//===- llvm/lib/Target/X86/X86CallLowering.cpp - Call lowering ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This file implements the lowering of LLVM calls to machine code calls for /// GlobalISel. // //===----------------------------------------------------------------------===// #include "X86CallLowering.h" #include "X86CallingConv.h" #include "X86ISelLowering.h" #include "X86InstrInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/LowLevelTypeImpl.h" #include #include using namespace llvm; #include "X86GenCallingConv.inc" X86CallLowering::X86CallLowering(const X86TargetLowering &TLI) : CallLowering(&TLI) {} bool X86CallLowering::splitToValueTypes(const ArgInfo &OrigArg, SmallVectorImpl &SplitArgs, const DataLayout &DL, MachineRegisterInfo &MRI, SplitArgTy PerformArgSplit) const { const X86TargetLowering &TLI = *getTLI(); LLVMContext &Context = OrigArg.Ty->getContext(); SmallVector SplitVTs; SmallVector Offsets; ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); if (SplitVTs.size() != 1) { // TODO: support struct/array split return false; } EVT VT = SplitVTs[0]; unsigned NumParts = TLI.getNumRegisters(Context, VT); if (NumParts == 1) { // replace the original type ( pointer -> GPR ). SplitArgs.emplace_back(OrigArg.Reg, VT.getTypeForEVT(Context), OrigArg.Flags, OrigArg.IsFixed); return true; } SmallVector SplitRegs; EVT PartVT = TLI.getRegisterType(Context, VT); Type *PartTy = PartVT.getTypeForEVT(Context); for (unsigned i = 0; i < NumParts; ++i) { ArgInfo Info = ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*PartTy, DL)), PartTy, OrigArg.Flags}; SplitArgs.push_back(Info); SplitRegs.push_back(Info.Reg); } PerformArgSplit(SplitRegs); return true; } namespace { struct OutgoingValueHandler : public CallLowering::ValueHandler { OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstrBuilder &MIB, CCAssignFn *AssignFn) : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB), DL(MIRBuilder.getMF().getDataLayout()), STI(MIRBuilder.getMF().getSubtarget()) {} unsigned getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO) override { LLT p0 = LLT::pointer(0, DL.getPointerSizeInBits(0)); LLT SType = LLT::scalar(DL.getPointerSizeInBits(0)); unsigned SPReg = MRI.createGenericVirtualRegister(p0); MIRBuilder.buildCopy(SPReg, STI.getRegisterInfo()->getStackRegister()); unsigned OffsetReg = MRI.createGenericVirtualRegister(SType); MIRBuilder.buildConstant(OffsetReg, Offset); unsigned AddrReg = MRI.createGenericVirtualRegister(p0); MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg); MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset); return AddrReg; } void assignValueToReg(unsigned ValVReg, unsigned PhysReg, CCValAssign &VA) override { MIB.addUse(PhysReg, RegState::Implicit); unsigned ExtReg = extendRegister(ValVReg, VA); MIRBuilder.buildCopy(PhysReg, ExtReg); } void assignValueToAddress(unsigned ValVReg, unsigned Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) override { unsigned ExtReg = extendRegister(ValVReg, VA); auto MMO = MIRBuilder.getMF().getMachineMemOperand( MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(), /* Alignment */ 0); MIRBuilder.buildStore(ExtReg, Addr, *MMO); } bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const CallLowering::ArgInfo &Info, CCState &State) override { bool Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State); StackSize = State.getNextStackOffset(); static const MCPhysReg XMMArgRegs[] = {X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7}; if (!Info.IsFixed) NumXMMRegs = State.getFirstUnallocated(XMMArgRegs); return Res; } uint64_t getStackSize() { return StackSize; } uint64_t getNumXmmRegs() { return NumXMMRegs; } protected: MachineInstrBuilder &MIB; uint64_t StackSize = 0; const DataLayout &DL; const X86Subtarget &STI; unsigned NumXMMRegs = 0; }; } // end anonymous namespace bool X86CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val, unsigned VReg) const { assert(((Val && VReg) || (!Val && !VReg)) && "Return value without a vreg"); auto MIB = MIRBuilder.buildInstrNoInsert(X86::RET).addImm(0); if (VReg) { MachineFunction &MF = MIRBuilder.getMF(); MachineRegisterInfo &MRI = MF.getRegInfo(); auto &DL = MF.getDataLayout(); const Function &F = MF.getFunction(); ArgInfo OrigArg{VReg, Val->getType()}; setArgFlags(OrigArg, AttributeList::ReturnIndex, DL, F); SmallVector SplitArgs; if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI, [&](ArrayRef Regs) { MIRBuilder.buildUnmerge(Regs, VReg); })) return false; OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, RetCC_X86); if (!handleAssignments(MIRBuilder, SplitArgs, Handler)) return false; } MIRBuilder.insertInstr(MIB); return true; } namespace { struct IncomingValueHandler : public CallLowering::ValueHandler { IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn *AssignFn) : ValueHandler(MIRBuilder, MRI, AssignFn), DL(MIRBuilder.getMF().getDataLayout()) {} unsigned getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO) override { auto &MFI = MIRBuilder.getMF().getFrameInfo(); int FI = MFI.CreateFixedObject(Size, Offset, true); MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); unsigned AddrReg = MRI.createGenericVirtualRegister( LLT::pointer(0, DL.getPointerSizeInBits(0))); MIRBuilder.buildFrameIndex(AddrReg, FI); return AddrReg; } void assignValueToAddress(unsigned ValVReg, unsigned Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) override { auto MMO = MIRBuilder.getMF().getMachineMemOperand( MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 0); MIRBuilder.buildLoad(ValVReg, Addr, *MMO); } void assignValueToReg(unsigned ValVReg, unsigned PhysReg, CCValAssign &VA) override { markPhysRegUsed(PhysReg); switch (VA.getLocInfo()) { default: MIRBuilder.buildCopy(ValVReg, PhysReg); break; case CCValAssign::LocInfo::SExt: case CCValAssign::LocInfo::ZExt: case CCValAssign::LocInfo::AExt: { auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); MIRBuilder.buildTrunc(ValVReg, Copy); break; } } } /// How the physical register gets marked varies between formal /// parameters (it's a basic-block live-in), and a call instruction /// (it's an implicit-def of the BL). virtual void markPhysRegUsed(unsigned PhysReg) = 0; protected: const DataLayout &DL; }; struct FormalArgHandler : public IncomingValueHandler { FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn *AssignFn) : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {} void markPhysRegUsed(unsigned PhysReg) override { MIRBuilder.getMBB().addLiveIn(PhysReg); } }; struct CallReturnHandler : public IncomingValueHandler { CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn *AssignFn, MachineInstrBuilder &MIB) : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} void markPhysRegUsed(unsigned PhysReg) override { MIB.addDef(PhysReg, RegState::Implicit); } protected: MachineInstrBuilder &MIB; }; } // end anonymous namespace bool X86CallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder, const Function &F, ArrayRef VRegs) const { if (F.arg_empty()) return true; // TODO: handle variadic function if (F.isVarArg()) return false; MachineFunction &MF = MIRBuilder.getMF(); MachineRegisterInfo &MRI = MF.getRegInfo(); auto DL = MF.getDataLayout(); SmallVector SplitArgs; unsigned Idx = 0; for (auto &Arg : F.args()) { // TODO: handle not simple cases. if (Arg.hasAttribute(Attribute::ByVal) || Arg.hasAttribute(Attribute::InReg) || Arg.hasAttribute(Attribute::StructRet) || Arg.hasAttribute(Attribute::SwiftSelf) || Arg.hasAttribute(Attribute::SwiftError) || Arg.hasAttribute(Attribute::Nest)) return false; ArgInfo OrigArg(VRegs[Idx], Arg.getType()); setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F); if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI, [&](ArrayRef Regs) { MIRBuilder.buildMerge(VRegs[Idx], Regs); })) return false; Idx++; } MachineBasicBlock &MBB = MIRBuilder.getMBB(); if (!MBB.empty()) MIRBuilder.setInstr(*MBB.begin()); FormalArgHandler Handler(MIRBuilder, MRI, CC_X86); if (!handleAssignments(MIRBuilder, SplitArgs, Handler)) return false; // Move back to the end of the basic block. MIRBuilder.setMBB(MBB); return true; } bool X86CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, CallingConv::ID CallConv, const MachineOperand &Callee, const ArgInfo &OrigRet, ArrayRef OrigArgs) const { MachineFunction &MF = MIRBuilder.getMF(); const Function &F = MF.getFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); auto &DL = F.getParent()->getDataLayout(); const X86Subtarget &STI = MF.getSubtarget(); const TargetInstrInfo &TII = *STI.getInstrInfo(); auto TRI = STI.getRegisterInfo(); // Handle only Linux C, X86_64_SysV calling conventions for now. if (!STI.isTargetLinux() || !(CallConv == CallingConv::C || CallConv == CallingConv::X86_64_SysV)) return false; unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); auto CallSeqStart = MIRBuilder.buildInstr(AdjStackDown); // Create a temporarily-floating call instruction so we can add the implicit // uses of arg registers. bool Is64Bit = STI.is64Bit(); unsigned CallOpc = Callee.isReg() ? (Is64Bit ? X86::CALL64r : X86::CALL32r) : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); auto MIB = MIRBuilder.buildInstrNoInsert(CallOpc).add(Callee).addRegMask( TRI->getCallPreservedMask(MF, CallConv)); SmallVector SplitArgs; for (const auto &OrigArg : OrigArgs) { // TODO: handle not simple cases. if (OrigArg.Flags.isByVal()) return false; if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI, [&](ArrayRef Regs) { MIRBuilder.buildUnmerge(Regs, OrigArg.Reg); })) return false; } // Do the actual argument marshalling. OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, CC_X86); if (!handleAssignments(MIRBuilder, SplitArgs, Handler)) return false; bool IsFixed = OrigArgs.empty() ? true : OrigArgs.back().IsFixed; if (STI.is64Bit() && !IsFixed && !STI.isCallingConvWin64(CallConv)) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. MIRBuilder.buildInstr(X86::MOV8ri) .addDef(X86::AL) .addImm(Handler.getNumXmmRegs()); MIB.addUse(X86::AL, RegState::Implicit); } // Now we can add the actual call instruction to the correct basic block. MIRBuilder.insertInstr(MIB); // If Callee is a reg, since it is used by a target specific // instruction, it must have a register class matching the // constraint of that instruction. if (Callee.isReg()) MIB->getOperand(0).setReg(constrainOperandRegClass( MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Callee.getReg(), 0)); // Finally we can copy the returned value back into its virtual-register. In // symmetry with the arguments, the physical register must be an // implicit-define of the call instruction. if (OrigRet.Reg) { SplitArgs.clear(); SmallVector NewRegs; if (!splitToValueTypes(OrigRet, SplitArgs, DL, MRI, [&](ArrayRef Regs) { NewRegs.assign(Regs.begin(), Regs.end()); })) return false; CallReturnