GR64:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set FR64X:$dst, (bitconvert GR64:$src))], IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteMove]>; def VMOV64toSDZrm : AVX512XSI<0x7E, MRMSrcMem, (outs FR64X:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set FR64X:$dst, (bitconvert (loadi64 addr:$src)))]>, EVEX, VEX_W, EVEX_CD8<8, CD8VT8>, Sched<[WriteLoad]>; def VMOVSDto64Zrr : AVX512BI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64X:$src))], IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteMove]>; def VMOVSDto64Zmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(store (i64 (bitconvert FR64X:$src)), addr:$dst)], IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteStore]>, EVEX_CD8<64, CD8VT1>; } } // ExeDomain = SSEPackedInt // Move Int Doubleword to Single Scalar // let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { def VMOVDI2SSZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR32X:$dst), (ins GR32:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set FR32X:$dst, (bitconvert GR32:$src))], IIC_SSE_MOVDQ>, EVEX, Sched<[WriteMove]>; def VMOVDI2SSZrm : AVX512BI<0x6E, MRMSrcMem, (outs FR32X:$dst), (ins i32mem:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set FR32X:$dst, (bitconvert (loadi32 addr:$src)))], IIC_SSE_MOVDQ>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteLoad]>; } // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 // Move doubleword from xmm register to r/m32 // let ExeDomain = SSEPackedInt in { def VMOVPDI2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (extractelt (v4i32 VR128X:$src), (iPTR 0)))], IIC_SSE_MOVD_ToGP>, EVEX, Sched<[WriteMove]>; def VMOVPDI2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(store (i32 (extractelt (v4i32 VR128X:$src), (iPTR 0))), addr:$dst)], IIC_SSE_MOVDQ>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteStore]>; } // ExeDomain = SSEPackedInt // Move quadword from xmm1 register to r/m64 // let ExeDomain = SSEPackedInt in { def VMOVPQIto64Zrr : I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (extractelt (v2i64 VR128X:$src), (iPTR 0)))], IIC_SSE_MOVD_ToGP>, PD, EVEX, VEX_W, Sched<[WriteMove]>, Requires<[HasAVX512, In64BitMode]>; let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in def VMOVPQIto64Zmr : I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVD_ToGP>, PD, EVEX, VEX_W, Sched<[WriteStore]>, Requires<[HasAVX512, In64BitMode]>; def VMOVPQI2QIZmr : I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(store (extractelt (v2i64 VR128X:$src), (iPTR 0)), addr:$dst)], IIC_SSE_MOVDQ>, EVEX, PD, VEX_W, EVEX_CD8<64, CD8VT1>, Sched<[WriteStore]>, Requires<[HasAVX512, In64BitMode]>; let hasSideEffects = 0 in def VMOVPQI2QIZrr : AVX512BI<0xD6, MRMDestReg, (outs VR128X:$dst), (ins VR128X:$src), "vmovq.s\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteMove]>; } // ExeDomain = SSEPackedInt // Move Scalar Single to Double Int // let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { def VMOVSS2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32X:$src))], IIC_SSE_MOVD_ToGP>, EVEX, Sched<[WriteMove]>; def VMOVSS2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32X:$src)), addr:$dst)], IIC_SSE_MOVDQ>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteStore]>; } // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 // Move Quadword Int to Packed Quadword Int // let ExeDomain = SSEPackedInt in { def VMOVQI2PQIZrm : AVX512XSI<0x7E, MRMSrcMem, (outs VR128X:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, EVEX, VEX_W, EVEX_CD8<8, CD8VT8>, Sched<[WriteLoad]>; } // ExeDomain = SSEPackedInt //===----------------------------------------------------------------------===// // AVX-512 MOVSS, MOVSD //===----------------------------------------------------------------------===// multiclass avx512_move_scalar { def rr : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.RC:$dst, (_.VT (OpNode _.RC:$src1, _.RC:$src2)))], _.ExeDomain,IIC_SSE_MOV_S_RR>, EVEX_4V, Sched<[WriteMove]>; def rrkz : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst {${mask}} {z}|", "$dst {${mask}} {z}, $src1, $src2}"), [(set _.RC:$dst, (_.VT (X86selects _.KRCWM:$mask, (_.VT (OpNode _.RC:$src1, _.RC:$src2)), _.ImmAllZerosV)))], _.ExeDomain,IIC_SSE_MOV_S_RR>, EVEX_4V, EVEX_KZ, Sched<[WriteMove]>; let Constraints = "$src0 = $dst" in def rrk : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, _.RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2}"), [(set _.RC:$dst, (_.VT (X86selects _.KRCWM:$mask, (_.VT (OpNode _.RC:$src1, _.RC:$src2)), (_.VT _.RC:$src0))))], _.ExeDomain,IIC_SSE_MOV_S_RR>, EVEX_4V, EVEX_K, Sched<[WriteMove]>; let canFoldAsLoad = 1, isReMaterializable = 1 in def rm : AVX512PI<0x10, MRMSrcMem, (outs _.FRC:$dst), (ins _.ScalarMemOp:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [(set _.FRC:$dst, (_.ScalarLdFrag addr:$src))], _.ExeDomain, IIC_SSE_MOV_S_RM>, EVEX, Sched<[WriteLoad]>; let mayLoad = 1, hasSideEffects = 0 in { let Constraints = "$src0 = $dst" in def rmk : AVX512PI<0x10, MRMSrcMem, (outs _.RC:$dst), (ins _.RC:$src0, _.KRCWM:$mask, _.ScalarMemOp:$src), !strconcat(asm, "\t{$src, $dst {${mask}}|", "$dst {${mask}}, $src}"), [], _.ExeDomain, IIC_SSE_MOV_S_RM>, EVEX, EVEX_K, Sched<[WriteLoad]>; def rmkz : AVX512PI<0x10, MRMSrcMem, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.ScalarMemOp:$src), !strconcat(asm, "\t{$src, $dst {${mask}} {z}|", "$dst {${mask}} {z}, $src}"), [], _.ExeDomain, IIC_SSE_MOV_S_RM>, EVEX, EVEX_KZ, Sched<[WriteLoad]>; } def mr: AVX512PI<0x11, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, _.FRC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [(store _.FRC:$src, addr:$dst)], _.ExeDomain, IIC_SSE_MOV_S_MR>, EVEX, Sched<[WriteStore]>; let mayStore = 1, hasSideEffects = 0 in def mrk: AVX512PI<0x11, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, VK1WM:$mask, _.FRC:$src), !strconcat(asm, "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}"), [], _.ExeDomain, IIC_SSE_MOV_S_MR>, EVEX, EVEX_K, Sched<[WriteStore]>; } defm VMOVSSZ : avx512_move_scalar<"vmovss", X86Movss, f32x_info>, VEX_LIG, XS, EVEX_CD8<32, CD8VT1>; defm VMOVSDZ : avx512_move_scalar<"vmovsd", X86Movsd, f64x_info>, VEX_LIG, XD, VEX_W, EVEX_CD8<64, CD8VT1>; multiclass avx512_move_scalar_lowering { def : Pat<(_.VT (OpNode _.RC:$src0, (_.VT (scalar_to_vector (_.EltVT (X86selects (scalar_to_vector (and (i8 (trunc GR32:$mask)), (i8 1))), (_.EltVT _.FRC:$src1), (_.EltVT _.FRC:$src2))))))), (!cast(InstrStr#rrk) (COPY_TO_REGCLASS _.FRC:$src2, _.RC), (COPY_TO_REGCLASS GR32:$mask, VK1WM), (_.VT _.RC:$src0), (COPY_TO_REGCLASS _.FRC:$src1, _.RC))>; def : Pat<(_.VT (OpNode _.RC:$src0, (_.VT (scalar_to_vector (_.EltVT (X86selects (scalar_to_vector (and (i8 (trunc GR32:$mask)), (i8 1))), (_.EltVT _.FRC:$src1), (_.EltVT ZeroFP))))))), (!cast(InstrStr#rrkz) (COPY_TO_REGCLASS GR32:$mask, VK1WM), (_.VT _.RC:$src0), (COPY_TO_REGCLASS _.FRC:$src1, _.RC))>; } multiclass avx512_store_scalar_lowering { def : Pat<(masked_store addr:$dst, Mask, (_.info512.VT (insert_subvector undef, (_.info256.VT (insert_subvector undef, (_.info128.VT _.info128.RC:$src), (iPTR 0))), (iPTR 0)))), (!cast(InstrStr#mrk) addr:$dst, (COPY_TO_REGCLASS MaskRC:$mask, VK1WM), (COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>; } multiclass avx512_store_scalar_lowering_subreg { def : Pat<(masked_store addr:$dst, Mask, (_.info512.VT (insert_subvector undef, (_.info256.VT (insert_subvector undef, (_.info128.VT _.info128.RC:$src), (iPTR 0))), (iPTR 0)))), (!cast(InstrStr#mrk) addr:$dst, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), (COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>; } multiclass avx512_load_scalar_lowering { def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (bitconvert (v16i32 immAllZerosV))))), (iPTR 0))), (!cast(InstrStr#rmkz) (COPY_TO_REGCLASS MaskRC:$mask, VK1WM), addr:$srcAddr)>; def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (insert_subvector undef, (_.info256.VT (insert_subvector undef, (_.info128.VT (X86vzmovl _.info128.RC:$src)), (iPTR 0))), (iPTR 0))))), (iPTR 0))), (!cast(InstrStr#rmk) _.info128.RC:$src, (COPY_TO_REGCLASS MaskRC:$mask, VK1WM), addr:$srcAddr)>; } multiclass avx512_load_scalar_lowering_subreg { def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (bitconvert (v16i32 immAllZerosV))))), (iPTR 0))), (!cast(InstrStr#rmkz) (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (insert_subvector undef, (_.info256.VT (insert_subvector undef, (_.info128.VT (X86vzmovl _.info128.RC:$src)), (iPTR 0))), (iPTR 0))))), (iPTR 0))), (!cast(InstrStr#rmk) _.info128.RC:$src, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; } defm : avx512_move_scalar_lowering<"VMOVSSZ", X86Movss, fp32imm0, v4f32x_info>; defm : avx512_move_scalar_lowering<"VMOVSDZ", X86Movsd, fp64imm0, v2f64x_info>; defm : avx512_store_scalar_lowering<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (trunc (and GR32:$mask, (i32 1)))))), GR32>; defm : avx512_store_scalar_lowering_subreg<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (and GR16:$mask, (i16 1))))), GR16, sub_16bit>; defm : avx512_store_scalar_lowering_subreg<"VMOVSDZ", avx512vl_f64_info, (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), GR8, sub_8bit>; defm : avx512_load_scalar_lowering<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (trunc (and GR32:$mask, (i32 1)))))), GR32>; defm : avx512_load_scalar_lowering_subreg<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (and GR16:$mask, (i16 1))))), GR16, sub_16bit>; defm : avx512_load_scalar_lowering_subreg<"VMOVSDZ", avx512vl_f64_info, (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), GR8, sub_8bit>; def : Pat<(f32 (X86selects (scalar_to_vector (and GR8:$mask, (i8 1))), (f32 FR32X:$src1), (f32 FR32X:$src2))), (COPY_TO_REGCLASS (VMOVSSZrrk (COPY_TO_REGCLASS FR32X:$src2, VR128X), (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR8:$mask, sub_8bit)), VK1WM), (v4f32 (IMPLICIT_DEF)), (COPY_TO_REGCLASS FR32X:$src1, VR128X)), FR32X)>; def : Pat<(f32 (X86selects VK1WM:$mask, (f32 FR32X:$src1), (f32 FR32X:$src2))), (COPY_TO_REGCLASS (VMOVSSZrrk (COPY_TO_REGCLASS FR32X:$src2, VR128X), VK1WM:$mask, (v4f32 (IMPLICIT_DEF)), (COPY_TO_REGCLASS FR32X:$src1, VR128X)), FR32X)>; def : Pat<(f64 (X86selects (scalar_to_vector (and GR8:$mask, (i8 1))), (f64 FR64X:$src1), (f64 FR64X:$src2))), (COPY_TO_REGCLASS (VMOVSDZrrk (COPY_TO_REGCLASS FR64X:$src2, VR128X), (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR8:$mask, sub_8bit)), VK1WM), (v2f64 (IMPLICIT_DEF)), (COPY_TO_REGCLASS FR64X:$src1, VR128X)), FR64X)>; def : Pat<(f64 (X86selects VK1WM:$mask, (f64 FR64X:$src1), (f64 FR64X:$src2))), (COPY_TO_REGCLASS (VMOVSDZrrk (COPY_TO_REGCLASS FR64X:$src2, VR128X), VK1WM:$mask, (v2f64 (IMPLICIT_DEF)), (COPY_TO_REGCLASS FR64X:$src1, VR128X)), FR64X)>; def : Pat<(int_x86_avx512_mask_store_ss addr:$dst, VR128X:$src, GR8:$mask), (VMOVSSZmrk addr:$dst, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR8:$mask, sub_8bit)), VK1WM), (COPY_TO_REGCLASS VR128X:$src, FR32X))>; let hasSideEffects = 0 in { def VMOVSSZrr_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovss.s\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], IIC_SSE_MOV_S_RR>, XS, EVEX_4V, VEX_LIG, FoldGenData<"VMOVSSZrr">, Sched<[WriteMove]>; let Constraints = "$src0 = $dst" in def VMOVSSZrrk_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f32x_info.RC:$src0, f32x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovss.s\t{$src2, $src1, $dst {${mask}}|"# "$dst {${mask}}, $src1, $src2}", [], IIC_SSE_MOV_S_RR>, EVEX_K, XS, EVEX_4V, VEX_LIG, FoldGenData<"VMOVSSZrrk">, Sched<[WriteMove]>; def VMOVSSZrrkz_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f32x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovss.s\t{$src2, $src1, $dst {${mask}} {z}|"# "$dst {${mask}} {z}, $src1, $src2}", [], IIC_SSE_MOV_S_RR>, EVEX_KZ, XS, EVEX_4V, VEX_LIG, FoldGenData<"VMOVSSZrrkz">, Sched<[WriteMove]>; def VMOVSDZrr_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovsd.s\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], IIC_SSE_MOV_S_RR>, XD, EVEX_4V, VEX_LIG, VEX_W, FoldGenData<"VMOVSDZrr">, Sched<[WriteMove]>; let Constraints = "$src0 = $dst" in def VMOVSDZrrk_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f64x_info.RC:$src0, f64x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovsd.s\t{$src2, $src1, $dst {${mask}}|"# "$dst {${mask}}, $src1, $src2}", [], IIC_SSE_MOV_S_RR>, EVEX_K, XD, EVEX_4V, VEX_LIG, VEX_W, FoldGenData<"VMOVSDZrrk">, Sched<[WriteMove]>; def VMOVSDZrrkz_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f64x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovsd.s\t{$src2, $src1, $dst {${mask}} {z}|"# "$dst {${mask}} {z}, $src1, $src2}", [], IIC_SSE_MOV_S_RR>, EVEX_KZ, XD, EVEX_4V, VEX_LIG, VEX_W, FoldGenData<"VMOVSDZrrkz">, Sched<[WriteMove]>; } let Predicates = [HasAVX512] in { let AddedComplexity = 15 in { def : Pat<(v4f32 (X86vzmovl (v4f32 VR128X:$src))), (VMOVSSZrr (v4f32 (AVX512_128_SET0)), VR128X:$src)>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128X:$src))), (VMOVSSZrr (v4i32 (AVX512_128_SET0)), VR128X:$src)>; def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64X:$src)))), (VMOVSDZrr (v2f64 (AVX512_128_SET0)), (COPY_TO_REGCLASS FR64X:$src, VR128))>; } // Move low f32 and clear high bits. def : Pat<(v8f32 (X86vzmovl (v8f32 VR256X:$src))), (SUBREG_TO_REG (i32 0), (VMOVSSZrr (v4f32 (AVX512_128_SET0)), (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)), sub_xmm)>; def : Pat<(v8i32 (X86vzmovl (v8i32 VR256X:$src))), (SUBREG_TO_REG (i32 0), (VMOVSSZrr (v4i32 (AVX512_128_SET0)), (EXTRACT_SUBREG (v8i32 VR256X:$src), sub_xmm)), sub_xmm)>; def : Pat<(v16f32 (X86vzmovl (v16f32 VR512:$src))), (SUBREG_TO_REG (i32 0), (VMOVSSZrr (v4f32 (AVX512_128_SET0)), (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm)), sub_xmm)>; def : Pat<(v16i32 (X86vzmovl (v16i32 VR512:$src))), (SUBREG_TO_REG (i32 0), (VMOVSSZrr (v4i32 (AVX512_128_SET0)), (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm)), sub_xmm)>; let AddedComplexity = 20 in { // MOVSSrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0 def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))), (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>; def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))), (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>; def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))), (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>; def : Pat<(v4f32 (X86vzload addr:$src)), (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>; // MOVSDrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0 def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; def : Pat<(v2f64 (X86vzload addr:$src)), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; // Represent the same patterns above but in the form they appear for // 256-bit types def : Pat<(v8i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrm addr:$src), sub_xmm)>; def : Pat<(v8f32 (X86vzmovl (insert_subvector undef, (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v8f32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v4f64 (X86vzmovl (insert_subvector undef, (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; def : Pat<(v4f64 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; // Represent the same patterns above but in the form they appear for // 512-bit types def : Pat<(v16i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrm addr:$src), sub_xmm)>; def : Pat<(v16f32 (X86vzmovl (insert_subvector undef, (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v16f32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v8f64 (X86vzmovl (insert_subvector undef, (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; def : Pat<(v8f64 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; } def : Pat<(v4i64 (X86vzmovl (insert_subvector undef, (v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i64 0), (VMOVQI2PQIZrm addr:$src), sub_xmm)>; // Move low f64 and clear high bits. def : Pat<(v4f64 (X86vzmovl (v4f64 VR256X:$src))), (SUBREG_TO_REG (i32 0), (VMOVSDZrr (v2f64 (AVX512_128_SET0)), (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)), sub_xmm)>; def : Pat<(v8f64 (X86vzmovl (v8f64 VR512:$src))), (SUBREG_TO_REG (i32 0), (VMOVSDZrr (v2f64 (AVX512_128_SET0)), (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm)), sub_xmm)>; def : Pat<(v4i64 (X86vzmovl (v4i64 VR256X:$src))), (SUBREG_TO_REG (i32 0), (VMOVSDZrr (v2i64 (AVX512_128_SET0)), (EXTRACT_SUBREG (v4i64 VR256X:$src), sub_xmm)), sub_xmm)>; def : Pat<(v8i64 (X86vzmovl (v8i64 VR512:$src))), (SUBREG_TO_REG (i32 0), (VMOVSDZrr (v2i64 (AVX512_128_SET0)), (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm)), sub_xmm)>; // Extract and store. def : Pat<(store (f32 (extractelt (v4f32 VR128X:$src), (iPTR 0))), addr:$dst), (VMOVSSZmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128X:$src), FR32X))>; // Shuffle with VMOVSS def : Pat<(v4i32 (X86Movss VR128X:$src1, VR128X:$src2)), (VMOVSSZrr (v4i32 VR128X:$src1), VR128X:$src2)>; def : Pat<(v4f32 (X86Movss VR128X:$src1, (scalar_to_vector FR32X:$src2))), (VMOVSSZrr VR128X:$src1, (COPY_TO_REGCLASS FR32X:$src2, VR128X))>; // Shuffle with VMOVSD def : Pat<(v2i64 (X86Movsd VR128X:$src1, VR128X:$src2)), (VMOVSDZrr VR128X:$src1, VR128X:$src2)>; def : Pat<(v2f64 (X86Movsd VR128X:$src1, (scalar_to_vector FR64X:$src2))), (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS FR64X:$src2, VR128X))>; def : Pat<(v2f64 (X86Movlpd VR128X:$src1, VR128X:$src2)), (VMOVSDZrr VR128X:$src1, VR128X:$src2)>; def : Pat<(v4f32 (X86Movlps VR128X:$src1, VR128X:$src2)), (VMOVSDZrr VR128X:$src1, VR128X:$src2)>; } let AddedComplexity = 15 in def VMOVZPQILo2PQIZrr : AVX512XSI<0x7E, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v2i64 (X86vzmovl (v2i64 VR128X:$src))))], IIC_SSE_MOVQ_RR>, EVEX, VEX_W; let Predicates = [HasAVX512] in { let AddedComplexity = 15 in { def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))), (VMOVDI2PDIZrr GR32:$src)>; def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))), (VMOV64toPQIZrr GR64:$src)>; def : Pat<(v4i64 (X86vzmovl (insert_subvector undef, (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))), (SUBREG_TO_REG (i64 0), (VMOV64toPQIZrr GR64:$src), sub_xmm)>; def : Pat<(v8i64 (X86vzmovl (insert_subvector undef, (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))), (SUBREG_TO_REG (i64 0), (VMOV64toPQIZrr GR64:$src), sub_xmm)>; } // AVX 128-bit movd/movq instruction write zeros in the high 128-bit part. let AddedComplexity = 20 in { def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v4i32 (X86vzload addr:$src)), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v8i32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrm addr:$src), sub_xmm)>; def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), (VMOVQI2PQIZrm addr:$src)>; def : Pat<(v2f64 (X86vzmovl (v2f64 VR128X:$src))), (VMOVZPQILo2PQIZrr VR128X:$src)>; def : Pat<(v2i64 (X86vzload addr:$src)), (VMOVQI2PQIZrm addr:$src)>; def : Pat<(v4i64 (X86vzload addr:$src)), (SUBREG_TO_REG (i64 0), (VMOVQI2PQIZrm addr:$src), sub_xmm)>; } // Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext. def : Pat<(v8i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrr GR32:$src), sub_xmm)>; def : Pat<(v16i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrr GR32:$src), sub_xmm)>; // Use regular 128-bit instructions to match 512-bit scalar_to_vec+zext. def : Pat<(v16i32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrm addr:$src), sub_xmm)>; def : Pat<(v8i64 (X86vzload addr:$src)), (SUBREG_TO_REG (i64 0), (VMOVQI2PQIZrm addr:$src), sub_xmm)>; } //===----------------------------------------------------------------------===// // AVX-512 - Non-temporals //===----------------------------------------------------------------------===// let SchedRW = [WriteLoad] in { def VMOVNTDQAZrm : AVX512PI<0x2A, MRMSrcMem, (outs VR512:$dst), (ins i512mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [], SSEPackedInt>, EVEX, T8PD, EVEX_V512, EVEX_CD8<64, CD8VF>; let Predicates = [HasVLX] in { def VMOVNTDQAZ256rm : AVX512PI<0x2A, MRMSrcMem, (outs VR256X:$dst), (ins i256mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [], SSEPackedInt>, EVEX, T8PD, EVEX_V256, EVEX_CD8<64, CD8VF>; def VMOVNTDQAZ128rm : AVX512PI<0x2A, MRMSrcMem, (outs VR128X:$dst), (ins i128mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [], SSEPackedInt>, EVEX, T8PD, EVEX_V128, EVEX_CD8<64, CD8VF>; } } multiclass avx512_movnt opc, string OpcodeStr, X86VectorVTInfo _, PatFrag st_frag = alignednontemporalstore, InstrItinClass itin = IIC_SSE_MOVNT> { let SchedRW = [WriteStore], AddedComplexity = 400 in def mr : AVX512PI, EVEX, EVEX_CD8<_.EltSize, CD8VF>; } multiclass avx512_movnt_vl opc, string OpcodeStr, AVX512VLVectorVTInfo VTInfo> { let Predicates = [HasAVX512] in defm Z : avx512_movnt, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_movnt, EVEX_V256; defm Z128 : avx512_movnt, EVEX_V128; } } defm VMOVNTDQ : avx512_movnt_vl<0xE7, "vmovntdq", avx512vl_i64_info>, PD; defm VMOVNTPD : avx512_movnt_vl<0x2B, "vmovntpd", avx512vl_f64_info>, PD, VEX_W; defm VMOVNTPS : avx512_movnt_vl<0x2B, "vmovntps", avx512vl_f32_info>, PS; let Predicates = [HasAVX512], AddedComplexity = 400 in { def : Pat<(alignednontemporalstore (v16i32 VR512:$src), addr:$dst), (VMOVNTDQZmr addr:$dst, VR512:$src)>; def : Pat<(alignednontemporalstore (v32i16 VR512:$src), addr:$dst), (VMOVNTDQZmr addr:$dst, VR512:$src)>; def : Pat<(alignednontemporalstore (v64i8 VR512:$src), addr:$dst), (VMOVNTDQZmr addr:$dst, VR512:$src)>; def : Pat<(v8f64 (alignednontemporalload addr:$src)), (VMOVNTDQAZrm addr:$src)>; def : Pat<(v16f32 (alignednontemporalload addr:$src)), (VMOVNTDQAZrm addr:$src)>; def : Pat<(v8i64 (alignednontemporalload addr:$src)), (VMOVNTDQAZrm addr:$src)>; } let Predicates = [HasVLX], AddedComplexity = 400 in { def : Pat<(alignednontemporalstore (v8i32 VR256X:$src), addr:$dst), (VMOVNTDQZ256mr addr:$dst, VR256X:$src)>; def : Pat<(alignednontemporalstore (v16i16 VR256X:$src), addr:$dst), (VMOVNTDQZ256mr addr:$dst, VR256X:$src)>; def : Pat<(alignednontemporalstore (v32i8 VR256X:$src), addr:$dst), (VMOVNTDQZ256mr addr:$dst, VR256X:$src)>; def : Pat<(v4f64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ256rm addr:$src)>; def : Pat<(v8f32 (alignednontemporalload addr:$src)), (VMOVNTDQAZ256rm addr:$src)>; def : Pat<(v4i64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ256rm addr:$src)>; def : Pat<(alignednontemporalstore (v4i32 VR128X:$src), addr:$dst), (VMOVNTDQZ128mr addr:$dst, VR128X:$src)>; def : Pat<(alignednontemporalstore (v8i16 VR128X:$src), addr:$dst), (VMOVNTDQZ128mr addr:$dst, VR128X:$src)>; def : Pat<(alignednontemporalstore (v16i8 VR128X:$src), addr:$dst), (VMOVNTDQZ128mr addr:$dst, VR128X:$src)>; def : Pat<(v2f64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ128rm addr:$src)>; def : Pat<(v4f32 (alignednontemporalload addr:$src)), (VMOVNTDQAZ128rm addr:$src)>; def : Pat<(v2i64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ128rm addr:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 - Integer arithmetic // multiclass avx512_binop_rm opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, OpndItins itins, bit IsCommutable = 0> { defm rr : AVX512_maskable, AVX512BIBase, EVEX_4V, Sched<[itins.Sched]>; defm rm : AVX512_maskable, AVX512BIBase, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_binop_rmb opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, OpndItins itins, bit IsCommutable = 0> : avx512_binop_rm { defm rmb : AVX512_maskable, AVX512BIBase, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_binop_rm_vl opc, string OpcodeStr, SDNode OpNode, AVX512VLVectorVTInfo VTInfo, OpndItins itins, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_binop_rm, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_binop_rm, EVEX_V256; defm Z128 : avx512_binop_rm, EVEX_V128; } } multiclass avx512_binop_rmb_vl opc, string OpcodeStr, SDNode OpNode, AVX512VLVectorVTInfo VTInfo, OpndItins itins, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_binop_rmb, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_binop_rmb, EVEX_V256; defm Z128 : avx512_binop_rmb, EVEX_V128; } } multiclass avx512_binop_rm_vl_q opc, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rmb_vl, VEX_W, EVEX_CD8<64, CD8VF>; } multiclass avx512_binop_rm_vl_d opc, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rmb_vl, EVEX_CD8<32, CD8VF>; } multiclass avx512_binop_rm_vl_w opc, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rm_vl, EVEX_CD8<16, CD8VF>, VEX_WIG; } multiclass avx512_binop_rm_vl_b opc, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rm_vl, EVEX_CD8<8, CD8VF>, VEX_WIG; } multiclass avx512_binop_rm_vl_dq opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd, bit IsCommutable = 0> { defm Q : avx512_binop_rm_vl_q; defm D : avx512_binop_rm_vl_d; } multiclass avx512_binop_rm_vl_bw opc_b, bits<8> opc_w, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd, bit IsCommutable = 0> { defm W : avx512_binop_rm_vl_w; defm B : avx512_binop_rm_vl_b; } multiclass avx512_binop_rm_vl_all opc_b, bits<8> opc_w, bits<8> opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, OpndItins itins, bit IsCommutable = 0> { defm NAME : avx512_binop_rm_vl_dq, avx512_binop_rm_vl_bw; } multiclass avx512_binop_rm2 opc, string OpcodeStr, OpndItins itins, SDNode OpNode,X86VectorVTInfo _Src, X86VectorVTInfo _Dst, X86VectorVTInfo _Brdct, bit IsCommutable = 0> { defm rr : AVX512_maskable, AVX512BIBase, EVEX_4V, Sched<[itins.Sched]>; defm rm : AVX512_maskable, AVX512BIBase, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmb : AVX512_maskable, AVX512BIBase, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } defm VPADD : avx512_binop_rm_vl_all<0xFC, 0xFD, 0xFE, 0xD4, "vpadd", add, SSE_INTALU_ITINS_P, 1>; defm VPSUB : avx512_binop_rm_vl_all<0xF8, 0xF9, 0xFA, 0xFB, "vpsub", sub, SSE_INTALU_ITINS_P, 0>; defm VPADDS : avx512_binop_rm_vl_bw<0xEC, 0xED, "vpadds", X86adds, SSE_INTALU_ITINS_P, HasBWI, 1>; defm VPSUBS : avx512_binop_rm_vl_bw<0xE8, 0xE9, "vpsubs", X86subs, SSE_INTALU_ITINS_P, HasBWI, 0>; defm VPADDUS : avx512_binop_rm_vl_bw<0xDC, 0xDD, "vpaddus", X86addus, SSE_INTALU_ITINS_P, HasBWI, 1>; defm VPSUBUS : avx512_binop_rm_vl_bw<0xD8, 0xD9, "vpsubus", X86subus, SSE_INTALU_ITINS_P, HasBWI, 0>; defm VPMULLD : avx512_binop_rm_vl_d<0x40, "vpmulld", mul, SSE_INTMUL_ITINS_P, HasAVX512, 1>, T8PD; defm VPMULLW : avx512_binop_rm_vl_w<0xD5, "vpmullw", mul, SSE_INTMUL_ITINS_P, HasBWI, 1>; defm VPMULLQ : avx512_binop_rm_vl_q<0x40, "vpmullq", mul, SSE_INTMUL_ITINS_P, HasDQI, 1>, T8PD; defm VPMULHW : avx512_binop_rm_vl_w<0xE5, "vpmulhw", mulhs, SSE_INTMUL_ITINS_P, HasBWI, 1>; defm VPMULHUW : avx512_binop_rm_vl_w<0xE4, "vpmulhuw", mulhu, SSE_INTMUL_ITINS_P, HasBWI, 1>; defm VPMULHRSW : avx512_binop_rm_vl_w<0x0B, "vpmulhrsw", X86mulhrs, SSE_INTMUL_ITINS_P, HasBWI, 1>, T8PD; defm VPAVG : avx512_binop_rm_vl_bw<0xE0, 0xE3, "vpavg", X86avg, SSE_INTALU_ITINS_P, HasBWI, 1>; multiclass avx512_binop_all opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo _SrcVTInfo, AVX512VLVectorVTInfo _DstVTInfo, SDNode OpNode, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm NAME#Z : avx512_binop_rm2, EVEX_V512, EVEX_CD8<64, CD8VF>, VEX_W; let Predicates = [HasVLX, prd] in { defm NAME#Z256 : avx512_binop_rm2, EVEX_V256, EVEX_CD8<64, CD8VF>, VEX_W; defm NAME#Z128 : avx512_binop_rm2, EVEX_V128, EVEX_CD8<64, CD8VF>, VEX_W; } } defm VPMULDQ : avx512_binop_all<0x28, "vpmuldq", SSE_INTMUL_ITINS_P, avx512vl_i32_info, avx512vl_i64_info, X86pmuldq, HasAVX512, 1>,T8PD; defm VPMULUDQ : avx512_binop_all<0xF4, "vpmuludq", SSE_INTMUL_ITINS_P, avx512vl_i32_info, avx512vl_i64_info, X86pmuludq, HasAVX512, 1>; defm VPMULTISHIFTQB : avx512_binop_all<0x83, "vpmultishiftqb", SSE_INTALU_ITINS_P, avx512vl_i8_info, avx512vl_i8_info, X86multishift, HasVBMI, 0>, T8PD; multiclass avx512_packs_rmb opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _Src, X86VectorVTInfo _Dst, OpndItins itins> { defm rmb : AVX512_maskable, EVEX_4V, EVEX_B, EVEX_CD8<_Src.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_packs_rm opc, string OpcodeStr, SDNode OpNode,X86VectorVTInfo _Src, X86VectorVTInfo _Dst, OpndItins itins, bit IsCommutable = 0> { defm rr : AVX512_maskable, EVEX_CD8<_Src.EltSize, CD8VF>, EVEX_4V, Sched<[itins.Sched]>; defm rm : AVX512_maskable, EVEX_4V, EVEX_CD8<_Src.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_packs_all_i32_i16 opc, string OpcodeStr, SDNode OpNode> { let Predicates = [HasBWI] in defm NAME#Z : avx512_packs_rm, avx512_packs_rmb, EVEX_V512; let Predicates = [HasBWI, HasVLX] in { defm NAME#Z256 : avx512_packs_rm, avx512_packs_rmb, EVEX_V256; defm NAME#Z128 : avx512_packs_rm, avx512_packs_rmb, EVEX_V128; } } multiclass avx512_packs_all_i16_i8 opc, string OpcodeStr, SDNode OpNode> { let Predicates = [HasBWI] in defm NAME#Z : avx512_packs_rm, EVEX_V512, VEX_WIG; let Predicates = [HasBWI, HasVLX] in { defm NAME#Z256 : avx512_packs_rm, EVEX_V256, VEX_WIG; defm NAME#Z128 : avx512_packs_rm, EVEX_V128, VEX_WIG; } } multiclass avx512_vpmadd opc, string OpcodeStr, SDNode OpNode, AVX512VLVectorVTInfo _Src, AVX512VLVectorVTInfo _Dst, bit IsCommutable = 0> { let Predicates = [HasBWI] in defm NAME#Z : avx512_packs_rm, EVEX_V512; let Predicates = [HasBWI, HasVLX] in { defm NAME#Z256 : avx512_packs_rm, EVEX_V256; defm NAME#Z128 : avx512_packs_rm, EVEX_V128; } } defm VPACKSSDW : avx512_packs_all_i32_i16<0x6B, "vpackssdw", X86Packss>, AVX512BIBase; defm VPACKUSDW : avx512_packs_all_i32_i16<0x2b, "vpackusdw", X86Packus>, AVX5128IBase; defm VPACKSSWB : avx512_packs_all_i16_i8 <0x63, "vpacksswb", X86Packss>, AVX512BIBase; defm VPACKUSWB : avx512_packs_all_i16_i8 <0x67, "vpackuswb", X86Packus>, AVX512BIBase; defm VPMADDUBSW : avx512_vpmadd<0x04, "vpmaddubsw", X86vpmaddubsw, avx512vl_i8_info, avx512vl_i16_info>, AVX512BIBase, T8PD, VEX_WIG; defm VPMADDWD : avx512_vpmadd<0xF5, "vpmaddwd", X86vpmaddwd, avx512vl_i16_info, avx512vl_i32_info, 1>, AVX512BIBase, VEX_WIG; defm VPMAXSB : avx512_binop_rm_vl_b<0x3C, "vpmaxsb", smax, SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD; defm VPMAXSW : avx512_binop_rm_vl_w<0xEE, "vpmaxsw", smax, SSE_INTALU_ITINS_P, HasBWI, 1>; defm VPMAXS : avx512_binop_rm_vl_dq<0x3D, 0x3D, "vpmaxs", smax, SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD; defm VPMAXUB : avx512_binop_rm_vl_b<0xDE, "vpmaxub", umax, SSE_INTALU_ITINS_P, HasBWI, 1>; defm VPMAXUW : avx512_binop_rm_vl_w<0x3E, "vpmaxuw", umax, SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD; defm VPMAXU : avx512_binop_rm_vl_dq<0x3F, 0x3F, "vpmaxu", umax, SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD; defm VPMINSB : avx512_binop_rm_vl_b<0x38, "vpminsb", smin, SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD; defm VPMINSW : avx512_binop_rm_vl_w<0xEA, "vpminsw", smin, SSE_INTALU_ITINS_P, HasBWI, 1>; defm VPMINS : avx512_binop_rm_vl_dq<0x39, 0x39, "vpmins", smin, SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD; defm VPMINUB : avx512_binop_rm_vl_b<0xDA, "vpminub", umin, SSE_INTALU_ITINS_P, HasBWI, 1>; defm VPMINUW : avx512_binop_rm_vl_w<0x3A, "vpminuw", umin, SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD; defm VPMINU : avx512_binop_rm_vl_dq<0x3B, 0x3B, "vpminu", umin, SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD; // PMULLQ: Use 512bit version to implement 128/256 bit in case NoVLX. let Predicates = [HasDQI, NoVLX] in { def : Pat<(v4i64 (mul (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (mul (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } // PMULLQ: Use 512bit version to implement 128/256 bit in case NoVLX. let Predicates = [HasDQI, NoVLX] in { def : Pat<(v4i64 (mul (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (mul (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } multiclass avx512_min_max_lowering { def : Pat<(v4i64 (OpNode VR256X:$src1, VR256X:$src2)), (EXTRACT_SUBREG (Instr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (OpNode VR128X:$src1, VR128X:$src2)), (EXTRACT_SUBREG (Instr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } let Predicates = [HasAVX512, NoVLX] in { defm : avx512_min_max_lowering; defm : avx512_min_max_lowering; defm : avx512_min_max_lowering; defm : avx512_min_max_lowering; } //===----------------------------------------------------------------------===// // AVX-512 Logical Instructions //===----------------------------------------------------------------------===// // OpNodeMsk is the OpNode to use when element size is important. OpNode will // be set to null_frag for 32-bit elements. multiclass avx512_logic_rm opc, string OpcodeStr, SDPatternOperator OpNode, SDNode OpNodeMsk, OpndItins itins, X86VectorVTInfo _, bit IsCommutable = 0> { let hasSideEffects = 0 in defm rr : AVX512_maskable_logic, AVX512BIBase, EVEX_4V, Sched<[itins.Sched]>; let hasSideEffects = 0, mayLoad = 1 in defm rm : AVX512_maskable_logic, AVX512BIBase, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; } // OpNodeMsk is the OpNode to use where element size is important. So use // for all of the broadcast patterns. multiclass avx512_logic_rmb opc, string OpcodeStr, SDPatternOperator OpNode, SDNode OpNodeMsk, OpndItins itins, X86VectorVTInfo _, bit IsCommutable = 0> : avx512_logic_rm { defm rmb : AVX512_maskable_logic, AVX512BIBase, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_logic_rmb_vl opc, string OpcodeStr, SDPatternOperator OpNode, SDNode OpNodeMsk, OpndItins itins, AVX512VLVectorVTInfo VTInfo, bit IsCommutable = 0> { let Predicates = [HasAVX512] in defm Z : avx512_logic_rmb, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_logic_rmb, EVEX_V256; defm Z128 : avx512_logic_rmb, EVEX_V128; } } multiclass avx512_logic_rm_vl_dq opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, OpndItins itins, bit IsCommutable = 0> { defm Q : avx512_logic_rmb_vl, VEX_W, EVEX_CD8<64, CD8VF>; defm D : avx512_logic_rmb_vl, EVEX_CD8<32, CD8VF>; } defm VPAND : avx512_logic_rm_vl_dq<0xDB, 0xDB, "vpand", and, SSE_BIT_ITINS_P, 1>; defm VPOR : avx512_logic_rm_vl_dq<0xEB, 0xEB, "vpor", or, SSE_BIT_ITINS_P, 1>; defm VPXOR : avx512_logic_rm_vl_dq<0xEF, 0xEF, "vpxor", xor, SSE_BIT_ITINS_P, 1>; defm VPANDN : avx512_logic_rm_vl_dq<0xDF, 0xDF, "vpandn", X86andnp, SSE_BIT_ITINS_P>; //===----------------------------------------------------------------------===// // AVX-512 FP arithmetic //===----------------------------------------------------------------------===// multiclass avx512_fp_scalar opc, string OpcodeStr,X86VectorVTInfo _, SDNode OpNode, SDNode VecNode, OpndItins itins, bit IsCommutable> { let ExeDomain = _.ExeDomain in { defm rr_Int : AVX512_maskable_scalar, Sched<[itins.Sched]>; defm rm_Int : AVX512_maskable_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, Predicates = [HasAVX512] in { def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))], itins.rr>, Sched<[itins.Sched]> { let isCommutable = IsCommutable; } def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2)))], itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } } multiclass avx512_fp_scalar_round opc, string OpcodeStr,X86VectorVTInfo _, SDNode VecNode, OpndItins itins, bit IsCommutable = 0> { let ExeDomain = _.ExeDomain in defm rrb_Int : AVX512_maskable_scalar, EVEX_B, EVEX_RC, Sched<[itins.Sched]>; } multiclass avx512_fp_scalar_sae opc, string OpcodeStr,X86VectorVTInfo _, SDNode OpNode, SDNode VecNode, SDNode SaeNode, OpndItins itins, bit IsCommutable> { let ExeDomain = _.ExeDomain in { defm rr_Int : AVX512_maskable_scalar, Sched<[itins.Sched]>; defm rm_Int : AVX512_maskable_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, Predicates = [HasAVX512] in { def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))], itins.rr>, Sched<[itins.Sched]> { let isCommutable = IsCommutable; } def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2)))], itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } defm rrb_Int : AVX512_maskable_scalar, EVEX_B, Sched<[itins.Sched]>; } } multiclass avx512_binop_s_round opc, string OpcodeStr, SDNode OpNode, SDNode VecNode, SizeItins itins, bit IsCommutable> { defm SSZ : avx512_fp_scalar, avx512_fp_scalar_round, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm SDZ : avx512_fp_scalar, avx512_fp_scalar_round, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; } multiclass avx512_binop_s_sae opc, string OpcodeStr, SDNode OpNode, SDNode VecNode, SDNode SaeNode, SizeItins itins, bit IsCommutable> { defm SSZ : avx512_fp_scalar_sae, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm SDZ : avx512_fp_scalar_sae, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; } defm VADD : avx512_binop_s_round<0x58, "vadd", fadd, X86faddRnds, SSE_ALU_ITINS_S, 1>; defm VMUL : avx512_binop_s_round<0x59, "vmul", fmul, X86fmulRnds, SSE_MUL_ITINS_S, 1>; defm VSUB : avx512_binop_s_round<0x5C, "vsub", fsub, X86fsubRnds, SSE_ALU_ITINS_S, 0>; defm VDIV : avx512_binop_s_round<0x5E, "vdiv", fdiv, X86fdivRnds, SSE_DIV_ITINS_S, 0>; defm VMIN : avx512_binop_s_sae <0x5D, "vmin", X86fmin, X86fmins, X86fminRnds, SSE_ALU_ITINS_S, 0>; defm VMAX : avx512_binop_s_sae <0x5F, "vmax", X86fmax, X86fmaxs, X86fmaxRnds, SSE_ALU_ITINS_S, 0>; // MIN/MAX nodes are commutable under "unsafe-fp-math". In this case we use // X86fminc and X86fmaxc instead of X86fmin and X86fmax multiclass avx512_comutable_binop_s opc, string OpcodeStr, X86VectorVTInfo _, SDNode OpNode, OpndItins itins> { let isCodeGenOnly = 1, Predicates = [HasAVX512], ExeDomain = _.ExeDomain in { def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))], itins.rr>, Sched<[itins.Sched]> { let isCommutable = 1; } def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2)))], itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } defm VMINCSSZ : avx512_comutable_binop_s<0x5D, "vminss", f32x_info, X86fminc, SSE_ALU_ITINS_S.s>, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VMINCSDZ : avx512_comutable_binop_s<0x5D, "vminsd", f64x_info, X86fminc, SSE_ALU_ITINS_S.d>, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; defm VMAXCSSZ : avx512_comutable_binop_s<0x5F, "vmaxss", f32x_info, X86fmaxc, SSE_ALU_ITINS_S.s>, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VMAXCSDZ : avx512_comutable_binop_s<0x5F, "vmaxsd", f64x_info, X86fmaxc, SSE_ALU_ITINS_S.d>, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; multiclass avx512_fp_packed opc, string OpcodeStr, SDPatternOperator OpNode, X86VectorVTInfo _, OpndItins itins, bit IsCommutable> { let ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm rr: AVX512_maskable, EVEX_4V, Sched<[itins.Sched]>; let mayLoad = 1 in { defm rm: AVX512_maskable, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmb: AVX512_maskable, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } } multiclass avx512_fp_round_packed opc, string OpcodeStr, SDPatternOperator OpNodeRnd, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrb: AVX512_maskable, EVEX_4V, EVEX_B, EVEX_RC, Sched<[itins.Sched]>; } multiclass avx512_fp_sae_packed opc, string OpcodeStr, SDPatternOperator OpNodeRnd, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrb: AVX512_maskable, EVEX_4V, EVEX_B, Sched<[itins.Sched]>; } multiclass avx512_fp_binop_p opc, string OpcodeStr, SDPatternOperator OpNode, Predicate prd, SizeItins itins, bit IsCommutable = 0> { let Predicates = [prd] in { defm PSZ : avx512_fp_packed, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_packed, EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>; } // Define only if AVX512VL feature is present. let Predicates = [prd, HasVLX] in { defm PSZ128 : avx512_fp_packed, EVEX_V128, PS, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp_packed, EVEX_V256, PS, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp_packed, EVEX_V128, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp_packed, EVEX_V256, PD, VEX_W, EVEX_CD8<64, CD8VF>; } } multiclass avx512_fp_binop_p_round opc, string OpcodeStr, SDNode OpNodeRnd, SizeItins itins> { defm PSZ : avx512_fp_round_packed, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_round_packed, EVEX_V512, PD, VEX_W,EVEX_CD8<64, CD8VF>; } multiclass avx512_fp_binop_p_sae opc, string OpcodeStr, SDNode OpNodeRnd, SizeItins itins> { defm PSZ : avx512_fp_sae_packed, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_sae_packed, EVEX_V512, PD, VEX_W,EVEX_CD8<64, CD8VF>; } defm VADD : avx512_fp_binop_p<0x58, "vadd", fadd, HasAVX512, SSE_ALU_ITINS_P, 1>, avx512_fp_binop_p_round<0x58, "vadd", X86faddRnd, SSE_ALU_ITINS_P>; defm VMUL : avx512_fp_binop_p<0x59, "vmul", fmul, HasAVX512, SSE_MUL_ITINS_P, 1>, avx512_fp_binop_p_round<0x59, "vmul", X86fmulRnd, SSE_MUL_ITINS_P>; defm VSUB : avx512_fp_binop_p<0x5C, "vsub", fsub, HasAVX512, SSE_ALU_ITINS_P>, avx512_fp_binop_p_round<0x5C, "vsub", X86fsubRnd, SSE_ALU_ITINS_P>; defm VDIV : avx512_fp_binop_p<0x5E, "vdiv", fdiv, HasAVX512, SSE_DIV_ITINS_P>, avx512_fp_binop_p_round<0x5E, "vdiv", X86fdivRnd, SSE_DIV_ITINS_P>; defm VMIN : avx512_fp_binop_p<0x5D, "vmin", X86fmin, HasAVX512, SSE_ALU_ITINS_P, 0>, avx512_fp_binop_p_sae<0x5D, "vmin", X86fminRnd, SSE_ALU_ITINS_P>; defm VMAX : avx512_fp_binop_p<0x5F, "vmax", X86fmax, HasAVX512, SSE_ALU_ITINS_P, 0>, avx512_fp_binop_p_sae<0x5F, "vmax", X86fmaxRnd, SSE_ALU_ITINS_P>; let isCodeGenOnly = 1 in { defm VMINC : avx512_fp_binop_p<0x5D, "vmin", X86fminc, HasAVX512, SSE_ALU_ITINS_P, 1>; defm VMAXC : avx512_fp_binop_p<0x5F, "vmax", X86fmaxc, HasAVX512, SSE_ALU_ITINS_P, 1>; } defm VAND : avx512_fp_binop_p<0x54, "vand", null_frag, HasDQI, SSE_ALU_ITINS_P, 1>; defm VANDN : avx512_fp_binop_p<0x55, "vandn", null_frag, HasDQI, SSE_ALU_ITINS_P, 0>; defm VOR : avx512_fp_binop_p<0x56, "vor", null_frag, HasDQI, SSE_ALU_ITINS_P, 1>; defm VXOR : avx512_fp_binop_p<0x57, "vxor", null_frag, HasDQI, SSE_ALU_ITINS_P, 1>; // Patterns catch floating point selects with bitcasted integer logic ops. multiclass avx512_fp_logical_lowering { let Predicates = [prd] in { // Masked register-register logical operations. def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, _.RC:$src2))), _.RC:$src0)), (!cast(InstrStr#rrk) _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, _.RC:$src2))), _.ImmAllZerosV)), (!cast(InstrStr#rrkz) _.KRCWM:$mask, _.RC:$src1, _.RC:$src2)>; // Masked register-memory logical operations. def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (load addr:$src2)))), _.RC:$src0)), (!cast(InstrStr#rmk) _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (load addr:$src2)))), _.ImmAllZerosV)), (!cast(InstrStr#rmkz) _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; // Register-broadcast logical operations. def : Pat<(_.i64VT (OpNode _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2)))))), (!cast(InstrStr#rmb) _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2))))))), _.RC:$src0)), (!cast(InstrStr#rmbk) _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2))))))), _.ImmAllZerosV)), (!cast(InstrStr#rmbkz) _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; } } multiclass avx512_fp_logical_lowering_sizes { defm : avx512_fp_logical_lowering; defm : avx512_fp_logical_lowering; defm : avx512_fp_logical_lowering; defm : avx512_fp_logical_lowering; defm : avx512_fp_logical_lowering; defm : avx512_fp_logical_lowering; } defm : avx512_fp_logical_lowering_sizes<"VPAND", and>; defm : avx512_fp_logical_lowering_sizes<"VPOR", or>; defm : avx512_fp_logical_lowering_sizes<"VPXOR", xor>; defm : avx512_fp_logical_lowering_sizes<"VPANDN", X86andnp>; let Predicates = [HasVLX,HasDQI] in { // Use packed logical operations for scalar ops. def : Pat<(f64 (X86fand FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (VANDPDZ128rr (COPY_TO_REGCLASS FR64X:$src1, VR128X), (COPY_TO_REGCLASS FR64X:$src2, VR128X)), FR64X)>; def : Pat<(f64 (X86for FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (VORPDZ128rr (COPY_TO_REGCLASS FR64X:$src1, VR128X), (COPY_TO_REGCLASS FR64X:$src2, VR128X)), FR64X)>; def : Pat<(f64 (X86fxor FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (VXORPDZ128rr (COPY_TO_REGCLASS FR64X:$src1, VR128X), (COPY_TO_REGCLASS FR64X:$src2, VR128X)), FR64X)>; def : Pat<(f64 (X86fandn FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (VANDNPDZ128rr (COPY_TO_REGCLASS FR64X:$src1, VR128X), (COPY_TO_REGCLASS FR64X:$src2, VR128X)), FR64X)>; def : Pat<(f32 (X86fand FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (VANDPSZ128rr (COPY_TO_REGCLASS FR32X:$src1, VR128X), (COPY_TO_REGCLASS FR32X:$src2, VR128X)), FR32X)>; def : Pat<(f32 (X86for FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (VORPSZ128rr (COPY_TO_REGCLASS FR32X:$src1, VR128X), (COPY_TO_REGCLASS FR32X:$src2, VR128X)), FR32X)>; def : Pat<(f32 (X86fxor FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (VXORPSZ128rr (COPY_TO_REGCLASS FR32X:$src1, VR128X), (COPY_TO_REGCLASS FR32X:$src2, VR128X)), FR32X)>; def : Pat<(f32 (X86fandn FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (VANDNPSZ128rr (COPY_TO_REGCLASS FR32X:$src1, VR128X), (COPY_TO_REGCLASS FR32X:$src2, VR128X)), FR32X)>; } multiclass avx512_fp_scalef_p opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr: AVX512_maskable, EVEX_4V, Sched<[itins.Sched]>; defm rm: AVX512_maskable, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmb: AVX512_maskable, EVEX_4V, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp_scalef_scalar opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr: AVX512_maskable_scalar, Sched<[itins.Sched]>; defm rm: AVX512_maskable_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp_scalef_all opc, bits<8> opcScaler, string OpcodeStr, SDNode OpNode, SDNode OpNodeScal> { defm PSZ : avx512_fp_scalef_p, avx512_fp_round_packed, EVEX_V512, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_scalef_p, avx512_fp_round_packed, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>; defm SSZ128 : avx512_fp_scalef_scalar, avx512_fp_scalar_round, EVEX_4V,EVEX_CD8<32, CD8VT1>; defm SDZ128 : avx512_fp_scalef_scalar, avx512_fp_scalar_round, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_fp_scalef_p, EVEX_V128, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp_scalef_p, EVEX_V256, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp_scalef_p, EVEX_V128, VEX_W, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp_scalef_p, EVEX_V256, VEX_W, EVEX_CD8<64, CD8VF>; } } defm VSCALEF : avx512_fp_scalef_all<0x2C, 0x2D, "vscalef", X86scalef, X86scalefs>, T8PD; //===----------------------------------------------------------------------===// // AVX-512 VPTESTM instructions //===----------------------------------------------------------------------===// multiclass avx512_vptest opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { let isCommutable = 1 in defm rr : AVX512_maskable_cmp, EVEX_4V, Sched<[itins.Sched]>; defm rm : AVX512_maskable_cmp, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_vptest_mb opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rmb : AVX512_maskable_cmp, EVEX_B, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } // Use 512bit version to implement 128/256 bit in case NoVLX. multiclass avx512_vptest_lowering { def : Pat<(_.KVT (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2))), (_.KVT (COPY_TO_REGCLASS (!cast(NAME # Suffix # "Zrr") (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src1, _.SubRegIdx), (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src2, _.SubRegIdx)), _.KRC))>; } multiclass avx512_vptest_dq_sizes opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo _, string Suffix> { let Predicates = [HasAVX512] in defm Z : avx512_vptest, avx512_vptest_mb, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_vptest, avx512_vptest_mb, EVEX_V256; defm Z128 : avx512_vptest, avx512_vptest_mb, EVEX_V128; } let Predicates = [HasAVX512, NoVLX] in { defm Z256_Alt : avx512_vptest_lowering< OpNode, _.info512, _.info256, Suffix>; defm Z128_Alt : avx512_vptest_lowering< OpNode, _.info512, _.info128, Suffix>; } } multiclass avx512_vptest_dq opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm D : avx512_vptest_dq_sizes; defm Q : avx512_vptest_dq_sizes, VEX_W; } multiclass avx512_vptest_wb opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { let Predicates = [HasBWI] in { defm WZ: avx512_vptest, EVEX_V512, VEX_W; defm BZ: avx512_vptest, EVEX_V512; } let Predicates = [HasVLX, HasBWI] in { defm WZ256: avx512_vptest, EVEX_V256, VEX_W; defm WZ128: avx512_vptest, EVEX_V128, VEX_W; defm BZ256: avx512_vptest, EVEX_V256; defm BZ128: avx512_vptest, EVEX_V128; } let Predicates = [HasAVX512, NoVLX] in { defm BZ256_Alt : avx512_vptest_lowering< OpNode, v64i8_info, v32i8x_info, "B">; defm BZ128_Alt : avx512_vptest_lowering< OpNode, v64i8_info, v16i8x_info, "B">; defm WZ256_Alt : avx512_vptest_lowering< OpNode, v32i16_info, v16i16x_info, "W">; defm WZ128_Alt : avx512_vptest_lowering< OpNode, v32i16_info, v8i16x_info, "W">; } } multiclass avx512_vptest_all_forms opc_wb, bits<8> opc_dq, string OpcodeStr, SDNode OpNode, OpndItins itins> : avx512_vptest_wb , avx512_vptest_dq; defm VPTESTM : avx512_vptest_all_forms<0x26, 0x27, "vptestm", X86testm, SSE_BIT_ITINS_P>, T8PD; defm VPTESTNM : avx512_vptest_all_forms<0x26, 0x27, "vptestnm", X86testnm, SSE_BIT_ITINS_P>, T8XS; //===----------------------------------------------------------------------===// // AVX-512 Shift instructions //===----------------------------------------------------------------------===// multiclass avx512_shift_rmi opc, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm ri : AVX512_maskable, Sched<[itins.Sched]>; defm mi : AVX512_maskable, Sched<[itins.Sched.Folded]>; } } multiclass avx512_shift_rmbi opc, Format ImmFormM, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm mbi : AVX512_maskable, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_shift_rrm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, ValueType SrcVT, PatFrag bc_frag, X86VectorVTInfo _> { // src2 is always 128-bit let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable, AVX512BIBase, EVEX_4V, Sched<[itins.Sched]>; defm rm : AVX512_maskable, AVX512BIBase, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_shift_sizes opc, string OpcodeStr, SDNode OpNode, OpndItins itins, ValueType SrcVT, PatFrag bc_frag, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_shift_rrm, EVEX_V512, EVEX_CD8 ; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_shift_rrm, EVEX_V256, EVEX_CD8; defm Z128 : avx512_shift_rrm, EVEX_V128, EVEX_CD8; } } multiclass avx512_shift_types opcd, bits<8> opcq, bits<8> opcw, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm D : avx512_shift_sizes; defm Q : avx512_shift_sizes, VEX_W; defm W : avx512_shift_sizes; } multiclass avx512_shift_rmi_sizes opc, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo> { let Predicates = [HasAVX512] in defm Z: avx512_shift_rmi, avx512_shift_rmbi, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256: avx512_shift_rmi, avx512_shift_rmbi, EVEX_V256; defm Z128: avx512_shift_rmi, avx512_shift_rmbi, EVEX_V128; } } multiclass avx512_shift_rmi_w opcw, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, OpndItins itins> { let Predicates = [HasBWI] in defm WZ: avx512_shift_rmi, EVEX_V512, VEX_WIG; let Predicates = [HasVLX, HasBWI] in { defm WZ256: avx512_shift_rmi, EVEX_V256, VEX_WIG; defm WZ128: avx512_shift_rmi, EVEX_V128, VEX_WIG; } } multiclass avx512_shift_rmi_dq opcd, bits<8> opcq, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm D: avx512_shift_rmi_sizes, EVEX_CD8<32, CD8VF>; defm Q: avx512_shift_rmi_sizes, EVEX_CD8<64, CD8VF>, VEX_W; } defm VPSRL : avx512_shift_rmi_dq<0x72, 0x73, MRM2r, MRM2m, "vpsrl", X86vsrli, SSE_INTSHIFT_P>, avx512_shift_rmi_w<0x71, MRM2r, MRM2m, "vpsrlw", X86vsrli, SSE_INTSHIFT_P>, AVX512BIi8Base, EVEX_4V; defm VPSLL : avx512_shift_rmi_dq<0x72, 0x73, MRM6r, MRM6m, "vpsll", X86vshli, SSE_INTSHIFT_P>, avx512_shift_rmi_w<0x71, MRM6r, MRM6m, "vpsllw", X86vshli, SSE_INTSHIFT_P>, AVX512BIi8Base, EVEX_4V; defm VPSRA : avx512_shift_rmi_dq<0x72, 0x72, MRM4r, MRM4m, "vpsra", X86vsrai, SSE_INTSHIFT_P>, avx512_shift_rmi_w<0x71, MRM4r, MRM4m, "vpsraw", X86vsrai, SSE_INTSHIFT_P>, AVX512BIi8Base, EVEX_4V; defm VPROR : avx512_shift_rmi_dq<0x72, 0x72, MRM0r, MRM0m, "vpror", X86vrotri, SSE_INTSHIFT_P>, AVX512BIi8Base, EVEX_4V; defm VPROL : avx512_shift_rmi_dq<0x72, 0x72, MRM1r, MRM1m, "vprol", X86vrotli, SSE_INTSHIFT_P>, AVX512BIi8Base, EVEX_4V; defm VPSLL : avx512_shift_types<0xF2, 0xF3, 0xF1, "vpsll", X86vshl, SSE_INTSHIFT_P>; defm VPSRA : avx512_shift_types<0xE2, 0xE2, 0xE1, "vpsra", X86vsra, SSE_INTSHIFT_P>; defm VPSRL : avx512_shift_types<0xD2, 0xD3, 0xD1, "vpsrl", X86vsrl, SSE_INTSHIFT_P>; // Use 512bit VPSRA/VPSRAI version to implement v2i64/v4i64 in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v4i64 (X86vsra (v4i64 VR256X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), VR128X:$src2)), sub_ymm)>; def : Pat<(v2i64 (X86vsra (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), VR128X:$src2)), sub_xmm)>; def : Pat<(v4i64 (X86vsrai (v4i64 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; def : Pat<(v2i64 (X86vsrai (v2i64 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; } //===-------------------------------------------------------------------===// // Variable Bit Shifts //===-------------------------------------------------------------------===// multiclass avx512_var_shift opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable, AVX5128IBase, EVEX_4V, Sched<[itins.Sched]>; defm rm : AVX512_maskable, AVX5128IBase, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_var_shift_mb opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rmb : AVX512_maskable, AVX5128IBase, EVEX_B, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_var_shift_sizes opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_var_shift, avx512_var_shift_mb, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_var_shift, avx512_var_shift_mb, EVEX_V256; defm Z128 : avx512_var_shift, avx512_var_shift_mb, EVEX_V128; } } multiclass avx512_var_shift_types opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm D : avx512_var_shift_sizes; defm Q : avx512_var_shift_sizes, VEX_W; } // Use 512bit version to implement 128/256 bit in case NoVLX. multiclass avx512_var_shift_lowering p> { let Predicates = p in { def : Pat<(_.info256.VT (OpNode (_.info256.VT _.info256.RC:$src1), (_.info256.VT _.info256.RC:$src2))), (EXTRACT_SUBREG (!cast(OpcodeStr#"Zrr") (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(_.info128.VT (OpNode (_.info128.VT _.info128.RC:$src1), (_.info128.VT _.info128.RC:$src2))), (EXTRACT_SUBREG (!cast(OpcodeStr#"Zrr") (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } } multiclass avx512_var_shift_w opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { let Predicates = [HasBWI] in defm WZ: avx512_var_shift, EVEX_V512, VEX_W; let Predicates = [HasVLX, HasBWI] in { defm WZ256: avx512_var_shift, EVEX_V256, VEX_W; defm WZ128: avx512_var_shift, EVEX_V128, VEX_W; } } defm VPSLLV : avx512_var_shift_types<0x47, "vpsllv", shl, SSE_INTSHIFT_P>, avx512_var_shift_w<0x12, "vpsllvw", shl, SSE_INTSHIFT_P>; defm VPSRAV : avx512_var_shift_types<0x46, "vpsrav", sra, SSE_INTSHIFT_P>, avx512_var_shift_w<0x11, "vpsravw", sra, SSE_INTSHIFT_P>; defm VPSRLV : avx512_var_shift_types<0x45, "vpsrlv", srl, SSE_INTSHIFT_P>, avx512_var_shift_w<0x10, "vpsrlvw", srl, SSE_INTSHIFT_P>; defm VPRORV : avx512_var_shift_types<0x14, "vprorv", rotr, SSE_INTSHIFT_P>; defm VPROLV : avx512_var_shift_types<0x15, "vprolv", rotl, SSE_INTSHIFT_P>; defm : avx512_var_shift_lowering; defm : avx512_var_shift_lowering; defm : avx512_var_shift_lowering; defm : avx512_var_shift_lowering; // Special handing for handling VPSRAV intrinsics. multiclass avx512_var_shift_int_lowering p> { let Predicates = p in { def : Pat<(_.VT (X86vsrav _.RC:$src1, _.RC:$src2)), (!cast(InstrStr#_.ZSuffix#rr) _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (X86vsrav _.RC:$src1, (bitconvert (_.LdFrag addr:$src2)))), (!cast(InstrStr#_.ZSuffix##rm) _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, _.RC:$src2), _.RC:$src0)), (!cast(InstrStr#_.ZSuffix#rrk) _.RC:$src0, _.KRC:$mask, _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (bitconvert (_.LdFrag addr:$src2))), _.RC:$src0)), (!cast(InstrStr#_.ZSuffix##rmk) _.RC:$src0, _.KRC:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, _.RC:$src2), _.ImmAllZerosV)), (!cast(InstrStr#_.ZSuffix#rrkz) _.KRC:$mask, _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (bitconvert (_.LdFrag addr:$src2))), _.ImmAllZerosV)), (!cast(InstrStr#_.ZSuffix##rmkz) _.KRC:$mask, _.RC:$src1, addr:$src2)>; } } multiclass avx512_var_shift_int_lowering_mb p> : avx512_var_shift_int_lowering { let Predicates = p in { def : Pat<(_.VT (X86vsrav _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2)))), (!cast(InstrStr#_.ZSuffix##rmb) _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2))), _.RC:$src0)), (!cast(InstrStr#_.ZSuffix##rmbk) _.RC:$src0, _.KRC:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2))), _.ImmAllZerosV)), (!cast(InstrStr#_.ZSuffix##rmbkz) _.KRC:$mask, _.RC:$src1, addr:$src2)>; } } defm : avx512_var_shift_int_lowering<"VPSRAVW", v8i16x_info, [HasVLX, HasBWI]>; defm : avx512_var_shift_int_lowering<"VPSRAVW", v16i16x_info, [HasVLX, HasBWI]>; defm : avx512_var_shift_int_lowering<"VPSRAVW", v32i16_info, [HasBWI]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v4i32x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v8i32x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v16i32_info, [HasAVX512]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v2i64x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v4i64x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v8i64_info, [HasAVX512]>; // Use 512bit VPROL/VPROLI version to implement v2i64/v4i64 + v4i32/v8i32 in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v2i64 (rotl (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (rotl (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v4i32 (rotl (v4i32 VR128X:$src1), (v4i32 VR128X:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v8i32 (rotl (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v2i64 (X86vrotli (v2i64 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v4i64 (X86vrotli (v4i64 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; def : Pat<(v4i32 (X86vrotli (v4i32 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v8i32 (X86vrotli (v8i32 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; } // Use 512bit VPROR/VPRORI version to implement v2i64/v4i64 + v4i32/v8i32 in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v2i64 (rotr (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (rotr (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v4i32 (rotr (v4i32 VR128X:$src1), (v4i32 VR128X:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v8i32 (rotr (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v2i64 (X86vrotri (v2i64 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v4i64 (X86vrotri (v4i64 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; def : Pat<(v4i32 (X86vrotri (v4i32 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v8i32 (X86vrotri (v8i32 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; } //===-------------------------------------------------------------------===// // 1-src variable permutation VPERMW/D/Q //===-------------------------------------------------------------------===// multiclass avx512_vperm_dq_sizes opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_var_shift, avx512_var_shift_mb, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in defm Z256 : avx512_var_shift, avx512_var_shift_mb, EVEX_V256; } multiclass avx512_vpermi_dq_sizes opc, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo> { let Predicates = [HasAVX512] in defm Z: avx512_shift_rmi, avx512_shift_rmbi, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in defm Z256: avx512_shift_rmi, avx512_shift_rmbi, EVEX_V256; } multiclass avx512_vperm_bw opc, string OpcodeStr, Predicate prd, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo _> { let Predicates = [prd] in defm Z: avx512_var_shift, EVEX_V512 ; let Predicates = [HasVLX, prd] in { defm Z256: avx512_var_shift, EVEX_V256 ; defm Z128: avx512_var_shift, EVEX_V128 ; } } defm VPERMW : avx512_vperm_bw<0x8D, "vpermw", HasBWI, X86VPermv, AVX2_PERMV_I, avx512vl_i16_info>, VEX_W; defm VPERMB : avx512_vperm_bw<0x8D, "vpermb", HasVBMI, X86VPermv, AVX2_PERMV_I, avx512vl_i8_info>; defm VPERMD : avx512_vperm_dq_sizes<0x36, "vpermd", X86VPermv, AVX2_PERMV_I, avx512vl_i32_info>; defm VPERMQ : avx512_vperm_dq_sizes<0x36, "vpermq", X86VPermv, AVX2_PERMV_I, avx512vl_i64_info>, VEX_W; defm VPERMPS : avx512_vperm_dq_sizes<0x16, "vpermps", X86VPermv, AVX2_PERMV_F, avx512vl_f32_info>; defm VPERMPD : avx512_vperm_dq_sizes<0x16, "vpermpd", X86VPermv, AVX2_PERMV_F, avx512vl_f64_info>, VEX_W; defm VPERMQ : avx512_vpermi_dq_sizes<0x00, MRMSrcReg, MRMSrcMem, "vpermq", X86VPermi, AVX2_PERMV_I, avx512vl_i64_info>, EVEX, AVX512AIi8Base, EVEX_CD8<64, CD8VF>, VEX_W; defm VPERMPD : avx512_vpermi_dq_sizes<0x01, MRMSrcReg, MRMSrcMem, "vpermpd", X86VPermi, AVX2_PERMV_F, avx512vl_f64_info>, EVEX, AVX512AIi8Base, EVEX_CD8<64, CD8VF>, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 - VPERMIL //===----------------------------------------------------------------------===// multiclass avx512_permil_vec OpcVar, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _, X86VectorVTInfo Ctrl> { defm rr: AVX512_maskable, T8PD, EVEX_4V, Sched<[itins.Sched]>; defm rm: AVX512_maskable, T8PD, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmb: AVX512_maskable, T8PD, EVEX_4V, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_permil_vec_common OpcVar, OpndItins itins, AVX512VLVectorVTInfo _, AVX512VLVectorVTInfo Ctrl> { let Predicates = [HasAVX512] in { defm Z : avx512_permil_vec, EVEX_V512; } let Predicates = [HasAVX512, HasVLX] in { defm Z128 : avx512_permil_vec, EVEX_V128; defm Z256 : avx512_permil_vec, EVEX_V256; } } multiclass avx512_permil OpcImm, bits<8> OpcVar, AVX512VLVectorVTInfo _, AVX512VLVectorVTInfo Ctrl>{ defm NAME: avx512_permil_vec_common; defm NAME: avx512_shift_rmi_sizes, EVEX, AVX512AIi8Base, EVEX_CD8<_.info128.EltSize, CD8VF>; } let ExeDomain = SSEPackedSingle in defm VPERMILPS : avx512_permil<"vpermilps", 0x04, 0x0C, avx512vl_f32_info, avx512vl_i32_info>; let ExeDomain = SSEPackedDouble in defm VPERMILPD : avx512_permil<"vpermilpd", 0x05, 0x0D, avx512vl_f64_info, avx512vl_i64_info>, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 - VPSHUFD, VPSHUFLW, VPSHUFHW //===----------------------------------------------------------------------===// defm VPSHUFD : avx512_shift_rmi_sizes<0x70, MRMSrcReg, MRMSrcMem, "vpshufd", X86PShufd, SSE_PSHUF, avx512vl_i32_info>, EVEX, AVX512BIi8Base, EVEX_CD8<32, CD8VF>; defm VPSHUFH : avx512_shift_rmi_w<0x70, MRMSrcReg, MRMSrcMem, "vpshufhw", X86PShufhw, SSE_PSHUF>, EVEX, AVX512XSIi8Base; defm VPSHUFL : avx512_shift_rmi_w<0x70, MRMSrcReg, MRMSrcMem, "vpshuflw", X86PShuflw, SSE_PSHUF>, EVEX, AVX512XDIi8Base; multiclass avx512_pshufb_sizes opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { let Predicates = [HasBWI] in defm Z: avx512_var_shift, EVEX_V512; let Predicates = [HasVLX, HasBWI] in { defm Z256: avx512_var_shift, EVEX_V256; defm Z128: avx512_var_shift, EVEX_V128; } } defm VPSHUFB: avx512_pshufb_sizes<0x00, "vpshufb", X86pshufb, SSE_PSHUFB>, VEX_WIG; //===----------------------------------------------------------------------===// // Move Low to High and High to Low packed FP Instructions //===----------------------------------------------------------------------===// def VMOVLHPSZrr : AVX512PSI<0x16, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128X:$dst, (v4f32 (X86Movlhps VR128X:$src1, VR128X:$src2)))], IIC_SSE_MOV_LH>, EVEX_4V; def VMOVHLPSZrr : AVX512PSI<0x12, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128X:$dst, (v4f32 (X86Movhlps VR128X:$src1, VR128X:$src2)))], IIC_SSE_MOV_LH>, EVEX_4V; //===----------------------------------------------------------------------===// // VMOVHPS/PD VMOVLPS Instructions // All patterns was taken from SSS implementation. //===----------------------------------------------------------------------===// multiclass avx512_mov_hilo_packed opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in def rm : AVX512, EVEX_4V; } defm VMOVHPSZ128 : avx512_mov_hilo_packed<0x16, "vmovhps", X86Movlhps, v4f32x_info>, EVEX_CD8<32, CD8VT2>, PS; defm VMOVHPDZ128 : avx512_mov_hilo_packed<0x16, "vmovhpd", X86Unpckl, v2f64x_info>, EVEX_CD8<64, CD8VT1>, PD, VEX_W; defm VMOVLPSZ128 : avx512_mov_hilo_packed<0x12, "vmovlps", X86Movlps, v4f32x_info>, EVEX_CD8<32, CD8VT2>, PS; defm VMOVLPDZ128 : avx512_mov_hilo_packed<0x12, "vmovlpd", X86Movlpd, v2f64x_info>, EVEX_CD8<64, CD8VT1>, PD, VEX_W; let Predicates = [HasAVX512] in { // VMOVHPS patterns def : Pat<(X86Movlhps VR128X:$src1, (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))), (VMOVHPSZ128rm VR128X:$src1, addr:$src2)>; def : Pat<(X86Movlhps VR128X:$src1, (bc_v4f32 (v2i64 (X86vzload addr:$src2)))), (VMOVHPSZ128rm VR128X:$src1, addr:$src2)>; // VMOVHPD patterns def : Pat<(v2f64 (X86Unpckl VR128X:$src1, (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))), (VMOVHPDZ128rm VR128X:$src1, addr:$src2)>; // VMOVLPS patterns def : Pat<(v4f32 (X86Movlps VR128X:$src1, (load addr:$src2))), (VMOVLPSZ128rm VR128X:$src1, addr:$src2)>; // VMOVLPD patterns def : Pat<(v2f64 (X86Movlpd VR128X:$src1, (load addr:$src2))), (VMOVLPDZ128rm VR128X:$src1, addr:$src2)>; def : Pat<(v2f64 (X86Movsd VR128X:$src1, (v2f64 (scalar_to_vector (loadf64 addr:$src2))))), (VMOVLPDZ128rm VR128X:$src1, addr:$src2)>; } def VMOVHPSZ128mr : AVX512PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovhps\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (X86Unpckh (bc_v2f64 (v4f32 VR128X:$src)), (bc_v2f64 (v4f32 VR128X:$src))), (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, EVEX, EVEX_CD8<32, CD8VT2>; def VMOVHPDZ128mr : AVX512PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovhpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 (X86Unpckh VR128X:$src, VR128X:$src)), (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, EVEX, EVEX_CD8<64, CD8VT1>, VEX_W; def VMOVLPSZ128mr : AVX512PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovlps\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (bc_v2f64 (v4f32 VR128X:$src)), (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, EVEX, EVEX_CD8<32, CD8VT2>; def VMOVLPDZ128mr : AVX512PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovlpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 VR128X:$src), (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, EVEX, EVEX_CD8<64, CD8VT1>, VEX_W; let Predicates = [HasAVX512] in { // VMOVHPD patterns def : Pat<(store (f64 (extractelt (v2f64 (X86VPermilpi VR128X:$src, (i8 1))), (iPTR 0))), addr:$dst), (VMOVHPDZ128mr addr:$dst, VR128X:$src)>; // VMOVLPS patterns def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128X:$src2)), addr:$src1), (VMOVLPSZ128mr addr:$src1, VR128X:$src2)>; // VMOVLPD patterns def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128X:$src2)), addr:$src1), (VMOVLPDZ128mr addr:$src1, VR128X:$src2)>; } //===----------------------------------------------------------------------===// // FMA - Fused Multiply Operations // multiclass avx512_fma3p_213_rm opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm r: AVX512_maskable_3src, AVX512FMA3Base, Sched<[WriteFMA]>; defm m: AVX512_maskable_3src, AVX512FMA3Base, Sched<[WriteFMALd, ReadAfterLd]>; defm mb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, Sched<[WriteFMALd, ReadAfterLd]>; } } multiclass avx512_fma3_213_round opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in defm rb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[WriteFMA]>; } multiclass avx512_fma3p_213_common opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, AVX512VLVectorVTInfo _, string Suff> { let Predicates = [HasAVX512] in { defm Z : avx512_fma3p_213_rm, avx512_fma3_213_round, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasAVX512] in { defm Z256 : avx512_fma3p_213_rm, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_fma3p_213_rm, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } multiclass avx512_fma3p_213_f opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd > { defm PS : avx512_fma3p_213_common; defm PD : avx512_fma3p_213_common, VEX_W; } defm VFMADD213 : avx512_fma3p_213_f<0xA8, "vfmadd213", X86Fmadd, X86FmaddRnd>; defm VFMSUB213 : avx512_fma3p_213_f<0xAA, "vfmsub213", X86Fmsub, X86FmsubRnd>; defm VFMADDSUB213 : avx512_fma3p_213_f<0xA6, "vfmaddsub213", X86Fmaddsub, X86FmaddsubRnd>; defm VFMSUBADD213 : avx512_fma3p_213_f<0xA7, "vfmsubadd213", X86Fmsubadd, X86FmsubaddRnd>; defm VFNMADD213 : avx512_fma3p_213_f<0xAC, "vfnmadd213", X86Fnmadd, X86FnmaddRnd>; defm VFNMSUB213 : avx512_fma3p_213_f<0xAE, "vfnmsub213", X86Fnmsub, X86FnmsubRnd>; multiclass avx512_fma3p_231_rm opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm r: AVX512_maskable_3src, AVX512FMA3Base, Sched<[WriteFMA]>; defm m: AVX512_maskable_3src, AVX512FMA3Base, Sched<[WriteFMALd, ReadAfterLd]>; defm mb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, Sched<[WriteFMALd, ReadAfterLd]>; } } multiclass avx512_fma3_231_round opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in defm rb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[WriteFMA]>; } multiclass avx512_fma3p_231_common opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, AVX512VLVectorVTInfo _, string Suff> { let Predicates = [HasAVX512] in { defm Z : avx512_fma3p_231_rm, avx512_fma3_231_round, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasAVX512] in { defm Z256 : avx512_fma3p_231_rm, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_fma3p_231_rm, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } multiclass avx512_fma3p_231_f opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd > { defm PS : avx512_fma3p_231_common; defm PD : avx512_fma3p_231_common, VEX_W; } defm VFMADD231 : avx512_fma3p_231_f<0xB8, "vfmadd231", X86Fmadd, X86FmaddRnd>; defm VFMSUB231 : avx512_fma3p_231_f<0xBA, "vfmsub231", X86Fmsub, X86FmsubRnd>; defm VFMADDSUB231 : avx512_fma3p_231_f<0xB6, "vfmaddsub231", X86Fmaddsub, X86FmaddsubRnd>; defm VFMSUBADD231 : avx512_fma3p_231_f<0xB7, "vfmsubadd231", X86Fmsubadd, X86FmsubaddRnd>; defm VFNMADD231 : avx512_fma3p_231_f<0xBC, "vfnmadd231", X86Fnmadd, X86FnmaddRnd>; defm VFNMSUB231 : avx512_fma3p_231_f<0xBE, "vfnmsub231", X86Fnmsub, X86FnmsubRnd>; multiclass avx512_fma3p_132_rm opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm r: AVX512_maskable_3src, AVX512FMA3Base, Sched<[WriteFMA]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. defm m: AVX512_maskable_3src, AVX512FMA3Base, Sched<[WriteFMALd, ReadAfterLd]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. defm mb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, Sched<[WriteFMALd, ReadAfterLd]>; } } multiclass avx512_fma3_132_round opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in defm rb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[WriteFMA]>; } multiclass avx512_fma3p_132_common opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, AVX512VLVectorVTInfo _, string Suff> { let Predicates = [HasAVX512] in { defm Z : avx512_fma3p_132_rm, avx512_fma3_132_round, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasAVX512] in { defm Z256 : avx512_fma3p_132_rm, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_fma3p_132_rm, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } multiclass avx512_fma3p_132_f opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd > { defm PS : avx512_fma3p_132_common; defm PD : avx512_fma3p_132_common, VEX_W; } defm VFMADD132 : avx512_fma3p_132_f<0x98, "vfmadd132", X86Fmadd, X86FmaddRnd>; defm VFMSUB132 : avx512_fma3p_132_f<0x9A, "vfmsub132", X86Fmsub, X86FmsubRnd>; defm VFMADDSUB132 : avx512_fma3p_132_f<0x96, "vfmaddsub132", X86Fmaddsub, X86FmaddsubRnd>; defm VFMSUBADD132 : avx512_fma3p_132_f<0x97, "vfmsubadd132", X86Fmsubadd, X86FmsubaddRnd>; defm VFNMADD132 : avx512_fma3p_132_f<0x9C, "vfnmadd132", X86Fnmadd, X86FnmaddRnd>; defm VFNMSUB132 : avx512_fma3p_132_f<0x9E, "vfnmsub132", X86Fnmsub, X86FnmsubRnd>; // Scalar FMA multiclass avx512_fma3s_common opc, string OpcodeStr, X86VectorVTInfo _, dag RHS_VEC_r, dag RHS_VEC_m, dag RHS_VEC_rb, dag RHS_r, dag RHS_m, bit MaskOnlyReg> { let Constraints = "$src1 = $dst", hasSideEffects = 0 in { defm r_Int: AVX512_maskable_3src_scalar, AVX512FMA3Base, Sched<[WriteFMA]>; defm m_Int: AVX512_maskable_3src_scalar, AVX512FMA3Base, Sched<[WriteFMALd, ReadAfterLd]>; defm rb_Int: AVX512_maskable_3src_scalar, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[WriteFMA]>; let isCodeGenOnly = 1, isCommutable = 1 in { def r : AVX512FMA3S, Sched<[WriteFMA]>; def m : AVX512FMA3S, Sched<[WriteFMALd, ReadAfterLd]>; }// isCodeGenOnly = 1 }// Constraints = "$src1 = $dst" } multiclass avx512_fma3s_all opc213, bits<8> opc231, bits<8> opc132, string OpcodeStr, SDNode OpNode, SDNode OpNodes1, SDNode OpNodeRnds1, SDNode OpNodes3, SDNode OpNodeRnds3, X86VectorVTInfo _, string SUFF> { let ExeDomain = _.ExeDomain in { defm NAME#213#SUFF#Z: avx512_fma3s_common; defm NAME#231#SUFF#Z: avx512_fma3s_common; // One pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. defm NAME#132#SUFF#Z: avx512_fma3s_common; } } multiclass avx512_fma3s opc213, bits<8> opc231, bits<8> opc132, string OpcodeStr, SDNode OpNode, SDNode OpNodes1, SDNode OpNodeRnds1, SDNode OpNodes3, SDNode OpNodeRnds3> { let Predicates = [HasAVX512] in { defm NAME : avx512_fma3s_all, EVEX_CD8<32, CD8VT1>, VEX_LIG; defm NAME : avx512_fma3s_all, EVEX_CD8<64, CD8VT1>, VEX_LIG, VEX_W; } } defm VFMADD : avx512_fma3s<0xA9, 0xB9, 0x99, "vfmadd", X86Fmadd, X86Fmadds1, X86FmaddRnds1, X86Fmadds3, X86FmaddRnds3>; defm VFMSUB : avx512_fma3s<0xAB, 0xBB, 0x9B, "vfmsub", X86Fmsub, X86Fmsubs1, X86FmsubRnds1, X86Fmsubs3, X86FmsubRnds3>; defm VFNMADD : avx512_fma3s<0xAD, 0xBD, 0x9D, "vfnmadd", X86Fnmadd, X86Fnmadds1, X86FnmaddRnds1, X86Fnmadds3, X86FnmaddRnds3>; defm VFNMSUB : avx512_fma3s<0xAF, 0xBF, 0x9F, "vfnmsub", X86Fnmsub, X86Fnmsubs1, X86FnmsubRnds1, X86Fnmsubs3, X86FnmsubRnds3>; //===----------------------------------------------------------------------===// // AVX-512 Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit IFMA //===----------------------------------------------------------------------===// let Constraints = "$src1 = $dst" in { multiclass avx512_pmadd52_rm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { // NOTE: The SDNode have the multiply operands first with the add last. // This enables commuted load patterns to be autogenerated by tablegen. let ExeDomain = _.ExeDomain in { defm r: AVX512_maskable_3src, AVX512FMA3Base, Sched<[itins.Sched]>; defm m: AVX512_maskable_3src, AVX512FMA3Base, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } } // Constraints = "$src1 = $dst" multiclass avx512_pmadd52_common opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo _> { let Predicates = [HasIFMA] in { defm Z : avx512_pmadd52_rm, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasIFMA] in { defm Z256 : avx512_pmadd52_rm, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_pmadd52_rm, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } defm VPMADD52LUQ : avx512_pmadd52_common<0xb4, "vpmadd52luq", x86vpmadd52l, SSE_PMADD, avx512vl_i64_info>, VEX_W; defm VPMADD52HUQ : avx512_pmadd52_common<0xb5, "vpmadd52huq", x86vpmadd52h, SSE_PMADD, avx512vl_i64_info>, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 Scalar convert from sign integer to float/double //===----------------------------------------------------------------------===// multiclass avx512_vcvtsi opc, SDNode OpNode, OpndItins itins, RegisterClass SrcRC, X86VectorVTInfo DstVT, X86MemOperand x86memop, PatFrag ld_frag, string asm> { let hasSideEffects = 0 in { def rr : SI, EVEX_4V, Sched<[itins.Sched]>; let mayLoad = 1 in def rm : SI, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; } // hasSideEffects = 0 let isCodeGenOnly = 1 in { def rr_Int : SI, EVEX_4V, Sched<[itins.Sched]>; def rm_Int : SI, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; }//isCodeGenOnly = 1 } multiclass avx512_vcvtsi_round opc, SDNode OpNode, OpndItins itins, RegisterClass SrcRC, X86VectorVTInfo DstVT, string asm> { def rrb_Int : SI, EVEX_4V, EVEX_B, EVEX_RC, Sched<[itins.Sched]>; } multiclass avx512_vcvtsi_common opc, SDNode OpNode, OpndItins itins, RegisterClass SrcRC, X86VectorVTInfo DstVT, X86MemOperand x86memop, PatFrag ld_frag, string asm> { defm NAME : avx512_vcvtsi_round, avx512_vcvtsi, VEX_LIG; } let Predicates = [HasAVX512] in { defm VCVTSI2SSZ : avx512_vcvtsi_common<0x2A, X86SintToFpRnd, SSE_CVT_SI2SS, GR32, v4f32x_info, i32mem, loadi32, "cvtsi2ss{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTSI642SSZ: avx512_vcvtsi_common<0x2A, X86SintToFpRnd, SSE_CVT_SI2SS, GR64, v4f32x_info, i64mem, loadi64, "cvtsi2ss{q}">, XS, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCVTSI2SDZ : avx512_vcvtsi_common<0x2A, X86SintToFpRnd, SSE_CVT_SI2SD, GR32, v2f64x_info, i32mem, loadi32, "cvtsi2sd{l}">, XD, EVEX_CD8<32, CD8VT1>; defm VCVTSI642SDZ: avx512_vcvtsi_common<0x2A, X86SintToFpRnd, SSE_CVT_SI2SD, GR64, v2f64x_info, i64mem, loadi64, "cvtsi2sd{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTSI2SSZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0>; def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTSI2SDZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0>; def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))), (VCVTSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))), (VCVTSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))), (VCVTSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))), (VCVTSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (sint_to_fp GR32:$src)), (VCVTSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f32 (sint_to_fp GR64:$src)), (VCVTSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>; def : Pat<(f64 (sint_to_fp GR32:$src)), (VCVTSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f64 (sint_to_fp GR64:$src)), (VCVTSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>; defm VCVTUSI2SSZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, SSE_CVT_SI2SS, GR32, v4f32x_info, i32mem, loadi32, "cvtusi2ss{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTUSI642SSZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, SSE_CVT_SI2SS, GR64, v4f32x_info, i64mem, loadi64, "cvtusi2ss{q}">, XS, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCVTUSI2SDZ : avx512_vcvtsi<0x7B, X86UintToFpRnd, SSE_CVT_SI2SD, GR32, v2f64x_info, i32mem, loadi32, "cvtusi2sd{l}">, XD, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VCVTUSI642SDZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, SSE_CVT_SI2SD, GR64, v2f64x_info, i64mem, loadi64, "cvtusi2sd{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; def : InstAlias<"vcvtusi2ss\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTUSI2SSZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0>; def : InstAlias<"vcvtusi2sd\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTUSI2SDZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0>; def : Pat<(f32 (uint_to_fp (loadi32 addr:$src))), (VCVTUSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (uint_to_fp (loadi64 addr:$src))), (VCVTUSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (uint_to_fp (loadi32 addr:$src))), (VCVTUSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (uint_to_fp (loadi64 addr:$src))), (VCVTUSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (uint_to_fp GR32:$src)), (VCVTUSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f32 (uint_to_fp GR64:$src)), (VCVTUSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>; def : Pat<(f64 (uint_to_fp GR32:$src)), (VCVTUSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f64 (uint_to_fp GR64:$src)), (VCVTUSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 Scalar convert from float/double to integer //===----------------------------------------------------------------------===// multiclass avx512_cvt_s_int_round opc, X86VectorVTInfo SrcVT, X86VectorVTInfo DstVT, SDNode OpNode, OpndItins itins, string asm> { let Predicates = [HasAVX512] in { def rr_Int : SI, EVEX, VEX_LIG, Sched<[itins.Sched]>; def rrb_Int : SI, EVEX, VEX_LIG, EVEX_B, EVEX_RC, Sched<[itins.Sched]>; def rm_Int : SI, EVEX, VEX_LIG, Sched<[itins.Sched.Folded, ReadAfterLd]>; } // Predicates = [HasAVX512] } // Convert float/double to signed/unsigned int 32/64 defm VCVTSS2SIZ: avx512_cvt_s_int_round<0x2D, f32x_info, i32x_info, X86cvts2si, SSE_CVT_SS2SI_32, "cvtss2si">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTSS2SI64Z: avx512_cvt_s_int_round<0x2D, f32x_info, i64x_info, X86cvts2si, SSE_CVT_SS2SI_64, "cvtss2si">, XS, VEX_W, EVEX_CD8<32, CD8VT1>; defm VCVTSS2USIZ: avx512_cvt_s_int_round<0x79, f32x_info, i32x_info, X86cvts2usi, SSE_CVT_SS2SI_32, "cvtss2usi">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTSS2USI64Z: avx512_cvt_s_int_round<0x79, f32x_info, i64x_info, X86cvts2usi, SSE_CVT_SS2SI_64, "cvtss2usi">, XS, VEX_W, EVEX_CD8<32, CD8VT1>; defm VCVTSD2SIZ: avx512_cvt_s_int_round<0x2D, f64x_info, i32x_info, X86cvts2si, SSE_CVT_SD2SI, "cvtsd2si">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTSD2SI64Z: avx512_cvt_s_int_round<0x2D, f64x_info, i64x_info, X86cvts2si, SSE_CVT_SD2SI, "cvtsd2si">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCVTSD2USIZ: avx512_cvt_s_int_round<0x79, f64x_info, i32x_info, X86cvts2usi, SSE_CVT_SD2SI, "cvtsd2usi">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTSD2USI64Z: avx512_cvt_s_int_round<0x79, f64x_info, i64x_info, X86cvts2usi, SSE_CVT_SD2SI, "cvtsd2usi">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; // The SSE version of these instructions are disabled for AVX512. // Therefore, the SSE intrinsics are mapped to the AVX512 instructions. let Predicates = [HasAVX512] in { def : Pat<(i32 (int_x86_sse_cvtss2si (v4f32 VR128X:$src))), (VCVTSS2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse_cvtss2si sse_load_f32:$src)), (VCVTSS2SIZrm_Int sse_load_f32:$src)>; def : Pat<(i64 (int_x86_sse_cvtss2si64 (v4f32 VR128X:$src))), (VCVTSS2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse_cvtss2si64 sse_load_f32:$src)), (VCVTSS2SI64Zrm_Int sse_load_f32:$src)>; def : Pat<(i32 (int_x86_sse2_cvtsd2si (v2f64 VR128X:$src))), (VCVTSD2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse2_cvtsd2si sse_load_f64:$src)), (VCVTSD2SIZrm_Int sse_load_f64:$src)>; def : Pat<(i64 (int_x86_sse2_cvtsd2si64 (v2f64 VR128X:$src))), (VCVTSD2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse2_cvtsd2si64 sse_load_f64:$src)), (VCVTSD2SI64Zrm_Int sse_load_f64:$src)>; } // HasAVX512 let Predicates = [HasAVX512] in { def : Pat<(int_x86_sse_cvtsi2ss VR128X:$src1, GR32:$src2), (VCVTSI2SSZrr_Int VR128X:$src1, GR32:$src2)>; def : Pat<(int_x86_sse_cvtsi2ss VR128X:$src1, (loadi32 addr:$src2)), (VCVTSI2SSZrm_Int VR128X:$src1, addr:$src2)>; def : Pat<(int_x86_sse_cvtsi642ss VR128X:$src1, GR64:$src2), (VCVTSI642SSZrr_Int VR128X:$src1, GR64:$src2)>; def : Pat<(int_x86_sse_cvtsi642ss VR128X:$src1, (loadi64 addr:$src2)), (VCVTSI642SSZrm_Int VR128X:$src1, addr:$src2)>; def : Pat<(int_x86_sse2_cvtsi2sd VR128X:$src1, GR32:$src2), (VCVTSI2SDZrr_Int VR128X:$src1, GR32:$src2)>; def : Pat<(int_x86_sse2_cvtsi2sd VR128X:$src1, (loadi32 addr:$src2)), (VCVTSI2SDZrm_Int VR128X:$src1, addr:$src2)>; def : Pat<(int_x86_sse2_cvtsi642sd VR128X:$src1, GR64:$src2), (VCVTSI642SDZrr_Int VR128X:$src1, GR64:$src2)>; def : Pat<(int_x86_sse2_cvtsi642sd VR128X:$src1, (loadi64 addr:$src2)), (VCVTSI642SDZrm_Int VR128X:$src1, addr:$src2)>; def : Pat<(int_x86_avx512_cvtusi2sd VR128X:$src1, GR32:$src2), (VCVTUSI2SDZrr_Int VR128X:$src1, GR32:$src2)>; def : Pat<(int_x86_avx512_cvtusi2sd VR128X:$src1, (loadi32 addr:$src2)), (VCVTUSI2SDZrm_Int VR128X:$src1, addr:$src2)>; } // Predicates = [HasAVX512] // Patterns used for matching vcvtsi2s{s,d} intrinsic sequences from clang // which produce unnecessary vmovs{s,d} instructions let Predicates = [HasAVX512] in { def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))), (VCVTSI642SSZrr_Int VR128X:$dst, GR64:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))), (VCVTSI2SSZrr_Int VR128X:$dst, GR32:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))), (VCVTSI642SDZrr_Int VR128X:$dst, GR64:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))), (VCVTSI2SDZrr_Int VR128X:$dst, GR32:$src)>; } // Predicates = [HasAVX512] // Convert float/double to signed/unsigned int 32/64 with truncation multiclass avx512_cvt_s_all opc, string asm, X86VectorVTInfo _SrcRC, X86VectorVTInfo _DstRC, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins, string aliasStr>{ let Predicates = [HasAVX512] in { def rr : AVX512, EVEX, Sched<[itins.Sched]>; let hasSideEffects = 0 in def rrb : AVX512, EVEX, EVEX_B, Sched<[itins.Sched]>; def rm : AVX512, EVEX, Sched<[itins.Sched.Folded, ReadAfterLd]>; def : InstAlias(NAME # "rr") _DstRC.RC:$dst, _SrcRC.FRC:$src), 0>; def : InstAlias(NAME # "rrb") _DstRC.RC:$dst, _SrcRC.FRC:$src), 0>; def : InstAlias(NAME # "rm") _DstRC.RC:$dst, _SrcRC.ScalarMemOp:$src), 0>; let isCodeGenOnly = 1 in { def rr_Int : AVX512, EVEX, VEX_LIG, Sched<[itins.Sched]>; def rrb_Int : AVX512, EVEX,VEX_LIG , EVEX_B, Sched<[itins.Sched]>; let mayLoad = 1, hasSideEffects = 0 in def rm_Int : AVX512, EVEX, VEX_LIG, Sched<[itins.Sched.Folded, ReadAfterLd]>; } // isCodeGenOnly = 1 } //HasAVX512 } defm VCVTTSS2SIZ: avx512_cvt_s_all<0x2C, "vcvttss2si", f32x_info, i32x_info, fp_to_sint, X86cvtts2IntRnd, SSE_CVT_SS2SI_32, "{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTTSS2SI64Z: avx512_cvt_s_all<0x2C, "vcvttss2si", f32x_info, i64x_info, fp_to_sint, X86cvtts2IntRnd, SSE_CVT_SS2SI_64, "{q}">, VEX_W, XS, EVEX_CD8<32, CD8VT1>; defm VCVTTSD2SIZ: avx512_cvt_s_all<0x2C, "vcvttsd2si", f64x_info, i32x_info, fp_to_sint, X86cvtts2IntRnd, SSE_CVT_SD2SI, "{l}">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTTSD2SI64Z: avx512_cvt_s_all<0x2C, "vcvttsd2si", f64x_info, i64x_info, fp_to_sint, X86cvtts2IntRnd, SSE_CVT_SD2SI, "{q}">, VEX_W, XD, EVEX_CD8<64, CD8VT1>; defm VCVTTSS2USIZ: avx512_cvt_s_all<0x78, "vcvttss2usi", f32x_info, i32x_info, fp_to_uint, X86cvtts2UIntRnd, SSE_CVT_SS2SI_32, "{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTTSS2USI64Z: avx512_cvt_s_all<0x78, "vcvttss2usi", f32x_info, i64x_info, fp_to_uint, X86cvtts2UIntRnd, SSE_CVT_SS2SI_64, "{q}">, XS,VEX_W, EVEX_CD8<32, CD8VT1>; defm VCVTTSD2USIZ: avx512_cvt_s_all<0x78, "vcvttsd2usi", f64x_info, i32x_info, fp_to_uint, X86cvtts2UIntRnd, SSE_CVT_SD2SI, "{l}">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTTSD2USI64Z: avx512_cvt_s_all<0x78, "vcvttsd2usi", f64x_info, i64x_info, fp_to_uint, X86cvtts2UIntRnd, SSE_CVT_SD2SI, "{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; let Predicates = [HasAVX512] in { def : Pat<(i32 (int_x86_sse_cvttss2si (v4f32 VR128X:$src))), (VCVTTSS2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse_cvttss2si sse_load_f32:$src)), (VCVTTSS2SIZrm_Int ssmem:$src)>; def : Pat<(i64 (int_x86_sse_cvttss2si64 (v4f32 VR128X:$src))), (VCVTTSS2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse_cvttss2si64 sse_load_f32:$src)), (VCVTTSS2SI64Zrm_Int ssmem:$src)>; def : Pat<(i32 (int_x86_sse2_cvttsd2si (v2f64 VR128X:$src))), (VCVTTSD2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse2_cvttsd2si sse_load_f64:$src)), (VCVTTSD2SIZrm_Int sdmem:$src)>; def : Pat<(i64 (int_x86_sse2_cvttsd2si64 (v2f64 VR128X:$src))), (VCVTTSD2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse2_cvttsd2si64 sse_load_f64:$src)), (VCVTTSD2SI64Zrm_Int sdmem:$src)>; } // HasAVX512 //===----------------------------------------------------------------------===// // AVX-512 Convert form float to double and back //===----------------------------------------------------------------------===// multiclass avx512_cvt_fp_scalar opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNode, OpndItins itins> { defm rr_Int : AVX512_maskable_scalar, EVEX_4V, VEX_LIG, Sched<[itins.Sched]>; defm rm_Int : AVX512_maskable_scalar, EVEX_4V, VEX_LIG, Sched<[itins.Sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, hasSideEffects = 0 in { def rr : I, EVEX_4V, VEX_LIG, Sched<[itins.Sched]>; let mayLoad = 1 in def rm : I, EVEX_4V, VEX_LIG, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } // Scalar Coversion with SAE - suppress all exceptions multiclass avx512_cvt_fp_sae_scalar opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, OpndItins itins> { defm rrb_Int : AVX512_maskable_scalar, EVEX_4V, VEX_LIG, EVEX_B, Sched<[itins.Sched]>; } // Scalar Conversion with rounding control (RC) multiclass avx512_cvt_fp_rc_scalar opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, OpndItins itins> { defm rrb_Int : AVX512_maskable_scalar, EVEX_4V, VEX_LIG, Sched<[itins.Sched]>, EVEX_B, EVEX_RC; } multiclass avx512_cvt_fp_scalar_sd2ss opc, string OpcodeStr, SDNode OpNodeRnd, OpndItins itins, X86VectorVTInfo _src, X86VectorVTInfo _dst> { let Predicates = [HasAVX512] in { defm Z : avx512_cvt_fp_scalar, avx512_cvt_fp_rc_scalar, VEX_W, EVEX_CD8<64, CD8VT1>, XD; } } multiclass avx512_cvt_fp_scalar_ss2sd opc, string OpcodeStr, SDNode OpNodeRnd, OpndItins itins, X86VectorVTInfo _src, X86VectorVTInfo _dst> { let Predicates = [HasAVX512] in { defm Z : avx512_cvt_fp_scalar, avx512_cvt_fp_sae_scalar, EVEX_CD8<32, CD8VT1>, XS; } } defm VCVTSD2SS : avx512_cvt_fp_scalar_sd2ss<0x5A, "vcvtsd2ss", X86froundRnd, SSE_CVT_SD2SS, f64x_info, f32x_info>, NotMemoryFoldable; defm VCVTSS2SD : avx512_cvt_fp_scalar_ss2sd<0x5A, "vcvtss2sd", X86fpextRnd, SSE_CVT_SS2SD, f32x_info, f64x_info>, NotMemoryFoldable; def : Pat<(f64 (fpextend FR32X:$src)), (VCVTSS2SDZrr (f64 (IMPLICIT_DEF)), FR32X:$src)>, Requires<[HasAVX512]>; def : Pat<(f64 (fpextend (loadf32 addr:$src))), (VCVTSS2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[HasAVX512]>; def : Pat<(f64 (extloadf32 addr:$src)), (VCVTSS2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[HasAVX512, OptForSize]>; def : Pat<(f64 (extloadf32 addr:$src)), (VCVTSS2SDZrr (f64 (IMPLICIT_DEF)), (VMOVSSZrm addr:$src))>, Requires<[HasAVX512, OptForSpeed]>; def : Pat<(f32 (fpround FR64X:$src)), (VCVTSD2SSZrr (f32 (IMPLICIT_DEF)), FR64X:$src)>, Requires<[HasAVX512]>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (fpround (f64 (extractelt VR128X:$src, (iPTR 0))))))))), (VCVTSD2SSZrr_Int VR128X:$dst, VR128X:$src)>, Requires<[HasAVX512]>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (fpextend (f32 (extractelt VR128X:$src, (iPTR 0))))))))), (VCVTSS2SDZrr_Int VR128X:$dst, VR128X:$src)>, Requires<[HasAVX512]>; //===----------------------------------------------------------------------===// // AVX-512 Vector convert from signed/unsigned integer to float/double // and from float/double to signed/unsigned integer //===----------------------------------------------------------------------===// multiclass avx512_vcvt_fp opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNode, OpndItins itins, string Broadcast = _.BroadcastStr, string Alias = "", X86MemOperand MemOp = _Src.MemOp> { defm rr : AVX512_maskable, EVEX, Sched<[itins.Sched]>; defm rm : AVX512_maskable, EVEX, Sched<[itins.Sched.Folded]>; defm rmb : AVX512_maskable, EVEX, EVEX_B, Sched<[itins.Sched.Folded]>; } // Coversion with SAE - suppress all exceptions multiclass avx512_vcvt_fp_sae opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, OpndItins itins> { defm rrb : AVX512_maskable, EVEX, EVEX_B, Sched<[itins.Sched]>; } // Conversion with rounding control (RC) multiclass avx512_vcvt_fp_rc opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, OpndItins itins> { defm rrb : AVX512_maskable, EVEX, EVEX_B, EVEX_RC, Sched<[itins.Sched]>; } // Extend Float to Double multiclass avx512_cvtps2pd opc, string OpcodeStr, OpndItins itins> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_sae, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Truncate Double to Float multiclass avx512_cvtpd2ps opc, string OpcodeStr, OpndItins itins> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; def : InstAlias(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias(NAME # "Z128rm") VR128X:$dst, f128mem:$src), 0>; def : InstAlias(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias(NAME # "Z256rm") VR128X:$dst, f256mem:$src), 0>; } } defm VCVTPD2PS : avx512_cvtpd2ps<0x5A, "vcvtpd2ps", SSE_CVT_PD2PS>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTPS2PD : avx512_cvtps2pd<0x5A, "vcvtps2pd", SSE_CVT_PS2PD>, PS, EVEX_CD8<32, CD8VH>; def : Pat<(v8f64 (extloadv8f32 addr:$src)), (VCVTPS2PDZrm addr:$src)>; let Predicates = [HasVLX] in { let AddedComplexity = 15 in { def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86vfpround (v2f64 VR128X:$src)))))), (VCVTPD2PSZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86vfpround (loadv2f64 addr:$src)))))), (VCVTPD2PSZ128rm addr:$src)>; } def : Pat<(v2f64 (extloadv2f32 addr:$src)), (VCVTPS2PDZ128rm addr:$src)>; def : Pat<(v4f64 (extloadv4f32 addr:$src)), (VCVTPS2PDZ256rm addr:$src)>; } // Convert Signed/Unsigned Doubleword to Double multiclass avx512_cvtdq2pd opc, string OpcodeStr, SDNode OpNode, SDNode OpNode128, OpndItins itins> { // No rounding in this op let Predicates = [HasAVX512] in defm Z : avx512_vcvt_fp, EVEX_V512; let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Signed/Unsigned Doubleword to Float multiclass avx512_cvtdq2ps opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasAVX512] in defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Float to Signed/Unsigned Doubleword with truncation multiclass avx512_cvttps2dq opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_sae, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Float to Signed/Unsigned Doubleword multiclass avx512_cvtps2dq opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Double to Signed/Unsigned Doubleword with truncation multiclass avx512_cvttpd2dq opc, string OpcodeStr, SDNode OpNode, SDNode OpNode128, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_sae, EVEX_V512; } let Predicates = [HasVLX] in { // we need "x"/"y" suffixes in order to distinguish between 128 and 256 // memory forms of these instructions in Asm Parser. They have the same // dest type - 'v4i32x_info'. We also specify the broadcast string explicitly // due to the same reason. defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; def : InstAlias(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias(NAME # "Z128rm") VR128X:$dst, i128mem:$src), 0>; def : InstAlias(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias(NAME # "Z256rm") VR128X:$dst, i256mem:$src), 0>; } } // Convert Double to Signed/Unsigned Doubleword multiclass avx512_cvtpd2dq opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; } let Predicates = [HasVLX] in { // we need "x"/"y" suffixes in order to distinguish between 128 and 256 // memory forms of these instructions in Asm Parcer. They have the same // dest type - 'v4i32x_info'. We also specify the broadcast string explicitly // due to the same reason. defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; def : InstAlias(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias(NAME # "Z128rm") VR128X:$dst, f128mem:$src), 0>; def : InstAlias(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias(NAME # "Z256rm") VR128X:$dst, f256mem:$src), 0>; } } // Convert Double to Signed/Unsigned Quardword multiclass avx512_cvtpd2qq opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Double to Signed/Unsigned Quardword with truncation multiclass avx512_cvttpd2qq opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_sae, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Signed/Unsigned Quardword to Double multiclass avx512_cvtqq2pd opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Float to Signed/Unsigned Quardword multiclass avx512_cvtps2qq opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { // Explicitly specified broadcast string, since we take only 2 elements // from v4f32x_info source defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Float to Signed/Unsigned Quardword with truncation multiclass avx512_cvttps2qq opc, string OpcodeStr, SDNode OpNode, SDNode OpNode128, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_sae, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { // Explicitly specified broadcast string, since we take only 2 elements // from v4f32x_info source defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; } } // Convert Signed/Unsigned Quardword to Float multiclass avx512_cvtqq2ps opc, string OpcodeStr, SDNode OpNode, SDNode OpNode128, SDNode OpNodeRnd, OpndItins itins> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp, avx512_vcvt_fp_rc, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { // we need "x"/"y" suffixes in order to distinguish between 128 and 256 // memory forms of these instructions in Asm Parcer. They have the same // dest type - 'v4i32x_info'. We also specify the broadcast string explicitly // due to the same reason. defm Z128 : avx512_vcvt_fp, EVEX_V128; defm Z256 : avx512_vcvt_fp, EVEX_V256; def : InstAlias(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias(NAME # "Z128rm") VR128X:$dst, i128mem:$src), 0>; def : InstAlias(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias(NAME # "Z256rm") VR128X:$dst, i256mem:$src), 0>; } } defm VCVTDQ2PD : avx512_cvtdq2pd<0xE6, "vcvtdq2pd", sint_to_fp, X86VSintToFP, SSE_CVT_I2PD>, XS, EVEX_CD8<32, CD8VH>; defm VCVTDQ2PS : avx512_cvtdq2ps<0x5B, "vcvtdq2ps", sint_to_fp, X86VSintToFpRnd, SSE_CVT_I2PS>, PS, EVEX_CD8<32, CD8VF>; defm VCVTTPS2DQ : avx512_cvttps2dq<0x5B, "vcvttps2dq", fp_to_sint, X86cvttp2siRnd, SSE_CVT_PS2I>, XS, EVEX_CD8<32, CD8VF>; defm VCVTTPD2DQ : avx512_cvttpd2dq<0xE6, "vcvttpd2dq", fp_to_sint, X86cvttp2si, X86cvttp2siRnd, SSE_CVT_PD2I>, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VCVTTPS2UDQ : avx512_cvttps2dq<0x78, "vcvttps2udq", fp_to_uint, X86cvttp2uiRnd, SSE_CVT_PS2I>, PS, EVEX_CD8<32, CD8VF>; defm VCVTTPD2UDQ : avx512_cvttpd2dq<0x78, "vcvttpd2udq", fp_to_uint, X86cvttp2ui, X86cvttp2uiRnd, SSE_CVT_PD2I>, PS, VEX_W, EVEX_CD8<64, CD8VF>; defm VCVTUDQ2PD : avx512_cvtdq2pd<0x7A, "vcvtudq2pd", uint_to_fp, X86VUintToFP, SSE_CVT_I2PD>, XS, EVEX_CD8<32, CD8VH>; defm VCVTUDQ2PS : avx512_cvtdq2ps<0x7A, "vcvtudq2ps", uint_to_fp, X86VUintToFpRnd, SSE_CVT_I2PS>, XD, EVEX_CD8<32, CD8VF>; defm VCVTPS2DQ : avx512_cvtps2dq<0x5B, "vcvtps2dq", X86cvtp2Int, X86cvtp2IntRnd, SSE_CVT_PS2I>, PD, EVEX_CD8<32, CD8VF>; defm VCVTPD2DQ : avx512_cvtpd2dq<0xE6, "vcvtpd2dq", X86cvtp2Int, X86cvtp2IntRnd, SSE_CVT_PD2I>, XD, VEX_W, EVEX_CD8<64, CD8VF>; defm VCVTPS2UDQ : avx512_cvtps2dq<0x79, "vcvtps2udq", X86cvtp2UInt, X86cvtp2UIntRnd, SSE_CVT_PS2I>, PS, EVEX_CD8<32, CD8VF>; defm VCVTPD2UDQ : avx512_cvtpd2dq<0x79, "vcvtpd2udq", X86cvtp2UInt, X86cvtp2UIntRnd, SSE_CVT_PD2I>, VEX_W, PS, EVEX_CD8<64, CD8VF>; defm VCVTPD2QQ : avx512_cvtpd2qq<0x7B, "vcvtpd2qq", X86cvtp2Int, X86cvtp2IntRnd, SSE_CVT_PD2I>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTPS2QQ : avx512_cvtps2qq<0x7B, "vcvtps2qq", X86cvtp2Int, X86cvtp2IntRnd, SSE_CVT_PS2I>, PD, EVEX_CD8<32, CD8VH>; defm VCVTPD2UQQ : avx512_cvtpd2qq<0x79, "vcvtpd2uqq", X86cvtp2UInt, X86cvtp2UIntRnd, SSE_CVT_PD2I>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTPS2UQQ : avx512_cvtps2qq<0x79, "vcvtps2uqq", X86cvtp2UInt, X86cvtp2UIntRnd, SSE_CVT_PS2I>, PD, EVEX_CD8<32, CD8VH>; defm VCVTTPD2QQ : avx512_cvttpd2qq<0x7A, "vcvttpd2qq", fp_to_sint, X86cvttp2siRnd, SSE_CVT_PD2I>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTTPS2QQ : avx512_cvttps2qq<0x7A, "vcvttps2qq", fp_to_sint, X86cvttp2si, X86cvttp2siRnd, SSE_CVT_PS2I>, PD, EVEX_CD8<32, CD8VH>; defm VCVTTPD2UQQ : avx512_cvttpd2qq<0x78, "vcvttpd2uqq", fp_to_uint, X86cvttp2uiRnd, SSE_CVT_PD2I>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTTPS2UQQ : avx512_cvttps2qq<0x78, "vcvttps2uqq", fp_to_uint, X86cvttp2ui, X86cvttp2uiRnd, SSE_CVT_PS2I>, PD, EVEX_CD8<32, CD8VH>; defm VCVTQQ2PD : avx512_cvtqq2pd<0xE6, "vcvtqq2pd", sint_to_fp, X86VSintToFpRnd, SSE_CVT_I2PD>, VEX_W, XS, EVEX_CD8<64, CD8VF>; defm VCVTUQQ2PD : avx512_cvtqq2pd<0x7A, "vcvtuqq2pd", uint_to_fp, X86VUintToFpRnd, SSE_CVT_I2PD>, VEX_W, XS, EVEX_CD8<64, CD8VF>; defm VCVTQQ2PS : avx512_cvtqq2ps<0x5B, "vcvtqq2ps", sint_to_fp, X86VSintToFP, X86VSintToFpRnd, SSE_CVT_I2PS>, VEX_W, PS, EVEX_CD8<64, CD8VF>; defm VCVTUQQ2PS : avx512_cvtqq2ps<0x7A, "vcvtuqq2ps", uint_to_fp, X86VUintToFP, X86VUintToFpRnd, SSE_CVT_I2PS>, VEX_W, XD, EVEX_CD8<64, CD8VF>; let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v8i32 (fp_to_uint (v8f32 VR256X:$src1))), (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr (v16f32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src1))), (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr (v16f32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4i32 (fp_to_uint (v4f64 VR256X:$src1))), (EXTRACT_SUBREG (v8i32 (VCVTTPD2UDQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_xmm)>; def : Pat<(v8f32 (uint_to_fp (v8i32 VR256X:$src1))), (EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4f32 (uint_to_fp (v4i32 VR128X:$src1))), (EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4f64 (uint_to_fp (v4i32 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUDQ2PDZrr (v8i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_ymm)>; def : Pat<(v2f64 (X86VUintToFP (v4i32 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUDQ2PDZrr (v8i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; } let Predicates = [HasAVX512, HasVLX] in { let AddedComplexity = 15 in { def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvtp2Int (v2f64 VR128X:$src)))))), (VCVTPD2DQZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvtp2Int (loadv2f64 addr:$src)))))), (VCVTPD2DQZ128rm addr:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvtp2UInt (v2f64 VR128X:$src)))))), (VCVTPD2UDQZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvttp2si (v2f64 VR128X:$src)))))), (VCVTTPD2DQZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvttp2si (loadv2f64 addr:$src)))))), (VCVTTPD2DQZ128rm addr:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvttp2ui (v2f64 VR128X:$src)))))), (VCVTTPD2UDQZ128rr VR128X:$src)>; } def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (VCVTDQ2PDZ128rm addr:$src)>; def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))), (VCVTDQ2PDZ128rm addr:$src)>; def : Pat<(v2f64 (X86VUintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (VCVTUDQ2PDZ128rm addr:$src)>; def : Pat<(v2f64 (X86VUintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))), (VCVTUDQ2PDZ128rm addr:$src)>; } let Predicates = [HasAVX512] in { def : Pat<(v8f32 (fpround (loadv8f64 addr:$src))), (VCVTPD2PSZrm addr:$src)>; def : Pat<(v8f64 (extloadv8f32 addr:$src)), (VCVTPS2PDZrm addr:$src)>; } let Predicates = [HasDQI, HasVLX] in { let AddedComplexity = 15 in { def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86VSintToFP (v2i64 VR128X:$src)))))), (VCVTQQ2PSZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86VUintToFP (v2i64 VR128X:$src)))))), (VCVTUQQ2PSZ128rr VR128X:$src)>; } } let Predicates = [HasDQI, NoVLX] in { def : Pat<(v2i64 (fp_to_sint (v2f64 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2QQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (fp_to_sint (v4f32 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPS2QQZrr (v8f32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_ymm)>; def : Pat<(v4i64 (fp_to_sint (v4f64 VR256X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2QQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v2i64 (fp_to_uint (v2f64 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2UQQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (fp_to_uint (v4f32 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPS2UQQZrr (v8f32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_ymm)>; def : Pat<(v4i64 (fp_to_uint (v4f64 VR256X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2UQQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4f32 (sint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f32 (VCVTQQ2PSZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_xmm)>; def : Pat<(v2f64 (sint_to_fp (v2i64 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4f64 (sint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4f32 (uint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f32 (VCVTUQQ2PSZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_xmm)>; def : Pat<(v2f64 (uint_to_fp (v2i64 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4f64 (uint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; } //===----------------------------------------------------------------------===// // Half precision conversion instructions //===----------------------------------------------------------------------===// multiclass avx512_cvtph2ps { defm rr : AVX512_maskable<0x13, MRMSrcReg, _dest ,(outs _dest.RC:$dst), (ins _src.RC:$src), "vcvtph2ps", "$src", "$src", (X86cvtph2ps (_src.VT _src.RC:$src)),itins.rr>, T8PD, Sched<[itins.Sched]>; defm rm : AVX512_maskable<0x13, MRMSrcMem, _dest, (outs _dest.RC:$dst), (ins x86memop:$src), "vcvtph2ps", "$src", "$src", (X86cvtph2ps (_src.VT (bitconvert (ld_frag addr:$src)))), itins.rm>, T8PD, Sched<[itins.Sched.Folded]>; } multiclass avx512_cvtph2ps_sae { defm rrb : AVX512_maskable<0x13, MRMSrcReg, _dest, (outs _dest.RC:$dst), (ins _src.RC:$src), "vcvtph2ps", "{sae}, $src", "$src, {sae}", (X86cvtph2psRnd (_src.VT _src.RC:$src), (i32 FROUND_NO_EXC)), itins.rr>, T8PD, EVEX_B, Sched<[itins.Sched]>; } let Predicates = [HasAVX512] in defm VCVTPH2PSZ : avx512_cvtph2ps, avx512_cvtph2ps_sae, EVEX, EVEX_V512, EVEX_CD8<32, CD8VH>; let Predicates = [HasVLX] in { defm VCVTPH2PSZ256 : avx512_cvtph2ps, EVEX, EVEX_V256, EVEX_CD8<32, CD8VH>; defm VCVTPH2PSZ128 : avx512_cvtph2ps, EVEX, EVEX_V128, EVEX_CD8<32, CD8VH>; // Pattern match vcvtph2ps of a scalar i64 load. def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzmovl_v2i64 addr:$src)))), (VCVTPH2PSZ128rm addr:$src)>; def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzload_v2i64 addr:$src)))), (VCVTPH2PSZ128rm addr:$src)>; def : Pat<(v4f32 (X86cvtph2ps (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))), (VCVTPH2PSZ128rm addr:$src)>; } multiclass avx512_cvtps2ph { defm rr : AVX512_maskable<0x1D, MRMDestReg, _dest ,(outs _dest.RC:$dst), (ins _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph", "$src2, $src1", "$src1, $src2", (X86cvtps2ph (_src.VT _src.RC:$src1), (i32 imm:$src2)), itins.rr, 0, 0>, AVX512AIi8Base, Sched<[itins.Sched]>; let hasSideEffects = 0, mayStore = 1 in { def mr : AVX512AIi8<0x1D, MRMDestMem, (outs), (ins x86memop:$dst, _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; def mrk : AVX512AIi8<0x1D, MRMDestMem, (outs), (ins x86memop:$dst, _dest.KRCWM:$mask, _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}", [], itins.rm>, EVEX_K, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_cvtps2ph_sae { let hasSideEffects = 0 in defm rrb : AVX512_maskable_in_asm<0x1D, MRMDestReg, _dest, (outs _dest.RC:$dst), (ins _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph", "$src2, {sae}, $src1", "$src1, {sae}, $src2", [], itins.rr>, EVEX_B, AVX512AIi8Base, Sched<[itins.Sched]>; } let Predicates = [HasAVX512] in { defm VCVTPS2PHZ : avx512_cvtps2ph, avx512_cvtps2ph_sae, EVEX, EVEX_V512, EVEX_CD8<32, CD8VH>; let Predicates = [HasVLX] in { defm VCVTPS2PHZ256 : avx512_cvtps2ph, EVEX, EVEX_V256, EVEX_CD8<32, CD8VH>; defm VCVTPS2PHZ128 : avx512_cvtps2ph, EVEX, EVEX_V128, EVEX_CD8<32, CD8VH>; } def : Pat<(store (f64 (extractelt (bc_v2f64 (v8i16 (X86cvtps2ph VR128X:$src1, i32:$src2))), (iPTR 0))), addr:$dst), (VCVTPS2PHZ128mr addr:$dst, VR128X:$src1, imm:$src2)>; def : Pat<(store (i64 (extractelt (bc_v2i64 (v8i16 (X86cvtps2ph VR128X:$src1, i32:$src2))), (iPTR 0))), addr:$dst), (VCVTPS2PHZ128mr addr:$dst, VR128X:$src1, imm:$src2)>; def : Pat<(store (v8i16 (X86cvtps2ph VR256X:$src1, i32:$src2)), addr:$dst), (VCVTPS2PHZ256mr addr:$dst, VR256X:$src1, imm:$src2)>; def : Pat<(store (v16i16 (X86cvtps2ph VR512:$src1, i32:$src2)), addr:$dst), (VCVTPS2PHZmr addr:$dst, VR512:$src1, imm:$src2)>; } // Patterns for matching conversions from float to half-float and vice versa. let Predicates = [HasVLX] in { // Use MXCSR.RC for rounding instead of explicitly specifying the default // rounding mode (Nearest-Even, encoded as 0). Both are equivalent in the // configurations we support (the default). However, falling back to MXCSR is // more consistent with other instructions, which are always controlled by it. // It's encoded as 0b100. def : Pat<(fp_to_f16 FR32X:$src), (i16 (EXTRACT_SUBREG (VMOVPDI2DIZrr (VCVTPS2PHZ128rr (COPY_TO_REGCLASS FR32X:$src, VR128X), 4)), sub_16bit))>; def : Pat<(f16_to_fp GR16:$src), (f32 (COPY_TO_REGCLASS (VCVTPH2PSZ128rr (COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128X)), FR32X)) >; def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32X:$src))), (f32 (COPY_TO_REGCLASS (VCVTPH2PSZ128rr (VCVTPS2PHZ128rr (COPY_TO_REGCLASS FR32X:$src, VR128X), 4)), FR32X)) >; } // Unordered/Ordered scalar fp compare with Sea and set EFLAGS multiclass avx512_ord_cmp_sae opc, X86VectorVTInfo _, string OpcodeStr, OpndItins itins> { let hasSideEffects = 0 in def rrb: AVX512, EVEX, EVEX_B, VEX_LIG, EVEX_V128, Sched<[itins.Sched]>; } let Defs = [EFLAGS], Predicates = [HasAVX512] in { defm VUCOMISSZ : avx512_ord_cmp_sae<0x2E, v4f32x_info, "vucomiss", SSE_COMIS>, AVX512PSIi8Base, EVEX_CD8<32, CD8VT1>; defm VUCOMISDZ : avx512_ord_cmp_sae<0x2E, v2f64x_info, "vucomisd", SSE_COMIS>, AVX512PDIi8Base, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCOMISSZ : avx512_ord_cmp_sae<0x2F, v4f32x_info, "vcomiss", SSE_COMIS>, AVX512PSIi8Base, EVEX_CD8<32, CD8VT1>; defm VCOMISDZ : avx512_ord_cmp_sae<0x2F, v2f64x_info, "vcomisd", SSE_COMIS>, AVX512PDIi8Base, VEX_W, EVEX_CD8<64, CD8VT1>; } let Defs = [EFLAGS], Predicates = [HasAVX512] in { defm VUCOMISSZ : sse12_ord_cmp<0x2E, FR32X, X86cmp, f32, f32mem, loadf32, "ucomiss", SSE_COMIS>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VUCOMISDZ : sse12_ord_cmp<0x2E, FR64X, X86cmp, f64, f64mem, loadf64, "ucomisd", SSE_COMIS>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; let Pattern = [] in { defm VCOMISSZ : sse12_ord_cmp<0x2F, FR32X, undef, f32, f32mem, loadf32, "comiss", SSE_COMIS>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VCOMISDZ : sse12_ord_cmp<0x2F, FR64X, undef, f64, f64mem, loadf64, "comisd", SSE_COMIS>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; } let isCodeGenOnly = 1 in { defm Int_VUCOMISSZ : sse12_ord_cmp_int<0x2E, VR128X, X86ucomi, v4f32, ssmem, sse_load_f32, "ucomiss", SSE_COMIS>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm Int_VUCOMISDZ : sse12_ord_cmp_int<0x2E, VR128X, X86ucomi, v2f64, sdmem, sse_load_f64, "ucomisd", SSE_COMIS>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; defm Int_VCOMISSZ : sse12_ord_cmp_int<0x2F, VR128X, X86comi, v4f32, ssmem, sse_load_f32, "comiss", SSE_COMIS>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm Int_VCOMISDZ : sse12_ord_cmp_int<0x2F, VR128X, X86comi, v2f64, sdmem, sse_load_f64, "comisd", SSE_COMIS>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; } } /// avx512_fp14_s rcp14ss, rcp14sd, rsqrt14ss, rsqrt14sd multiclass avx512_fp14_s opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let Predicates = [HasAVX512], ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable_scalar, EVEX_4V, Sched<[itins.Sched]>; defm rm : AVX512_maskable_scalar, EVEX_4V, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } defm VRCP14SS : avx512_fp14_s<0x4D, "vrcp14ss", X86rcp14s, SSE_RCPS, f32x_info>, EVEX_CD8<32, CD8VT1>, T8PD, NotMemoryFoldable; defm VRCP14SD : avx512_fp14_s<0x4D, "vrcp14sd", X86rcp14s, SSE_RCPS, f64x_info>, VEX_W, EVEX_CD8<64, CD8VT1>, T8PD, NotMemoryFoldable; defm VRSQRT14SS : avx512_fp14_s<0x4F, "vrsqrt14ss", X86rsqrt14s, SSE_RSQRTSS, f32x_info>, EVEX_CD8<32, CD8VT1>, T8PD, NotMemoryFoldable; defm VRSQRT14SD : avx512_fp14_s<0x4F, "vrsqrt14sd", X86rsqrt14s, SSE_RSQRTSS, f64x_info>, VEX_W, EVEX_CD8<64, CD8VT1>, T8PD, NotMemoryFoldable; /// avx512_fp14_p rcp14ps, rcp14pd, rsqrt14ps, rsqrt14pd multiclass avx512_fp14_p opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm r: AVX512_maskable, EVEX, T8PD, Sched<[itins.Sched]>; defm m: AVX512_maskable, EVEX, T8PD, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable, EVEX, T8PD, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp14_p_vl_all opc, string OpcodeStr, SDNode OpNode, SizeItins itins> { defm PSZ : avx512_fp14_p, EVEX_V512, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp14_p, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>; // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_fp14_p, EVEX_V128, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp14_p, EVEX_V256, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp14_p, EVEX_V128, VEX_W, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp14_p, EVEX_V256, VEX_W, EVEX_CD8<64, CD8VF>; } } defm VRSQRT14 : avx512_fp14_p_vl_all<0x4E, "vrsqrt14", X86rsqrt14, SSE_RSQRT_P>; defm VRCP14 : avx512_fp14_p_vl_all<0x4C, "vrcp14", X86rcp14, SSE_RCP_P>; /// avx512_fp28_s rcp28ss, rcp28sd, rsqrt28ss, rsqrt28sd multiclass avx512_fp28_s opc, string OpcodeStr,X86VectorVTInfo _, SDNode OpNode, OpndItins itins> { let ExeDomain = _.ExeDomain in { defm r : AVX512_maskable_scalar, Sched<[itins.Sched]>; defm rb : AVX512_maskable_scalar, EVEX_B, Sched<[itins.Sched]>; defm m : AVX512_maskable_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_eri_s opc, string OpcodeStr, SDNode OpNode, SizeItins itins> { defm SS : avx512_fp28_s, EVEX_CD8<32, CD8VT1>; defm SD : avx512_fp28_s, EVEX_CD8<64, CD8VT1>, VEX_W; } let Predicates = [HasERI] in { defm VRCP28 : avx512_eri_s<0xCB, "vrcp28", X86rcp28s, SSE_RCP_S>, T8PD, EVEX_4V; defm VRSQRT28 : avx512_eri_s<0xCD, "vrsqrt28", X86rsqrt28s, SSE_RSQRT_S>, T8PD, EVEX_4V; } defm VGETEXP : avx512_eri_s<0x43, "vgetexp", X86fgetexpRnds, SSE_ALU_ITINS_S>, T8PD, EVEX_4V; /// avx512_fp28_p rcp28ps, rcp28pd, rsqrt28ps, rsqrt28pd multiclass avx512_fp28_p opc, string OpcodeStr, X86VectorVTInfo _, SDNode OpNode, OpndItins itins> { let ExeDomain = _.ExeDomain in { defm r : AVX512_maskable, Sched<[itins.Sched]>; defm m : AVX512_maskable, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm mb : AVX512_maskable, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp28_p_round opc, string OpcodeStr, X86VectorVTInfo _, SDNode OpNode, OpndItins itins> { let ExeDomain = _.ExeDomain in defm rb : AVX512_maskable, EVEX_B, Sched<[itins.Sched]>; } multiclass avx512_eri opc, string OpcodeStr, SDNode OpNode, SizeItins itins> { defm PS : avx512_fp28_p, avx512_fp28_p_round, T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>; defm PD : avx512_fp28_p, avx512_fp28_p_round, T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>; } multiclass avx512_fp_unaryop_packed opc, string OpcodeStr, SDNode OpNode, SizeItins itins> { // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_fp28_p, EVEX_V128, T8PD, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp28_p, EVEX_V256, T8PD, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp28_p, EVEX_V128, VEX_W, T8PD, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp28_p, EVEX_V256, VEX_W, T8PD, EVEX_CD8<64, CD8VF>; } } let Predicates = [HasERI] in { defm VRSQRT28 : avx512_eri<0xCC, "vrsqrt28", X86rsqrt28, SSE_RSQRT_P>, EVEX; defm VRCP28 : avx512_eri<0xCA, "vrcp28", X86rcp28, SSE_RCP_P>, EVEX; defm VEXP2 : avx512_eri<0xC8, "vexp2", X86exp2, SSE_ALU_ITINS_P>, EVEX; } defm VGETEXP : avx512_eri<0x42, "vgetexp", X86fgetexpRnd, SSE_ALU_ITINS_P>, avx512_fp_unaryop_packed<0x42, "vgetexp", X86fgetexpRnd, SSE_ALU_ITINS_P>, EVEX; multiclass avx512_sqrt_packed_round opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _>{ let ExeDomain = _.ExeDomain in defm rb: AVX512_maskable, EVEX, EVEX_B, EVEX_RC, Sched<[itins.Sched]>; } multiclass avx512_sqrt_packed opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _>{ let ExeDomain = _.ExeDomain in { defm r: AVX512_maskable, EVEX, Sched<[itins.Sched]>; defm m: AVX512_maskable, EVEX, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable, EVEX, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_sqrt_packed_all opc, string OpcodeStr> { defm PSZ : avx512_sqrt_packed, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_sqrt_packed, EVEX_V512, VEX_W, PD, EVEX_CD8<64, CD8VF>; // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_sqrt_packed, EVEX_V128, PS, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_sqrt_packed, EVEX_V256, PS, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_sqrt_packed, EVEX_V128, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_sqrt_packed, EVEX_V256, VEX_W, PD, EVEX_CD8<64, CD8VF>; } } multiclass avx512_sqrt_packed_all_round opc, string OpcodeStr> { defm PSZ : avx512_sqrt_packed_round, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_sqrt_packed_round, EVEX_V512, VEX_W, PD, EVEX_CD8<64, CD8VF>; } multiclass avx512_sqrt_scalar opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _, string SUFF, Intrinsic Intr> { let ExeDomain = _.ExeDomain in { defm r_Int : AVX512_maskable_scalar, Sched<[itins.Sched]>; defm m_Int : AVX512_maskable_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rb_Int : AVX512_maskable_scalar, EVEX_B, EVEX_RC, Sched<[itins.Sched]>; let isCodeGenOnly = 1, hasSideEffects = 0 in { def r : I, Sched<[itins.Sched]>; let mayLoad = 1 in def m : I, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } let Predicates = [HasAVX512] in { def : Pat<(_.EltVT (fsqrt _.FRC:$src)), (!cast(NAME#SUFF#Zr) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src)>; def : Pat<(Intr VR128X:$src), (!cast(NAME#SUFF#Zr_Int) VR128X:$src, VR128X:$src)>; } let Predicates = [HasAVX512, OptForSize] in { def : Pat<(_.EltVT (fsqrt (load addr:$src))), (!cast(NAME#SUFF#Zm) (_.EltVT (IMPLICIT_DEF)), addr:$src)>; def : Pat<(Intr _.ScalarIntMemCPat:$src2), (!cast(NAME#SUFF#Zm_Int) (_.VT (IMPLICIT_DEF)), addr:$src2)>; } } multiclass avx512_sqrt_scalar_all opc, string OpcodeStr> { defm SSZ : avx512_sqrt_scalar, EVEX_CD8<32, CD8VT1>, EVEX_4V, XS, NotMemoryFoldable; defm SDZ : avx512_sqrt_scalar, EVEX_CD8<64, CD8VT1>, EVEX_4V, XD, VEX_W, NotMemoryFoldable; } defm VSQRT : avx512_sqrt_packed_all<0x51, "vsqrt">, avx512_sqrt_packed_all_round<0x51, "vsqrt">; defm VSQRT : avx512_sqrt_scalar_all<0x51, "vsqrt">, VEX_LIG; multiclass avx512_rndscale_scalar opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm r_Int : AVX512_maskable_scalar, Sched<[itins.Sched]>; defm rb_Int : AVX512_maskable_scalar, EVEX_B, Sched<[itins.Sched]>; defm m_Int : AVX512_maskable_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, hasSideEffects = 0 in { def r : I, Sched<[itins.Sched]>; let mayLoad = 1 in def m : I, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } let Predicates = [HasAVX512] in { def : Pat<(ffloor _.FRC:$src), (_.EltVT (!cast(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0x9)))>; def : Pat<(fceil _.FRC:$src), (_.EltVT (!cast(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0xa)))>; def : Pat<(ftrunc _.FRC:$src), (_.EltVT (!cast(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0xb)))>; def : Pat<(frint _.FRC:$src), (_.EltVT (!cast(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0x4)))>; def : Pat<(fnearbyint _.FRC:$src), (_.EltVT (!cast(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0xc)))>; } let Predicates = [HasAVX512, OptForSize] in { def : Pat<(ffloor (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0x9)))>; def : Pat<(fceil (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0xa)))>; def : Pat<(ftrunc (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0xb)))>; def : Pat<(frint (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0x4)))>; def : Pat<(fnearbyint (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0xc)))>; } } defm VRNDSCALESS : avx512_rndscale_scalar<0x0A, "vrndscaless", SSE_ALU_F32S, f32x_info>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VRNDSCALESD : avx512_rndscale_scalar<0x0B, "vrndscalesd", SSE_ALU_F64S, f64x_info>, VEX_W, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VT1>; //------------------------------------------------- // Integer truncate and extend operations //------------------------------------------------- let Sched = WriteShuffle256 in def AVX512_EXTEND : OpndItins< IIC_SSE_PSHUF_RI, IIC_SSE_PSHUF_MI >; let Sched = WriteShuffle256 in def AVX512_TRUNCATE : OpndItins< IIC_SSE_PSHUF_RI, IIC_SSE_PSHUF_MI >; multiclass avx512_trunc_common opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo SrcInfo, X86VectorVTInfo DestInfo, X86MemOperand x86memop> { let ExeDomain = DestInfo.ExeDomain in defm rr : AVX512_maskable, EVEX, T8XS, Sched<[itins.Sched]>; let mayStore = 1, mayLoad = 1, hasSideEffects = 0, ExeDomain = DestInfo.ExeDomain in { def mr : AVX512XS8I, EVEX, Sched<[itins.Sched.Folded]>; def mrk : AVX512XS8I, EVEX, EVEX_K, Sched<[itins.Sched.Folded]>; }//mayStore = 1, mayLoad = 1, hasSideEffects = 0 } multiclass avx512_trunc_mr_lowering { def : Pat<(truncFrag (SrcInfo.VT SrcInfo.RC:$src), addr:$dst), (!cast(NAME#SrcInfo.ZSuffix##mr) addr:$dst, SrcInfo.RC:$src)>; def : Pat<(mtruncFrag addr:$dst, SrcInfo.KRCWM:$mask, (SrcInfo.VT SrcInfo.RC:$src)), (!cast(NAME#SrcInfo.ZSuffix##mrk) addr:$dst, SrcInfo.KRCWM:$mask, SrcInfo.RC:$src)>; } multiclass avx512_trunc opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTSrcInfo, X86VectorVTInfo DestInfoZ128, X86VectorVTInfo DestInfoZ256, X86VectorVTInfo DestInfoZ, X86MemOperand x86memopZ128, X86MemOperand x86memopZ256, X86MemOperand x86memopZ, PatFrag truncFrag, PatFrag mtruncFrag, Predicate prd = HasAVX512>{ let Predicates = [HasVLX, prd] in { defm Z128: avx512_trunc_common, avx512_trunc_mr_lowering, EVEX_V128; defm Z256: avx512_trunc_common, avx512_trunc_mr_lowering, EVEX_V256; } let Predicates = [prd] in defm Z: avx512_trunc_common, avx512_trunc_mr_lowering, EVEX_V512; } multiclass avx512_trunc_qb opc, string OpcodeStr, SDNode OpNode, OpndItins itins, PatFrag StoreNode, PatFrag MaskedStoreNode> { defm NAME: avx512_trunc, EVEX_CD8<8, CD8VO>; } multiclass avx512_trunc_qw opc, string OpcodeStr, SDNode OpNode, OpndItins itins, PatFrag StoreNode, PatFrag MaskedStoreNode> { defm NAME: avx512_trunc, EVEX_CD8<16, CD8VQ>; } multiclass avx512_trunc_qd opc, string OpcodeStr, SDNode OpNode, OpndItins itins, PatFrag StoreNode, PatFrag MaskedStoreNode> { defm NAME: avx512_trunc, EVEX_CD8<32, CD8VH>; } multiclass avx512_trunc_db opc, string OpcodeStr, SDNode OpNode, OpndItins itins, PatFrag StoreNode, PatFrag MaskedStoreNode> { defm NAME: avx512_trunc, EVEX_CD8<8, CD8VQ>; } multiclass avx512_trunc_dw opc, string OpcodeStr, SDNode OpNode, OpndItins itins, PatFrag StoreNode, PatFrag MaskedStoreNode> { defm NAME: avx512_trunc, EVEX_CD8<16, CD8VH>; } multiclass avx512_trunc_wb opc, string OpcodeStr, SDNode OpNode, OpndItins itins, PatFrag StoreNode, PatFrag MaskedStoreNode> { defm NAME: avx512_trunc, EVEX_CD8<16, CD8VH>; } defm VPMOVQB : avx512_trunc_qb<0x32, "vpmovqb", X86vtrunc, AVX512_TRUNCATE, truncstorevi8, masked_truncstorevi8>; defm VPMOVSQB : avx512_trunc_qb<0x22, "vpmovsqb", X86vtruncs, AVX512_TRUNCATE, truncstore_s_vi8, masked_truncstore_s_vi8>; defm VPMOVUSQB : avx512_trunc_qb<0x12, "vpmovusqb", X86vtruncus, AVX512_TRUNCATE, truncstore_us_vi8, masked_truncstore_us_vi8>; defm VPMOVQW : avx512_trunc_qw<0x34, "vpmovqw", X86vtrunc, AVX512_TRUNCATE, truncstorevi16, masked_truncstorevi16>; defm VPMOVSQW : avx512_trunc_qw<0x24, "vpmovsqw", X86vtruncs, AVX512_TRUNCATE, truncstore_s_vi16, masked_truncstore_s_vi16>; defm VPMOVUSQW : avx512_trunc_qw<0x14, "vpmovusqw", X86vtruncus, AVX512_TRUNCATE, truncstore_us_vi16, masked_truncstore_us_vi16>; defm VPMOVQD : avx512_trunc_qd<0x35, "vpmovqd", X86vtrunc, AVX512_TRUNCATE, truncstorevi32, masked_truncstorevi32>; defm VPMOVSQD : avx512_trunc_qd<0x25, "vpmovsqd", X86vtruncs, AVX512_TRUNCATE, truncstore_s_vi32, masked_truncstore_s_vi32>; defm VPMOVUSQD : avx512_trunc_qd<0x15, "vpmovusqd", X86vtruncus, AVX512_TRUNCATE, truncstore_us_vi32, masked_truncstore_us_vi32>; defm VPMOVDB : avx512_trunc_db<0x31, "vpmovdb", X86vtrunc, AVX512_TRUNCATE, truncstorevi8, masked_truncstorevi8>; defm VPMOVSDB : avx512_trunc_db<0x21, "vpmovsdb", X86vtruncs, AVX512_TRUNCATE, truncstore_s_vi8, masked_truncstore_s_vi8>; defm VPMOVUSDB : avx512_trunc_db<0x11, "vpmovusdb", X86vtruncus, AVX512_TRUNCATE, truncstore_us_vi8, masked_truncstore_us_vi8>; defm VPMOVDW : avx512_trunc_dw<0x33, "vpmovdw", X86vtrunc, AVX512_TRUNCATE, truncstorevi16, masked_truncstorevi16>; defm VPMOVSDW : avx512_trunc_dw<0x23, "vpmovsdw", X86vtruncs, AVX512_TRUNCATE, truncstore_s_vi16, masked_truncstore_s_vi16>; defm VPMOVUSDW : avx512_trunc_dw<0x13, "vpmovusdw", X86vtruncus, AVX512_TRUNCATE, truncstore_us_vi16, masked_truncstore_us_vi16>; defm VPMOVWB : avx512_trunc_wb<0x30, "vpmovwb", X86vtrunc, AVX512_TRUNCATE, truncstorevi8, masked_truncstorevi8>; defm VPMOVSWB : avx512_trunc_wb<0x20, "vpmovswb", X86vtruncs, AVX512_TRUNCATE, truncstore_s_vi8, masked_truncstore_s_vi8>; defm VPMOVUSWB : avx512_trunc_wb<0x10, "vpmovuswb", X86vtruncus, AVX512_TRUNCATE, truncstore_us_vi8, masked_truncstore_us_vi8>; let Predicates = [HasAVX512, NoVLX] in { def: Pat<(v8i16 (X86vtrunc (v8i32 VR256X:$src))), (v8i16 (EXTRACT_SUBREG (v16i16 (VPMOVDWZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src, sub_ymm)))), sub_xmm))>; def: Pat<(v4i32 (X86vtrunc (v4i64 VR256X:$src))), (v4i32 (EXTRACT_SUBREG (v8i32 (VPMOVQDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src, sub_ymm)))), sub_xmm))>; } let Predicates = [HasBWI, NoVLX] in { def: Pat<(v16i8 (X86vtrunc (v16i16 VR256X:$src))), (v16i8 (EXTRACT_SUBREG (VPMOVWBZrr (v32i16 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src, sub_ymm))), sub_xmm))>; } multiclass avx512_extend_common opc, string OpcodeStr, OpndItins itins, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo, X86MemOperand x86memop, PatFrag LdFrag, SDPatternOperator OpNode>{ let ExeDomain = DestInfo.ExeDomain in { defm rr : AVX512_maskable, EVEX, Sched<[itins.Sched]>; defm rm : AVX512_maskable, EVEX, Sched<[itins.Sched.Folded]>; } } multiclass avx512_extend_BW opc, string OpcodeStr, SDPatternOperator OpNode, SDPatternOperator InVecNode, string ExtTy, OpndItins itins, PatFrag LdFrag = !cast(ExtTy#"extloadvi8")> { let Predicates = [HasVLX, HasBWI] in { defm Z128: avx512_extend_common, EVEX_CD8<8, CD8VH>, T8PD, EVEX_V128, VEX_WIG; defm Z256: avx512_extend_common, EVEX_CD8<8, CD8VH>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasBWI] in { defm Z : avx512_extend_common, EVEX_CD8<8, CD8VH>, T8PD, EVEX_V512, VEX_WIG; } } multiclass avx512_extend_BD opc, string OpcodeStr, SDPatternOperator OpNode, SDPatternOperator InVecNode, string ExtTy, OpndItins itins, PatFrag LdFrag = !cast(ExtTy#"extloadvi8")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: avx512_extend_common, EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V128, VEX_WIG; defm Z256: avx512_extend_common, EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : avx512_extend_common, EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V512, VEX_WIG; } } multiclass avx512_extend_BQ opc, string OpcodeStr, SDPatternOperator OpNode, SDPatternOperator InVecNode, string ExtTy, OpndItins itins, PatFrag LdFrag = !cast(ExtTy#"extloadvi8")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: avx512_extend_common, EVEX_CD8<8, CD8VO>, T8PD, EVEX_V128, VEX_WIG; defm Z256: avx512_extend_common, EVEX_CD8<8, CD8VO>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : avx512_extend_common, EVEX_CD8<8, CD8VO>, T8PD, EVEX_V512, VEX_WIG; } } multiclass avx512_extend_WD opc, string OpcodeStr, SDPatternOperator OpNode, SDPatternOperator InVecNode, string ExtTy, OpndItins itins, PatFrag LdFrag = !cast(ExtTy#"extloadvi16")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: avx512_extend_common, EVEX_CD8<16, CD8VH>, T8PD, EVEX_V128, VEX_WIG; defm Z256: avx512_extend_common, EVEX_CD8<16, CD8VH>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : avx512_extend_common, EVEX_CD8<16, CD8VH>, T8PD, EVEX_V512, VEX_WIG; } } multiclass avx512_extend_WQ opc, string OpcodeStr, SDPatternOperator OpNode, SDPatternOperator InVecNode, string ExtTy, OpndItins itins, PatFrag LdFrag = !cast(ExtTy#"extloadvi16")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: avx512_extend_common, EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V128, VEX_WIG; defm Z256: avx512_extend_common, EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : avx512_extend_common, EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V512, VEX_WIG; } } multiclass avx512_extend_DQ opc, string OpcodeStr, SDPatternOperator OpNode, SDPatternOperator InVecNode, string ExtTy, OpndItins itins, PatFrag LdFrag = !cast(ExtTy#"extloadvi32")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: avx512_extend_common, EVEX_CD8<32, CD8VH>, T8PD, EVEX_V128; defm Z256: avx512_extend_common, EVEX_CD8<32, CD8VH>, T8PD, EVEX_V256; } let Predicates = [HasAVX512] in { defm Z : avx512_extend_common, EVEX_CD8<32, CD8VH>, T8PD, EVEX_V512; } } defm VPMOVZXBW : avx512_extend_BW<0x30, "vpmovzxbw", X86vzext, zext_invec, "z", AVX512_EXTEND>; defm VPMOVZXBD : avx512_extend_BD<0x31, "vpmovzxbd", X86vzext, zext_invec, "z", AVX512_EXTEND>; defm VPMOVZXBQ : avx512_extend_BQ<0x32, "vpmovzxbq", X86vzext, zext_invec, "z", AVX512_EXTEND>; defm VPMOVZXWD : avx512_extend_WD<0x33, "vpmovzxwd", X86vzext, zext_invec, "z", AVX512_EXTEND>; defm VPMOVZXWQ : avx512_extend_WQ<0x34, "vpmovzxwq", X86vzext, zext_invec, "z", AVX512_EXTEND>; defm VPMOVZXDQ : avx512_extend_DQ<0x35, "vpmovzxdq", X86vzext, zext_invec, "z", AVX512_EXTEND>; defm VPMOVSXBW: avx512_extend_BW<0x20, "vpmovsxbw", X86vsext, sext_invec, "s", AVX512_EXTEND>; defm VPMOVSXBD: avx512_extend_BD<0x21, "vpmovsxbd", X86vsext, sext_invec, "s", AVX512_EXTEND>; defm VPMOVSXBQ: avx512_extend_BQ<0x22, "vpmovsxbq", X86vsext, sext_invec, "s", AVX512_EXTEND>; defm VPMOVSXWD: avx512_extend_WD<0x23, "vpmovsxwd", X86vsext, sext_invec, "s", AVX512_EXTEND>; defm VPMOVSXWQ: avx512_extend_WQ<0x24, "vpmovsxwq", X86vsext, sext_invec, "s", AVX512_EXTEND>; defm VPMOVSXDQ: avx512_extend_DQ<0x25, "vpmovsxdq", X86vsext, sext_invec, "s", AVX512_EXTEND>; multiclass AVX512_pmovx_patterns { // 128-bit patterns let Predicates = [HasVLX, HasBWI] in { def : Pat<(v8i16 (InVecOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (v16i8 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BWZ128rm) addr:$src)>; } let Predicates = [HasVLX] in { def : Pat<(v4i32 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v16i8 (vzmovl_v4i32 addr:$src)))), (!cast(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (ExtLoad16 addr:$src)))))), (!cast(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v16i8 (vzmovl_v4i32 addr:$src)))), (!cast(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v8i16 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v8i16 (vzmovl_v4i32 addr:$src)))), (!cast(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v4i32 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v4i32 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v4i32 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#DQZ128rm) addr:$src)>; } // 256-bit patterns let Predicates = [HasVLX, HasBWI] in { def : Pat<(v16i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BWZ256rm) addr:$src)>; def : Pat<(v16i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#BWZ256rm) addr:$src)>; def : Pat<(v16i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#BWZ256rm) addr:$src)>; } let Predicates = [HasVLX] in { def : Pat<(v8i32 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))), (!cast(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#WDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#WDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#WDZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#DQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))), (!cast(OpcPrefix#DQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))), (!cast(OpcPrefix#DQZ256rm) addr:$src)>; } // 512-bit patterns let Predicates = [HasBWI] in { def : Pat<(v32i16 (ExtOp (bc_v32i8 (loadv4i64 addr:$src)))), (!cast(OpcPrefix#BWZrm) addr:$src)>; } let Predicates = [HasAVX512] in { def : Pat<(v16i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BDZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast(OpcPrefix#BQZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#BQZrm) addr:$src)>; def : Pat<(v16i32 (ExtOp (bc_v16i16 (loadv4i64 addr:$src)))), (!cast(OpcPrefix#WDZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast(OpcPrefix#WQZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v8i32 (loadv4i64 addr:$src)))), (!cast(OpcPrefix#DQZrm) addr:$src)>; } } defm : AVX512_pmovx_patterns<"VPMOVSX", X86vsext, sext_invec, extloadi32i16>; defm : AVX512_pmovx_patterns<"VPMOVZX", X86vzext, zext_invec, loadi16_anyext>; //===----------------------------------------------------------------------===// // GATHER - SCATTER Operations // FIXME: Improve scheduling of gather/scatter instructions. multiclass avx512_gather opc, string OpcodeStr, X86VectorVTInfo _, X86MemOperand memop, PatFrag GatherNode, RegisterClass MaskRC = _.KRCWM> { let Constraints = "@earlyclobber $dst, $src1 = $dst, $mask = $mask_wb", ExeDomain = _.ExeDomain in def rm : AVX5128I, EVEX, EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteLoad]>; } multiclass avx512_gather_q_pd dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_gather, EVEX_V512, VEX_W; defm NAME##Q##SUFF##Z: avx512_gather, EVEX_V512, VEX_W; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_gather, EVEX_V256, VEX_W; defm NAME##Q##SUFF##Z256: avx512_gather, EVEX_V256, VEX_W; defm NAME##D##SUFF##Z128: avx512_gather, EVEX_V128, VEX_W; defm NAME##Q##SUFF##Z128: avx512_gather, EVEX_V128, VEX_W; } } multiclass avx512_gather_d_ps dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_gather, EVEX_V512; defm NAME##Q##SUFF##Z: avx512_gather, EVEX_V512; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_gather, EVEX_V256; defm NAME##Q##SUFF##Z256: avx512_gather, EVEX_V256; defm NAME##D##SUFF##Z128: avx512_gather, EVEX_V128; defm NAME##Q##SUFF##Z128: avx512_gather, EVEX_V128; } } defm VGATHER : avx512_gather_q_pd<0x92, 0x93, avx512vl_f64_info, "vgather", "PD">, avx512_gather_d_ps<0x92, 0x93, avx512vl_f32_info, "vgather", "PS">; defm VPGATHER : avx512_gather_q_pd<0x90, 0x91, avx512vl_i64_info, "vpgather", "Q">, avx512_gather_d_ps<0x90, 0x91, avx512vl_i32_info, "vpgather", "D">; multiclass avx512_scatter opc, string OpcodeStr, X86VectorVTInfo _, X86MemOperand memop, PatFrag ScatterNode> { let mayStore = 1, Constraints = "$mask = $mask_wb", ExeDomain = _.ExeDomain in def mr : AVX5128I, EVEX, EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteStore]>; } multiclass avx512_scatter_q_pd dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_scatter, EVEX_V512, VEX_W; defm NAME##Q##SUFF##Z: avx512_scatter, EVEX_V512, VEX_W; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_scatter, EVEX_V256, VEX_W; defm NAME##Q##SUFF##Z256: avx512_scatter, EVEX_V256, VEX_W; defm NAME##D##SUFF##Z128: avx512_scatter, EVEX_V128, VEX_W; defm NAME##Q##SUFF##Z128: avx512_scatter, EVEX_V128, VEX_W; } } multiclass avx512_scatter_d_ps dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_scatter, EVEX_V512; defm NAME##Q##SUFF##Z: avx512_scatter, EVEX_V512; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_scatter, EVEX_V256; defm NAME##Q##SUFF##Z256: avx512_scatter, EVEX_V256; defm NAME##D##SUFF##Z128: avx512_scatter, EVEX_V128; defm NAME##Q##SUFF##Z128: avx512_scatter, EVEX_V128; } } defm VSCATTER : avx512_scatter_q_pd<0xA2, 0xA3, avx512vl_f64_info, "vscatter", "PD">, avx512_scatter_d_ps<0xA2, 0xA3, avx512vl_f32_info, "vscatter", "PS">; defm VPSCATTER : avx512_scatter_q_pd<0xA0, 0xA1, avx512vl_i64_info, "vpscatter", "Q">, avx512_scatter_d_ps<0xA0, 0xA1, avx512vl_i32_info, "vpscatter", "D">; // prefetch multiclass avx512_gather_scatter_prefetch opc, Format F, string OpcodeStr, RegisterClass KRC, X86MemOperand memop> { let Predicates = [HasPFI], hasSideEffects = 1 in def m : AVX5128I, EVEX, EVEX_K, Sched<[WriteLoad]>; } defm VGATHERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VGATHERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qps", VK8WM, vz256xmem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VGATHERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dpd", VK8WM, vy512mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VGATHERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; defm VGATHERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VGATHERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qps", VK8WM, vz256xmem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VGATHERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dpd", VK8WM, vy512mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VGATHERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qps", VK8WM, vz256xmem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dpd", VK8WM, vy512mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qps", VK8WM, vz256xmem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dpd", VK8WM, vy512mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; multiclass cvt_by_vec_width opc, X86VectorVTInfo Vec, string OpcodeStr > { def rr : AVX512XS8I, EVEX, Sched<[WriteMove]>; } multiclass cvt_mask_by_elt_width opc, AVX512VLVectorVTInfo VTInfo, string OpcodeStr, Predicate prd> { let Predicates = [prd] in defm Z : cvt_by_vec_width, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : cvt_by_vec_width, EVEX_V256; defm Z128 : cvt_by_vec_width, EVEX_V128; } } defm VPMOVM2B : cvt_mask_by_elt_width<0x28, avx512vl_i8_info, "vpmovm2" , HasBWI>; defm VPMOVM2W : cvt_mask_by_elt_width<0x28, avx512vl_i16_info, "vpmovm2", HasBWI> , VEX_W; defm VPMOVM2D : cvt_mask_by_elt_width<0x38, avx512vl_i32_info, "vpmovm2", HasDQI>; defm VPMOVM2Q : cvt_mask_by_elt_width<0x38, avx512vl_i64_info, "vpmovm2", HasDQI> , VEX_W; multiclass convert_vector_to_mask_common opc, X86VectorVTInfo _, string OpcodeStr > { def rr : AVX512XS8I, EVEX, Sched<[WriteMove]>; } // Use 512bit version to implement 128/256 bit in case NoVLX. multiclass convert_vector_to_mask_lowering { def : Pat<(_.KVT (X86cvt2mask (_.VT _.RC:$src))), (_.KVT (COPY_TO_REGCLASS (!cast(NAME#"Zrr") (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src, _.SubRegIdx)), _.KRC))>; } multiclass avx512_convert_vector_to_mask opc, string OpcodeStr, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : convert_vector_to_mask_common , EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : convert_vector_to_mask_common, EVEX_V256; defm Z128 : convert_vector_to_mask_common, EVEX_V128; } let Predicates = [prd, NoVLX] in { defm Z256_Alt : convert_vector_to_mask_lowering; defm Z128_Alt : convert_vector_to_mask_lowering; } } defm VPMOVB2M : avx512_convert_vector_to_mask<0x29, "vpmovb2m", avx512vl_i8_info, HasBWI>; defm VPMOVW2M : avx512_convert_vector_to_mask<0x29, "vpmovw2m", avx512vl_i16_info, HasBWI>, VEX_W; defm VPMOVD2M : avx512_convert_vector_to_mask<0x39, "vpmovd2m", avx512vl_i32_info, HasDQI>; defm VPMOVQ2M : avx512_convert_vector_to_mask<0x39, "vpmovq2m", avx512vl_i64_info, HasDQI>, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 - COMPRESS and EXPAND // // FIXME: Is there a better scheduler itinerary for VPCOMPRESS/VPEXPAND? let Sched = WriteShuffle256 in { def AVX512_COMPRESS : OpndItins< IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM >; def AVX512_EXPAND : OpndItins< IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM >; } multiclass compress_by_vec_width_common opc, X86VectorVTInfo _, string OpcodeStr, OpndItins itins> { defm rr : AVX512_maskable, AVX5128IBase, Sched<[itins.Sched]>; let mayStore = 1, hasSideEffects = 0 in def mr : AVX5128I, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[itins.Sched.Folded]>; def mrk : AVX5128I, EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[itins.Sched.Folded]>; } multiclass compress_by_vec_width_lowering { def : Pat<(X86mCompressingStore addr:$dst, _.KRCWM:$mask, (_.VT _.RC:$src)), (!cast(NAME#_.ZSuffix##mrk) addr:$dst, _.KRCWM:$mask, _.RC:$src)>; } multiclass compress_by_elt_width opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate Pred = HasAVX512> { let Predicates = [Pred] in defm Z : compress_by_vec_width_common, compress_by_vec_width_lowering, EVEX_V512; let Predicates = [Pred, HasVLX] in { defm Z256 : compress_by_vec_width_common, compress_by_vec_width_lowering, EVEX_V256; defm Z128 : compress_by_vec_width_common, compress_by_vec_width_lowering, EVEX_V128; } } defm VPCOMPRESSD : compress_by_elt_width <0x8B, "vpcompressd", AVX512_COMPRESS, avx512vl_i32_info>, EVEX; defm VPCOMPRESSQ : compress_by_elt_width <0x8B, "vpcompressq", AVX512_COMPRESS, avx512vl_i64_info>, EVEX, VEX_W; defm VCOMPRESSPS : compress_by_elt_width <0x8A, "vcompressps", AVX512_COMPRESS, avx512vl_f32_info>, EVEX; defm VCOMPRESSPD : compress_by_elt_width <0x8A, "vcompresspd", AVX512_COMPRESS, avx512vl_f64_info>, EVEX, VEX_W; // expand multiclass expand_by_vec_width opc, X86VectorVTInfo _, string OpcodeStr, OpndItins itins> { defm rr : AVX512_maskable, AVX5128IBase, Sched<[itins.Sched]>; defm rm : AVX512_maskable, AVX5128IBase, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass expand_by_vec_width_lowering { def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask, undef)), (!cast(NAME#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$src)>; def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask, (_.VT _.RC:$src0))), (!cast(NAME#_.ZSuffix##rmk) _.RC:$src0, _.KRCWM:$mask, addr:$src)>; } multiclass expand_by_elt_width opc, string OpcodeStr, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate Pred = HasAVX512> { let Predicates = [Pred] in defm Z : expand_by_vec_width, expand_by_vec_width_lowering, EVEX_V512; let Predicates = [Pred, HasVLX] in { defm Z256 : expand_by_vec_width, expand_by_vec_width_lowering, EVEX_V256; defm Z128 : expand_by_vec_width, expand_by_vec_width_lowering, EVEX_V128; } } defm VPEXPANDD : expand_by_elt_width <0x89, "vpexpandd", AVX512_EXPAND, avx512vl_i32_info>, EVEX; defm VPEXPANDQ : expand_by_elt_width <0x89, "vpexpandq", AVX512_EXPAND, avx512vl_i64_info>, EVEX, VEX_W; defm VEXPANDPS : expand_by_elt_width <0x88, "vexpandps", AVX512_EXPAND, avx512vl_f32_info>, EVEX; defm VEXPANDPD : expand_by_elt_width <0x88, "vexpandpd", AVX512_EXPAND, avx512vl_f64_info>, EVEX, VEX_W; //handle instruction reg_vec1 = op(reg_vec,imm) // op(mem_vec,imm) // op(broadcast(eltVt),imm) //all instruction created with FROUND_CURRENT multiclass avx512_unary_fp_packed_imm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable, Sched<[itins.Sched]>; defm rmi : AVX512_maskable, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae} multiclass avx512_unary_fp_sae_packed_imm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrib : AVX512_maskable, EVEX_B, Sched<[itins.Sched]>; } multiclass avx512_common_unary_fp_sae_packed_imm opc, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins, Predicate prd>{ let Predicates = [prd] in { defm Z : avx512_unary_fp_packed_imm, avx512_unary_fp_sae_packed_imm, EVEX_V512; } let Predicates = [prd, HasVLX] in { defm Z128 : avx512_unary_fp_packed_imm, EVEX_V128; defm Z256 : avx512_unary_fp_packed_imm, EVEX_V256; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_vec,imm) // op(reg_vec2,broadcast(eltVt),imm) //all instruction created with FROUND_CURRENT multiclass avx512_fp_packed_imm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _>{ let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable, Sched<[itins.Sched]>; defm rmi : AVX512_maskable, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_vec,imm) multiclass avx512_3Op_rm_imm8 opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo>{ let ExeDomain = DestInfo.ExeDomain in { defm rri : AVX512_maskable, Sched<[itins.Sched]>; defm rmi : AVX512_maskable, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_vec,imm) // op(reg_vec2,broadcast(eltVt),imm) multiclass avx512_3Op_imm8 opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _>: avx512_3Op_rm_imm8{ let ExeDomain = _.ExeDomain in defm rmbi : AVX512_maskable, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } //handle scalar instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_scalar,imm) multiclass avx512_fp_scalar_imm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_scalar, Sched<[itins.Sched]>; defm rmi : AVX512_maskable_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae} multiclass avx512_fp_sae_packed_imm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrib : AVX512_maskable, EVEX_B, Sched<[itins.Sched]>; } //handle scalar instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae} multiclass avx512_fp_sae_scalar_imm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm NAME#rrib : AVX512_maskable_scalar, EVEX_B, Sched<[itins.Sched]>; } multiclass avx512_common_fp_sae_packed_imm opc, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins, Predicate prd>{ let Predicates = [prd] in { defm Z : avx512_fp_packed_imm, avx512_fp_sae_packed_imm, EVEX_V512; } let Predicates = [prd, HasVLX] in { defm Z128 : avx512_fp_packed_imm, EVEX_V128; defm Z256 : avx512_fp_packed_imm, EVEX_V256; } } multiclass avx512_common_3Op_rm_imm8 opc, SDNode OpNode, string OpStr, OpndItins itins, AVX512VLVectorVTInfo DestInfo, AVX512VLVectorVTInfo SrcInfo, Predicate Pred = HasBWI> { let Predicates = [Pred] in { defm Z : avx512_3Op_rm_imm8, EVEX_V512, AVX512AIi8Base, EVEX_4V; } let Predicates = [Pred, HasVLX] in { defm Z128 : avx512_3Op_rm_imm8, EVEX_V128, AVX512AIi8Base, EVEX_4V; defm Z256 : avx512_3Op_rm_imm8, EVEX_V256, AVX512AIi8Base, EVEX_4V; } } multiclass avx512_common_3Op_imm8 opc, SDNode OpNode, OpndItins itins, Predicate Pred = HasAVX512> { let Predicates = [Pred] in { defm Z : avx512_3Op_imm8, EVEX_V512; } let Predicates = [Pred, HasVLX] in { defm Z128 : avx512_3Op_imm8, EVEX_V128; defm Z256 : avx512_3Op_imm8, EVEX_V256; } } multiclass avx512_common_fp_sae_scalar_imm opc, SDNode OpNode, SDNode OpNodeRnd, OpndItins itins, Predicate prd>{ let Predicates = [prd] in { defm Z128 : avx512_fp_scalar_imm, avx512_fp_sae_scalar_imm; } } multiclass avx512_common_unary_fp_sae_packed_imm_all opcPs, bits<8> opcPd, SDNode OpNode, SDNode OpNodeRnd, SizeItins itins, Predicate prd>{ defm PS : avx512_common_unary_fp_sae_packed_imm, EVEX_CD8<32, CD8VF>; defm PD : avx512_common_unary_fp_sae_packed_imm, EVEX_CD8<64, CD8VF>, VEX_W; } defm VREDUCE : avx512_common_unary_fp_sae_packed_imm_all<"vreduce", 0x56, 0x56, X86VReduce, X86VReduceRnd, SSE_ALU_ITINS_P, HasDQI>, AVX512AIi8Base, EVEX; defm VRNDSCALE : avx512_common_unary_fp_sae_packed_imm_all<"vrndscale", 0x08, 0x09, X86VRndScale, X86VRndScaleRnd, SSE_ALU_ITINS_P, HasAVX512>, AVX512AIi8Base, EVEX; defm VGETMANT : avx512_common_unary_fp_sae_packed_imm_all<"vgetmant", 0x26, 0x26, X86VGetMant, X86VGetMantRnd, SSE_ALU_ITINS_P, HasAVX512>, AVX512AIi8Base, EVEX; defm VRANGEPD : avx512_common_fp_sae_packed_imm<"vrangepd", avx512vl_f64_info, 0x50, X86VRange, X86VRangeRnd, SSE_ALU_F64P, HasDQI>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; defm VRANGEPS : avx512_common_fp_sae_packed_imm<"vrangeps", avx512vl_f32_info, 0x50, X86VRange, X86VRangeRnd, SSE_ALU_F32P, HasDQI>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm VRANGESD: avx512_common_fp_sae_scalar_imm<"vrangesd", f64x_info, 0x51, X86Ranges, X86RangesRnd, SSE_ALU_F64S, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VRANGESS: avx512_common_fp_sae_scalar_imm<"vrangess", f32x_info, 0x51, X86Ranges, X86RangesRnd, SSE_ALU_F32S, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VREDUCESD: avx512_common_fp_sae_scalar_imm<"vreducesd", f64x_info, 0x57, X86Reduces, X86ReducesRnd, SSE_ALU_F64S, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VREDUCESS: avx512_common_fp_sae_scalar_imm<"vreducess", f32x_info, 0x57, X86Reduces, X86ReducesRnd, SSE_ALU_F32S, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VGETMANTSD: avx512_common_fp_sae_scalar_imm<"vgetmantsd", f64x_info, 0x27, X86GetMants, X86GetMantsRnd, SSE_ALU_F64S, HasAVX512>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VGETMANTSS: avx512_common_fp_sae_scalar_imm<"vgetmantss", f32x_info, 0x27, X86GetMants, X86GetMantsRnd, SSE_ALU_F32S, HasAVX512>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; let Predicates = [HasAVX512] in { def : Pat<(v16f32 (ffloor VR512:$src)), (VRNDSCALEPSZrri VR512:$src, (i32 0x9))>; def : Pat<(v16f32 (fnearbyint VR512:$src)), (VRNDSCALEPSZrri VR512:$src, (i32 0xC))>; def : Pat<(v16f32 (fceil VR512:$src)), (VRNDSCALEPSZrri VR512:$src, (i32 0xA))>; def : Pat<(v16f32 (frint VR512:$src)), (VRNDSCALEPSZrri VR512:$src, (i32 0x4))>; def : Pat<(v16f32 (ftrunc VR512:$src)), (VRNDSCALEPSZrri VR512:$src, (i32 0xB))>; def : Pat<(v8f64 (ffloor VR512:$src)), (VRNDSCALEPDZrri VR512:$src, (i32 0x9))>; def : Pat<(v8f64 (fnearbyint VR512:$src)), (VRNDSCALEPDZrri VR512:$src, (i32 0xC))>; def : Pat<(v8f64 (fceil VR512:$src)), (VRNDSCALEPDZrri VR512:$src, (i32 0xA))>; def : Pat<(v8f64 (frint VR512:$src)), (VRNDSCALEPDZrri VR512:$src, (i32 0x4))>; def : Pat<(v8f64 (ftrunc VR512:$src)), (VRNDSCALEPDZrri VR512:$src, (i32 0xB))>; } let Predicates = [HasVLX] in { def : Pat<(v4f32 (ffloor VR128X:$src)), (VRNDSCALEPSZ128rri VR128X:$src, (i32 0x9))>; def : Pat<(v4f32 (fnearbyint VR128X:$src)), (VRNDSCALEPSZ128rri VR128X:$src, (i32 0xC))>; def : Pat<(v4f32 (fceil VR128X:$src)), (VRNDSCALEPSZ128rri VR128X:$src, (i32 0xA))>; def : Pat<(v4f32 (frint VR128X:$src)), (VRNDSCALEPSZ128rri VR128X:$src, (i32 0x4))>; def : Pat<(v4f32 (ftrunc VR128X:$src)), (VRNDSCALEPSZ128rri VR128X:$src, (i32 0xB))>; def : Pat<(v2f64 (ffloor VR128X:$src)), (VRNDSCALEPDZ128rri VR128X:$src, (i32 0x9))>; def : Pat<(v2f64 (fnearbyint VR128X:$src)), (VRNDSCALEPDZ128rri VR128X:$src, (i32 0xC))>; def : Pat<(v2f64 (fceil VR128X:$src)), (VRNDSCALEPDZ128rri VR128X:$src, (i32 0xA))>; def : Pat<(v2f64 (frint VR128X:$src)), (VRNDSCALEPDZ128rri VR128X:$src, (i32 0x4))>; def : Pat<(v2f64 (ftrunc VR128X:$src)), (VRNDSCALEPDZ128rri VR128X:$src, (i32 0xB))>; def : Pat<(v8f32 (ffloor VR256X:$src)), (VRNDSCALEPSZ256rri VR256X:$src, (i32 0x9))>; def : Pat<(v8f32 (fnearbyint VR256X:$src)), (VRNDSCALEPSZ256rri VR256X:$src, (i32 0xC))>; def : Pat<(v8f32 (fceil VR256X:$src)), (VRNDSCALEPSZ256rri VR256X:$src, (i32 0xA))>; def : Pat<(v8f32 (frint VR256X:$src)), (VRNDSCALEPSZ256rri VR256X:$src, (i32 0x4))>; def : Pat<(v8f32 (ftrunc VR256X:$src)), (VRNDSCALEPSZ256rri VR256X:$src, (i32 0xB))>; def : Pat<(v4f64 (ffloor VR256X:$src)), (VRNDSCALEPDZ256rri VR256X:$src, (i32 0x9))>; def : Pat<(v4f64 (fnearbyint VR256X:$src)), (VRNDSCALEPDZ256rri VR256X:$src, (i32 0xC))>; def : Pat<(v4f64 (fceil VR256X:$src)), (VRNDSCALEPDZ256rri VR256X:$src, (i32 0xA))>; def : Pat<(v4f64 (frint VR256X:$src)), (VRNDSCALEPDZ256rri VR256X:$src, (i32 0x4))>; def : Pat<(v4f64 (ftrunc VR256X:$src)), (VRNDSCALEPDZ256rri VR256X:$src, (i32 0xB))>; } multiclass avx512_shuff_packed_128 opc>{ let Predicates = [HasAVX512] in { defm Z : avx512_3Op_imm8, EVEX_V512; } let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_3Op_imm8, EVEX_V256; } } defm VSHUFF32X4 : avx512_shuff_packed_128<"vshuff32x4", SSE_SHUFP, avx512vl_f32_info, 0x23>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm VSHUFF64X2 : avx512_shuff_packed_128<"vshuff64x2", SSE_SHUFP, avx512vl_f64_info, 0x23>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; defm VSHUFI32X4 : avx512_shuff_packed_128<"vshufi32x4", SSE_SHUFP, avx512vl_i32_info, 0x43>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm VSHUFI64X2 : avx512_shuff_packed_128<"vshufi64x2", SSE_SHUFP, avx512vl_i64_info, 0x43>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; let Predicates = [HasAVX512] in { // Provide fallback in case the load node that is used in the broadcast // patterns above is used by additional users, which prevents the pattern // selection. def : Pat<(v8f64 (X86SubVBroadcast (v2f64 VR128X:$src))), (VSHUFF64X2Zrri (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v8i64 (X86SubVBroadcast (v2i64 VR128X:$src))), (VSHUFI64X2Zrri (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v16f32 (X86SubVBroadcast (v4f32 VR128X:$src))), (VSHUFF32X4Zrri (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v16i32 (X86SubVBroadcast (v4i32 VR128X:$src))), (VSHUFI32X4Zrri (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v32i16 (X86SubVBroadcast (v8i16 VR128X:$src))), (VSHUFI32X4Zrri (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v64i8 (X86SubVBroadcast (v16i8 VR128X:$src))), (VSHUFI32X4Zrri (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; } multiclass avx512_valign { defm NAME: avx512_common_3Op_imm8, AVX512AIi8Base, EVEX_4V; } defm VALIGND: avx512_valign<"valignd", SSE_PALIGN, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VALIGNQ: avx512_valign<"valignq", SSE_PALIGN, avx512vl_i64_info>, EVEX_CD8<64, CD8VF>, VEX_W; defm VPALIGNR: avx512_common_3Op_rm_imm8<0x0F, X86PAlignr, "vpalignr", SSE_PALIGN, avx512vl_i8_info, avx512vl_i8_info>, EVEX_CD8<8, CD8VF>; // Fragments to help convert valignq into masked valignd. Or valignq/valignd // into vpalignr. def ValignqImm32XForm : SDNodeXFormgetZExtValue() * 2, SDLoc(N)); }]>; def ValignqImm8XForm : SDNodeXFormgetZExtValue() * 8, SDLoc(N)); }]>; def ValigndImm8XForm : SDNodeXFormgetZExtValue() * 4, SDLoc(N)); }]>; multiclass avx512_vpalign_mask_lowering { def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, From.RC:$src2, imm:$src3))), To.RC:$src0)), (!cast(OpcodeStr#"rrik") To.RC:$src0, To.KRCWM:$mask, To.RC:$src1, To.RC:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, From.RC:$src2, imm:$src3))), To.ImmAllZerosV)), (!cast(OpcodeStr#"rrikz") To.KRCWM:$mask, To.RC:$src1, To.RC:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.LdFrag addr:$src2)), imm:$src3))), To.RC:$src0)), (!cast(OpcodeStr#"rmik") To.RC:$src0, To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.LdFrag addr:$src2)), imm:$src3))), To.ImmAllZerosV)), (!cast(OpcodeStr#"rmikz") To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; } multiclass avx512_vpalign_mask_lowering_mb : avx512_vpalign_mask_lowering { def : Pat<(From.VT (OpNode From.RC:$src1, (bitconvert (To.VT (X86VBroadcast (To.ScalarLdFrag addr:$src2)))), imm:$src3)), (!cast(OpcodeStr#"rmbi") To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.VT (X86VBroadcast (To.ScalarLdFrag addr:$src2)))), imm:$src3))), To.RC:$src0)), (!cast(OpcodeStr#"rmbik") To.RC:$src0, To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.VT (X86VBroadcast (To.ScalarLdFrag addr:$src2)))), imm:$src3))), To.ImmAllZerosV)), (!cast(OpcodeStr#"rmbikz") To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; } let Predicates = [HasAVX512] in { // For 512-bit we lower to the widest element type we can. So we only need // to handle converting valignq to valignd. defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ", X86VAlign, v8i64_info, v16i32_info, ValignqImm32XForm>; } let Predicates = [HasVLX] in { // For 128-bit we lower to the widest element type we can. So we only need // to handle converting valignq to valignd. defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ128", X86VAlign, v2i64x_info, v4i32x_info, ValignqImm32XForm>; // For 256-bit we lower to the widest element type we can. So we only need // to handle converting valignq to valignd. defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ256", X86VAlign, v4i64x_info, v8i32x_info, ValignqImm32XForm>; } let Predicates = [HasVLX, HasBWI] in { // We can turn 128 and 256 bit VALIGND/VALIGNQ into VPALIGNR. defm : avx512_vpalign_mask_lowering<"VPALIGNRZ128", X86VAlign, v2i64x_info, v16i8x_info, ValignqImm8XForm>; defm : avx512_vpalign_mask_lowering<"VPALIGNRZ128", X86VAlign, v4i32x_info, v16i8x_info, ValigndImm8XForm>; } defm VDBPSADBW: avx512_common_3Op_rm_imm8<0x42, X86dbpsadbw, "vdbpsadbw", SSE_INTMUL_ITINS_P, avx512vl_i16_info, avx512vl_i8_info>, EVEX_CD8<8, CD8VF>; multiclass avx512_unary_rm opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable, EVEX, AVX5128IBase, Sched<[itins.Sched]>; defm rm : AVX512_maskable, EVEX, AVX5128IBase, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded]>; } } multiclass avx512_unary_rmb opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> : avx512_unary_rm { defm rmb : AVX512_maskable, EVEX, AVX5128IBase, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded]>; } multiclass avx512_unary_rm_vl opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_unary_rm, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_unary_rm, EVEX_V256; defm Z128 : avx512_unary_rm, EVEX_V128; } } multiclass avx512_unary_rmb_vl opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_unary_rmb, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_unary_rmb, EVEX_V256; defm Z128 : avx512_unary_rmb, EVEX_V128; } } multiclass avx512_unary_rm_vl_dq opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd> { defm Q : avx512_unary_rmb_vl, VEX_W; defm D : avx512_unary_rmb_vl; } multiclass avx512_unary_rm_vl_bw opc_b, bits<8> opc_w, string OpcodeStr, SDNode OpNode, OpndItins itins, Predicate prd> { defm W : avx512_unary_rm_vl, VEX_WIG; defm B : avx512_unary_rm_vl, VEX_WIG; } multiclass avx512_unary_rm_vl_all opc_b, bits<8> opc_w, bits<8> opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm NAME : avx512_unary_rm_vl_dq, avx512_unary_rm_vl_bw; } defm VPABS : avx512_unary_rm_vl_all<0x1C, 0x1D, 0x1E, 0x1F, "vpabs", abs, SSE_PABS>; // VPABS: Use 512bit version to implement 128/256 bit in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v4i64 (abs VR256X:$src)), (EXTRACT_SUBREG (VPABSQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (abs VR128X:$src)), (EXTRACT_SUBREG (VPABSQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm)), sub_xmm)>; } // Use 512bit version to implement 128/256 bit. multiclass avx512_unary_lowering { let Predicates = [prd, NoVLX] in { def : Pat<(_.info256.VT(OpNode _.info256.RC:$src1)), (EXTRACT_SUBREG (!cast(InstrStr # "Zrr") (INSERT_SUBREG(_.info512.VT(IMPLICIT_DEF)), _.info256.RC:$src1, _.info256.SubRegIdx)), _.info256.SubRegIdx)>; def : Pat<(_.info128.VT(OpNode _.info128.RC:$src1)), (EXTRACT_SUBREG (!cast(InstrStr # "Zrr") (INSERT_SUBREG(_.info512.VT(IMPLICIT_DEF)), _.info128.RC:$src1, _.info128.SubRegIdx)), _.info128.SubRegIdx)>; } } // FIXME: Is there a better scheduler itinerary for VPLZCNT? defm VPLZCNT : avx512_unary_rm_vl_dq<0x44, 0x44, "vplzcnt", ctlz, SSE_INTALU_ITINS_P, HasCDI>; // FIXME: Is there a better scheduler itinerary for VPCONFLICT? defm VPCONFLICT : avx512_unary_rm_vl_dq<0xC4, 0xC4, "vpconflict", X86Conflict, SSE_INTALU_ITINS_P, HasCDI>; // VPLZCNT: Use 512bit version to implement 128/256 bit in case NoVLX. defm : avx512_unary_lowering<"VPLZCNTQ", ctlz, avx512vl_i64_info, HasCDI>; defm : avx512_unary_lowering<"VPLZCNTD", ctlz, avx512vl_i32_info, HasCDI>; //===---------------------------------------------------------------------===// // Counts number of ones - VPOPCNTD and VPOPCNTQ //===---------------------------------------------------------------------===// // FIXME: Is there a better scheduler itinerary for VPOPCNTD/VPOPCNTQ? defm VPOPCNT : avx512_unary_rm_vl_dq<0x55, 0x55, "vpopcnt", ctpop, SSE_INTALU_ITINS_P, HasVPOPCNTDQ>; defm : avx512_unary_lowering<"VPOPCNTQ", ctpop, avx512vl_i64_info, HasVPOPCNTDQ>; defm : avx512_unary_lowering<"VPOPCNTD", ctpop, avx512vl_i32_info, HasVPOPCNTDQ>; //===---------------------------------------------------------------------===// // Replicate Single FP - MOVSHDUP and MOVSLDUP //===---------------------------------------------------------------------===// multiclass avx512_replicate opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm NAME: avx512_unary_rm_vl, XS; } defm VMOVSHDUP : avx512_replicate<0x16, "vmovshdup", X86Movshdup, SSE_MOVDDUP>; defm VMOVSLDUP : avx512_replicate<0x12, "vmovsldup", X86Movsldup, SSE_MOVDDUP>; //===----------------------------------------------------------------------===// // AVX-512 - MOVDDUP //===----------------------------------------------------------------------===// multiclass avx512_movddup_128 opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable, EVEX, Sched<[itins.Sched]>; defm rm : AVX512_maskable, EVEX, EVEX_CD8<_.EltSize, CD8VH>, Sched<[itins.Sched.Folded]>; } } multiclass avx512_movddup_common opc, string OpcodeStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTInfo> { defm Z : avx512_unary_rm, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_unary_rm, EVEX_V256; defm Z128 : avx512_movddup_128, EVEX_V128; } } multiclass avx512_movddup opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { defm NAME: avx512_movddup_common, XD, VEX_W; } defm VMOVDDUP : avx512_movddup<0x12, "vmovddup", X86Movddup, SSE_MOVDDUP>; let Predicates = [HasVLX] in { def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))), (VMOVDDUPZ128rm addr:$src)>; def : Pat<(v2f64 (X86VBroadcast f64:$src)), (VMOVDDUPZ128rr (COPY_TO_REGCLASS FR64X:$src, VR128X))>; def : Pat<(v2f64 (X86VBroadcast (loadv2f64 addr:$src))), (VMOVDDUPZ128rm addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast f64:$src)), (v2f64 VR128X:$src0)), (VMOVDDUPZ128rrk VR128X:$src0, VK2WM:$mask, (COPY_TO_REGCLASS FR64X:$src, VR128X))>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast f64:$src)), (bitconvert (v4i32 immAllZerosV))), (VMOVDDUPZ128rrkz VK2WM:$mask, (COPY_TO_REGCLASS FR64X:$src, VR128X))>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadf64 addr:$src))), (v2f64 VR128X:$src0)), (VMOVDDUPZ128rmk VR128X:$src0, VK2WM:$mask, addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadf64 addr:$src))), (bitconvert (v4i32 immAllZerosV))), (VMOVDDUPZ128rmkz VK2WM:$mask, addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadv2f64 addr:$src))), (v2f64 VR128X:$src0)), (VMOVDDUPZ128rmk VR128X:$src0, VK2WM:$mask, addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadv2f64 addr:$src))), (bitconvert (v4i32 immAllZerosV))), (VMOVDDUPZ128rmkz VK2WM:$mask, addr:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 - Unpack Instructions //===----------------------------------------------------------------------===// defm VUNPCKH : avx512_fp_binop_p<0x15, "vunpckh", X86Unpckh, HasAVX512, SSE_ALU_ITINS_S>; defm VUNPCKL : avx512_fp_binop_p<0x14, "vunpckl", X86Unpckl, HasAVX512, SSE_ALU_ITINS_S>; defm VPUNPCKLBW : avx512_binop_rm_vl_b<0x60, "vpunpcklbw", X86Unpckl, SSE_INTALU_ITINS_P, HasBWI>; defm VPUNPCKHBW : avx512_binop_rm_vl_b<0x68, "vpunpckhbw", X86Unpckh, SSE_INTALU_ITINS_P, HasBWI>; defm VPUNPCKLWD : avx512_binop_rm_vl_w<0x61, "vpunpcklwd", X86Unpckl, SSE_INTALU_ITINS_P, HasBWI>; defm VPUNPCKHWD : avx512_binop_rm_vl_w<0x69, "vpunpckhwd", X86Unpckh, SSE_INTALU_ITINS_P, HasBWI>; defm VPUNPCKLDQ : avx512_binop_rm_vl_d<0x62, "vpunpckldq", X86Unpckl, SSE_INTALU_ITINS_P, HasAVX512>; defm VPUNPCKHDQ : avx512_binop_rm_vl_d<0x6A, "vpunpckhdq", X86Unpckh, SSE_INTALU_ITINS_P, HasAVX512>; defm VPUNPCKLQDQ : avx512_binop_rm_vl_q<0x6C, "vpunpcklqdq", X86Unpckl, SSE_INTALU_ITINS_P, HasAVX512>; defm VPUNPCKHQDQ : avx512_binop_rm_vl_q<0x6D, "vpunpckhqdq", X86Unpckh, SSE_INTALU_ITINS_P, HasAVX512>; //===----------------------------------------------------------------------===// // AVX-512 - Extract & Insert Integer Instructions //===----------------------------------------------------------------------===// multiclass avx512_extract_elt_bw_m opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _> { def mr : AVX512Ii8, EVEX, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteShuffleLd]>; } multiclass avx512_extract_elt_b { let Predicates = [HasBWI] in { def rr : AVX512Ii8<0x14, MRMDestReg, (outs GR32orGR64:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32orGR64:$dst, (X86pextrb (_.VT _.RC:$src1), imm:$src2))]>, EVEX, TAPD, Sched<[WriteShuffle]>; defm NAME : avx512_extract_elt_bw_m<0x14, OpcodeStr, X86pextrb, _>, TAPD; } } multiclass avx512_extract_elt_w { let Predicates = [HasBWI] in { def rr : AVX512Ii8<0xC5, MRMSrcReg, (outs GR32orGR64:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32orGR64:$dst, (X86pextrw (_.VT _.RC:$src1), imm:$src2))], IIC_SSE_PEXTRW>, EVEX, PD, Sched<[WriteShuffle]>; let hasSideEffects = 0 in def rr_REV : AVX512Ii8<0x15, MRMDestReg, (outs GR32orGR64:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#".s\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], IIC_SSE_PEXTRW>, EVEX, TAPD, FoldGenData, Sched<[WriteShuffle]>; defm NAME : avx512_extract_elt_bw_m<0x15, OpcodeStr, X86pextrw, _>, TAPD; } } multiclass avx512_extract_elt_dq { let Predicates = [HasDQI] in { def rr : AVX512Ii8<0x16, MRMDestReg, (outs GRC:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GRC:$dst, (extractelt (_.VT _.RC:$src1), imm:$src2))]>, EVEX, TAPD, Sched<[WriteShuffle]>; def mr : AVX512Ii8<0x16, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(store (extractelt (_.VT _.RC:$src1), imm:$src2),addr:$dst)]>, EVEX, EVEX_CD8<_.EltSize, CD8VT1>, TAPD, Sched<[WriteShuffleLd]>; } } defm VPEXTRBZ : avx512_extract_elt_b<"vpextrb", v16i8x_info>, VEX_WIG; defm VPEXTRWZ : avx512_extract_elt_w<"vpextrw", v8i16x_info>, VEX_WIG; defm VPEXTRDZ : avx512_extract_elt_dq<"vpextrd", v4i32x_info, GR32>; defm VPEXTRQZ : avx512_extract_elt_dq<"vpextrq", v2i64x_info, GR64>, VEX_W; multiclass avx512_insert_elt_m opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, PatFrag LdFrag> { def rm : AVX512Ii8, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteShuffleLd, ReadAfterLd]>; } multiclass avx512_insert_elt_bw opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, PatFrag LdFrag> { let Predicates = [HasBWI] in { def rr : AVX512Ii8, EVEX_4V, Sched<[WriteShuffle]>; defm NAME : avx512_insert_elt_m; } } multiclass avx512_insert_elt_dq opc, string OpcodeStr, X86VectorVTInfo _, RegisterClass GRC> { let Predicates = [HasDQI] in { def rr : AVX512Ii8, EVEX_4V, TAPD, Sched<[WriteShuffle]>; defm NAME : avx512_insert_elt_m, TAPD; } } defm VPINSRBZ : avx512_insert_elt_bw<0x20, "vpinsrb", X86pinsrb, v16i8x_info, extloadi8>, TAPD, VEX_WIG; defm VPINSRWZ : avx512_insert_elt_bw<0xC4, "vpinsrw", X86pinsrw, v8i16x_info, extloadi16>, PD, VEX_WIG; defm VPINSRDZ : avx512_insert_elt_dq<0x22, "vpinsrd", v4i32x_info, GR32>; defm VPINSRQZ : avx512_insert_elt_dq<0x22, "vpinsrq", v2i64x_info, GR64>, VEX_W; //===----------------------------------------------------------------------===// // VSHUFPS - VSHUFPD Operations //===----------------------------------------------------------------------===// multiclass avx512_shufp{ defm NAME: avx512_common_3Op_imm8, EVEX_CD8, AVX512AIi8Base, EVEX_4V; } defm VSHUFPS: avx512_shufp<"vshufps", avx512vl_i32_info, avx512vl_f32_info>, PS; defm VSHUFPD: avx512_shufp<"vshufpd", avx512vl_i64_info, avx512vl_f64_info>, PD, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 - Byte shift Left/Right //===----------------------------------------------------------------------===// let Sched = WriteVecShift in def AVX512_BYTESHIFT : OpndItins< IIC_SSE_INTSHDQ_P_RI, IIC_SSE_INTSHDQ_P_RI >; multiclass avx512_shift_packed opc, SDNode OpNode, Format MRMr, Format MRMm, string OpcodeStr, OpndItins itins, X86VectorVTInfo _>{ def rr : AVX512, Sched<[itins.Sched]>; def rm : AVX512, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_shift_packed_all opc, SDNode OpNode, Format MRMr, Format MRMm, string OpcodeStr, OpndItins itins, Predicate prd>{ let Predicates = [prd] in defm Z : avx512_shift_packed, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_shift_packed, EVEX_V256; defm Z128 : avx512_shift_packed, EVEX_V128; } } defm VPSLLDQ : avx512_shift_packed_all<0x73, X86vshldq, MRM7r, MRM7m, "vpslldq", AVX512_BYTESHIFT, HasBWI>, AVX512PDIi8Base, EVEX_4V, VEX_WIG; defm VPSRLDQ : avx512_shift_packed_all<0x73, X86vshrdq, MRM3r, MRM3m, "vpsrldq", AVX512_BYTESHIFT, HasBWI>, AVX512PDIi8Base, EVEX_4V, VEX_WIG; multiclass avx512_psadbw_packed opc, SDNode OpNode, string OpcodeStr, OpndItins itins, X86VectorVTInfo _dst, X86VectorVTInfo _src> { def rr : AVX512BI, Sched<[itins.Sched]>; def rm : AVX512BI, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass avx512_psadbw_packed_all opc, SDNode OpNode, string OpcodeStr, OpndItins itins, Predicate prd> { let Predicates = [prd] in defm Z : avx512_psadbw_packed, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_psadbw_packed, EVEX_V256; defm Z128 : avx512_psadbw_packed, EVEX_V128; } } defm VPSADBW : avx512_psadbw_packed_all<0xf6, X86psadbw, "vpsadbw", SSE_MPSADBW_ITINS, HasBWI>, EVEX_4V, VEX_WIG; // Transforms to swizzle an immediate to enable better matching when // memory operand isn't in the right place. def VPTERNLOG321_imm8 : SDNodeXFormgetZExtValue(); // Swap bits 1/4 and 3/6. uint8_t NewImm = Imm & 0xa5; if (Imm & 0x02) NewImm |= 0x10; if (Imm & 0x10) NewImm |= 0x02; if (Imm & 0x08) NewImm |= 0x40; if (Imm & 0x40) NewImm |= 0x08; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG213_imm8 : SDNodeXFormgetZExtValue(); // Swap bits 2/4 and 3/5. uint8_t NewImm = Imm & 0xc3; if (Imm & 0x04) NewImm |= 0x10; if (Imm & 0x10) NewImm |= 0x04; if (Imm & 0x08) NewImm |= 0x20; if (Imm & 0x20) NewImm |= 0x08; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG132_imm8 : SDNodeXFormgetZExtValue(); // Swap bits 1/2 and 5/6. uint8_t NewImm = Imm & 0x99; if (Imm & 0x02) NewImm |= 0x04; if (Imm & 0x04) NewImm |= 0x02; if (Imm & 0x20) NewImm |= 0x40; if (Imm & 0x40) NewImm |= 0x20; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG231_imm8 : SDNodeXFormgetZExtValue(); // Move bits 1->2, 2->4, 3->6, 4->1, 5->3, 6->5 uint8_t NewImm = Imm & 0x81; if (Imm & 0x02) NewImm |= 0x04; if (Imm & 0x04) NewImm |= 0x10; if (Imm & 0x08) NewImm |= 0x40; if (Imm & 0x10) NewImm |= 0x02; if (Imm & 0x20) NewImm |= 0x08; if (Imm & 0x40) NewImm |= 0x20; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG312_imm8 : SDNodeXFormgetZExtValue(); // Move bits 1->4, 2->1, 3->5, 4->2, 5->6, 6->3 uint8_t NewImm = Imm & 0x81; if (Imm & 0x02) NewImm |= 0x10; if (Imm & 0x04) NewImm |= 0x02; if (Imm & 0x08) NewImm |= 0x20; if (Imm & 0x10) NewImm |= 0x04; if (Imm & 0x20) NewImm |= 0x40; if (Imm & 0x40) NewImm |= 0x08; return getI8Imm(NewImm, SDLoc(N)); }]>; multiclass avx512_ternlog opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _>{ let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_3src, AVX512AIi8Base, EVEX_4V, Sched<[itins.Sched]>; defm rmi : AVX512_maskable_3src, AVX512AIi8Base, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable_3src, EVEX_B, AVX512AIi8Base, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[itins.Sched.Folded, ReadAfterLd]>; }// Constraints = "$src1 = $dst" // Additional patterns for matching passthru operand in other positions. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src3, _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rrik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, _.RC:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, _.RC:$src1, _.RC:$src3, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rrik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, _.RC:$src3, (VPTERNLOG213_imm8 imm:$src4))>; // Additional patterns for matching loads in other positions. def : Pat<(_.VT (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4))), (!cast(NAME#_.ZSuffix#rmi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4))), (!cast(NAME#_.ZSuffix#rmi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching zero masking with loads in other // positions. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast(NAME#_.ZSuffix#rmikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast(NAME#_.ZSuffix#rmikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching masked loads with different // operand orders. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG213_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG231_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src1, _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG312_imm8 imm:$src4))>; // Additional patterns for matching broadcasts in other positions. def : Pat<(_.VT (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4))), (!cast(NAME#_.ZSuffix#rmbi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (OpNode _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4))), (!cast(NAME#_.ZSuffix#rmbi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching zero masking with broadcasts in other // positions. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast(NAME#_.ZSuffix#rmbikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast(NAME#_.ZSuffix#rmbikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching masked broadcasts with different // operand orders. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG213_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG231_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src1, _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast(NAME#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG312_imm8 imm:$src4))>; } multiclass avx512_common_ternlog { let Predicates = [HasAVX512] in defm Z : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, itins, _.info512>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z128 : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, itins, _.info128>, EVEX_V128; defm Z256 : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, itins, _.info256>, EVEX_V256; } } defm VPTERNLOGD : avx512_common_ternlog<"vpternlogd", SSE_INTALU_ITINS_P, avx512vl_i32_info>; defm VPTERNLOGQ : avx512_common_ternlog<"vpternlogq", SSE_INTALU_ITINS_P, avx512vl_i64_info>, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 - FixupImm //===----------------------------------------------------------------------===// multiclass avx512_fixupimm_packed opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _>{ let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_3src, Sched<[itins.Sched]>; defm rmi : AVX512_maskable_3src, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable_3src, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } // Constraints = "$src1 = $dst" } multiclass avx512_fixupimm_packed_sae opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _>{ let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rrib : AVX512_maskable_3src, EVEX_B, Sched<[itins.Sched]>; } } multiclass avx512_fixupimm_scalar opc, string OpcodeStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo _, X86VectorVTInfo _src3VT> { let Constraints = "$src1 = $dst" , Predicates = [HasAVX512], ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_3src_scalar, Sched<[itins.Sched]>; defm rrib : AVX512_maskable_3src_scalar, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm rmi : AVX512_maskable_3src_scalar, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass avx512_fixupimm_packed_all { let Predicates = [HasAVX512] in defm Z : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, itins, _Vec.info512>, avx512_fixupimm_packed_sae<0x54, "vfixupimm", X86VFixupimm, itins, _Vec.info512>, AVX512AIi8Base, EVEX_4V, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z128 : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, itins, _Vec.info128>, AVX512AIi8Base, EVEX_4V, EVEX_V128; defm Z256 : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, itins, _Vec.info256>, AVX512AIi8Base, EVEX_4V, EVEX_V256; } } defm VFIXUPIMMSS : avx512_fixupimm_scalar<0x55, "vfixupimm", X86VFixupimmScalar, SSE_ALU_F32S, f32x_info, v4i32x_info>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VFIXUPIMMSD : avx512_fixupimm_scalar<0x55, "vfixupimm", X86VFixupimmScalar, SSE_ALU_F64S, f64x_info, v2i64x_info>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VFIXUPIMMPS : avx512_fixupimm_packed_all, EVEX_CD8<32, CD8VF>; defm VFIXUPIMMPD : avx512_fixupimm_packed_all, EVEX_CD8<64, CD8VF>, VEX_W; // Patterns used to select SSE scalar fp arithmetic instructions from // either: // // (1) a scalar fp operation followed by a blend // // The effect is that the backend no longer emits unnecessary vector // insert instructions immediately after SSE scalar fp instructions // like addss or mulss. // // For example, given the following code: // __m128 foo(__m128 A, __m128 B) { // A[0] += B[0]; // return A; // } // // Previously we generated: // addss %xmm0, %xmm1 // movss %xmm1, %xmm0 // // We now generate: // addss %xmm1, %xmm0 // // (2) a vector packed single/double fp operation followed by a vector insert // // The effect is that the backend converts the packed fp instruction // followed by a vector insert into a single SSE scalar fp instruction. // // For example, given the following code: // __m128 foo(__m128 A, __m128 B) { // __m128 C = A + B; // return (__m128) {c[0], a[1], a[2], a[3]}; // } // // Previously we generated: // addps %xmm0, %xmm1 // movss %xmm1, %xmm0 // // We now generate: // addss %xmm1, %xmm0 // TODO: Some canonicalization in lowering would simplify the number of // patterns we have to try to match. multiclass AVX512_scalar_math_f32_patterns { let Predicates = [HasAVX512] in { // extracted scalar math op with insert via movss def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (Op (f32 (extractelt (v4f32 VR128X:$dst), (iPTR 0))), FR32X:$src))))), (!cast("V"#OpcPrefix#SSZrr_Int) v4f32:$dst, (COPY_TO_REGCLASS FR32X:$src, VR128X))>; // vector math op with insert via movss def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (Op (v4f32 VR128X:$dst), (v4f32 VR128X:$src)))), (!cast("V"#OpcPrefix#SSZrr_Int) v4f32:$dst, v4f32:$src)>; // extracted masked scalar math op with insert via movss def : Pat<(X86Movss (v4f32 VR128X:$src1), (scalar_to_vector (X86selects VK1WM:$mask, (Op (f32 (extractelt (v4f32 VR128X:$src1), (iPTR 0))), FR32X:$src2), FR32X:$src0))), (!cast("V"#OpcPrefix#SSZrr_Intk) (COPY_TO_REGCLASS FR32X:$src0, VR128X), VK1WM:$mask, v4f32:$src1, (COPY_TO_REGCLASS FR32X:$src2, VR128X))>; } } defm : AVX512_scalar_math_f32_patterns; defm : AVX512_scalar_math_f32_patterns; defm : AVX512_scalar_math_f32_patterns; defm : AVX512_scalar_math_f32_patterns; multiclass AVX512_scalar_math_f64_patterns { let Predicates = [HasAVX512] in { // extracted scalar math op with insert via movsd def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (Op (f64 (extractelt (v2f64 VR128X:$dst), (iPTR 0))), FR64X:$src))))), (!cast("V"#OpcPrefix#SDZrr_Int) v2f64:$dst, (COPY_TO_REGCLASS FR64X:$src, VR128X))>; // vector math op with insert via movsd def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (Op (v2f64 VR128X:$dst), (v2f64 VR128X:$src)))), (!cast("V"#OpcPrefix#SDZrr_Int) v2f64:$dst, v2f64:$src)>; // extracted masked scalar math op with insert via movss def : Pat<(X86Movsd (v2f64 VR128X:$src1), (scalar_to_vector (X86selects VK1WM:$mask, (Op (f64 (extractelt (v2f64 VR128X:$src1), (iPTR 0))), FR64X:$src2), FR64X:$src0))), (!cast("V"#OpcPrefix#SDZrr_Intk) (COPY_TO_REGCLASS FR64X:$src0, VR128X), VK1WM:$mask, v2f64:$src1, (COPY_TO_REGCLASS FR64X:$src2, VR128X))>; } } defm : AVX512_scalar_math_f64_patterns; defm : AVX512_scalar_math_f64_patterns; defm : AVX512_scalar_math_f64_patterns; defm : AVX512_scalar_math_f64_patterns; //===----------------------------------------------------------------------===// // AES instructions //===----------------------------------------------------------------------===// multiclass avx512_vaes Op, string OpStr, string IntPrefix> { let Predicates = [HasVLX, HasVAES] in { defm Z128 : AESI_binop_rm_int(IntPrefix), loadv2i64, 0, VR128X, i128mem>, EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V128, VEX_WIG; defm Z256 : AESI_binop_rm_int(IntPrefix##"_256"), loadv4i64, 0, VR256X, i256mem>, EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512, HasVAES] in defm Z : AESI_binop_rm_int(IntPrefix##"_512"), loadv8i64, 0, VR512, i512mem>, EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V512, VEX_WIG; } defm VAESENC : avx512_vaes<0xDC, "vaesenc", "int_x86_aesni_aesenc">; defm VAESENCLAST : avx512_vaes<0xDD, "vaesenclast", "int_x86_aesni_aesenclast">; defm VAESDEC : avx512_vaes<0xDE, "vaesdec", "int_x86_aesni_aesdec">; defm VAESDECLAST : avx512_vaes<0xDF, "vaesdeclast", "int_x86_aesni_aesdeclast">; //===----------------------------------------------------------------------===// // PCLMUL instructions - Carry less multiplication //===----------------------------------------------------------------------===// let Predicates = [HasAVX512, HasVPCLMULQDQ] in defm VPCLMULQDQZ : vpclmulqdq, EVEX_4V, EVEX_V512, EVEX_CD8<64, CD8VF>, VEX_WIG; let Predicates = [HasVLX, HasVPCLMULQDQ] in { defm VPCLMULQDQZ128 : vpclmulqdq, EVEX_4V, EVEX_V128, EVEX_CD8<64, CD8VF>, VEX_WIG; defm VPCLMULQDQZ256: vpclmulqdq, EVEX_4V, EVEX_V256, EVEX_CD8<64, CD8VF>, VEX_WIG; } // Aliases defm : vpclmulqdq_aliases<"VPCLMULQDQZ", VR512, i512mem>; defm : vpclmulqdq_aliases<"VPCLMULQDQZ128", VR128X, i128mem>; defm : vpclmulqdq_aliases<"VPCLMULQDQZ256", VR256X, i256mem>; //===----------------------------------------------------------------------===// // VBMI2 //===----------------------------------------------------------------------===// multiclass VBMI2_shift_var_rm Op, string OpStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo VTI> { let Constraints = "$src1 = $dst", ExeDomain = VTI.ExeDomain in { defm r: AVX512_maskable_3src, AVX512FMA3Base, Sched<[itins.Sched]>; defm m: AVX512_maskable_3src, AVX512FMA3Base, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } multiclass VBMI2_shift_var_rmb Op, string OpStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo VTI> : VBMI2_shift_var_rm { let Constraints = "$src1 = $dst", ExeDomain = VTI.ExeDomain in defm mb: AVX512_maskable_3src, AVX512FMA3Base, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass VBMI2_shift_var_rm_common Op, string OpStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTI> { let Predicates = [HasVBMI2] in defm Z : VBMI2_shift_var_rm, EVEX_V512; let Predicates = [HasVBMI2, HasVLX] in { defm Z256 : VBMI2_shift_var_rm, EVEX_V256; defm Z128 : VBMI2_shift_var_rm, EVEX_V128; } } multiclass VBMI2_shift_var_rmb_common Op, string OpStr, SDNode OpNode, OpndItins itins, AVX512VLVectorVTInfo VTI> { let Predicates = [HasVBMI2] in defm Z : VBMI2_shift_var_rmb, EVEX_V512; let Predicates = [HasVBMI2, HasVLX] in { defm Z256 : VBMI2_shift_var_rmb, EVEX_V256; defm Z128 : VBMI2_shift_var_rmb, EVEX_V128; } } multiclass VBMI2_shift_var wOp, bits<8> dqOp, string Prefix, SDNode OpNode, OpndItins itins> { defm W : VBMI2_shift_var_rm_common, VEX_W, EVEX_CD8<16, CD8VF>; defm D : VBMI2_shift_var_rmb_common, EVEX_CD8<32, CD8VF>; defm Q : VBMI2_shift_var_rmb_common, VEX_W, EVEX_CD8<64, CD8VF>; } multiclass VBMI2_shift_imm wOp, bits<8> dqOp, string Prefix, SDNode OpNode, OpndItins itins> { defm W : avx512_common_3Op_rm_imm8, VEX_W, EVEX_CD8<16, CD8VF>; defm D : avx512_common_3Op_imm8, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm Q : avx512_common_3Op_imm8, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; } // Concat & Shift defm VPSHLDV : VBMI2_shift_var<0x70, 0x71, "vpshldv", X86VShldv, SSE_INTMUL_ITINS_P>; defm VPSHRDV : VBMI2_shift_var<0x72, 0x73, "vpshrdv", X86VShrdv, SSE_INTMUL_ITINS_P>; defm VPSHLD : VBMI2_shift_imm<0x70, 0x71, "vpshld", X86VShld, SSE_INTMUL_ITINS_P>; defm VPSHRD : VBMI2_shift_imm<0x72, 0x73, "vpshrd", X86VShrd, SSE_INTMUL_ITINS_P>; // Compress defm VPCOMPRESSB : compress_by_elt_width<0x63, "vpcompressb", AVX512_COMPRESS, avx512vl_i8_info, HasVBMI2>, EVEX; defm VPCOMPRESSW : compress_by_elt_width <0x63, "vpcompressw", AVX512_COMPRESS, avx512vl_i16_info, HasVBMI2>, EVEX, VEX_W; // Expand defm VPEXPANDB : expand_by_elt_width <0x62, "vpexpandb", AVX512_EXPAND, avx512vl_i8_info, HasVBMI2>, EVEX; defm VPEXPANDW : expand_by_elt_width <0x62, "vpexpandw", AVX512_EXPAND, avx512vl_i16_info, HasVBMI2>, EVEX, VEX_W; //===----------------------------------------------------------------------===// // VNNI //===----------------------------------------------------------------------===// let Constraints = "$src1 = $dst" in multiclass VNNI_rmb Op, string OpStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo VTI> { defm r : AVX512_maskable_3src, EVEX_4V, T8PD, Sched<[itins.Sched]>; defm m : AVX512_maskable_3src, EVEX_4V, EVEX_CD8<32, CD8VF>, T8PD, Sched<[itins.Sched.Folded, ReadAfterLd]>; defm mb : AVX512_maskable_3src, EVEX_4V, EVEX_CD8<32, CD8VF>, EVEX_B, T8PD, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass VNNI_common Op, string OpStr, SDNode OpNode, OpndItins itins> { let Predicates = [HasVNNI] in defm Z : VNNI_rmb, EVEX_V512; let Predicates = [HasVNNI, HasVLX] in { defm Z256 : VNNI_rmb, EVEX_V256; defm Z128 : VNNI_rmb, EVEX_V128; } } // FIXME: Is there a better scheduler itinerary for VPDP? defm VPDPBUSD : VNNI_common<0x50, "vpdpbusd", X86Vpdpbusd, SSE_PMADD>; defm VPDPBUSDS : VNNI_common<0x51, "vpdpbusds", X86Vpdpbusds, SSE_PMADD>; defm VPDPWSSD : VNNI_common<0x52, "vpdpwssd", X86Vpdpwssd, SSE_PMADD>; defm VPDPWSSDS : VNNI_common<0x53, "vpdpwssds", X86Vpdpwssds, SSE_PMADD>; //===----------------------------------------------------------------------===// // Bit Algorithms //===----------------------------------------------------------------------===// // FIXME: Is there a better scheduler itinerary for VPOPCNTB/VPOPCNTW? defm VPOPCNTB : avx512_unary_rm_vl<0x54, "vpopcntb", ctpop, SSE_INTALU_ITINS_P, avx512vl_i8_info, HasBITALG>; defm VPOPCNTW : avx512_unary_rm_vl<0x54, "vpopcntw", ctpop, SSE_INTALU_ITINS_P, avx512vl_i16_info, HasBITALG>, VEX_W; defm : avx512_unary_lowering<"VPOPCNTB", ctpop, avx512vl_i8_info, HasBITALG>; defm : avx512_unary_lowering<"VPOPCNTW", ctpop, avx512vl_i16_info, HasBITALG>; multiclass VPSHUFBITQMB_rm { defm rr : AVX512_maskable_cmp<0x8F, MRMSrcReg, VTI, (outs VTI.KRC:$dst), (ins VTI.RC:$src1, VTI.RC:$src2), "vpshufbitqmb", "$src2, $src1", "$src1, $src2", (X86Vpshufbitqmb (VTI.VT VTI.RC:$src1), (VTI.VT VTI.RC:$src2)), itins.rr>, EVEX_4V, T8PD, Sched<[itins.Sched]>; defm rm : AVX512_maskable_cmp<0x8F, MRMSrcMem, VTI, (outs VTI.KRC:$dst), (ins VTI.RC:$src1, VTI.MemOp:$src2), "vpshufbitqmb", "$src2, $src1", "$src1, $src2", (X86Vpshufbitqmb (VTI.VT VTI.RC:$src1), (VTI.VT (bitconvert (VTI.LdFrag addr:$src2)))), itins.rm>, EVEX_4V, EVEX_CD8<8, CD8VF>, T8PD, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass VPSHUFBITQMB_common { let Predicates = [HasBITALG] in defm Z : VPSHUFBITQMB_rm, EVEX_V512; let Predicates = [HasBITALG, HasVLX] in { defm Z256 : VPSHUFBITQMB_rm, EVEX_V256; defm Z128 : VPSHUFBITQMB_rm, EVEX_V128; } } // FIXME: Is there a better scheduler itinerary for VPSHUFBITQMB? defm VPSHUFBITQMB : VPSHUFBITQMB_common; //===----------------------------------------------------------------------===// // GFNI //===----------------------------------------------------------------------===// multiclass GF2P8MULB_avx512_common Op, string OpStr, SDNode OpNode> { let Predicates = [HasGFNI, HasAVX512, HasBWI] in defm Z : avx512_binop_rm, EVEX_V512; let Predicates = [HasGFNI, HasVLX, HasBWI] in { defm Z256 : avx512_binop_rm, EVEX_V256; defm Z128 : avx512_binop_rm, EVEX_V128; } } defm GF2P8MULB : GF2P8MULB_avx512_common<0xCF, "vgf2p8mulb", X86GF2P8mulb>, EVEX_CD8<8, CD8VF>, T8PD; multiclass GF2P8AFFINE_avx512_rmb_imm Op, string OpStr, SDNode OpNode, OpndItins itins, X86VectorVTInfo VTI, X86VectorVTInfo BcstVTI> : avx512_3Op_rm_imm8 { let ExeDomain = VTI.ExeDomain in defm rmbi : AVX512_maskable, EVEX_B, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass GF2P8AFFINE_avx512_common Op, string OpStr, SDNode OpNode, OpndItins itins> { let Predicates = [HasGFNI, HasAVX512, HasBWI] in defm Z : GF2P8AFFINE_avx512_rmb_imm, EVEX_V512; let Predicates = [HasGFNI, HasVLX, HasBWI] in { defm Z256 : GF2P8AFFINE_avx512_rmb_imm, EVEX_V256; defm Z128 : GF2P8AFFINE_avx512_rmb_imm, EVEX_V128; } } defm GF2P8AFFINEINVQB : GF2P8AFFINE_avx512_common<0xCF, "vgf2p8affineinvqb", X86GF2P8affineinvqb, SSE_INTMUL_ITINS_P>, EVEX_4V, EVEX_CD8<8, CD8VF>, VEX_W, AVX512AIi8Base; defm GF2P8AFFINEQB : GF2P8AFFINE_avx512_common<0xCE, "vgf2p8affineqb", X86GF2P8affineqb, SSE_INTMUL_ITINS_P>, EVEX_4V, EVEX_CD8<8, CD8VF>, VEX_W, AVX512AIi8Base;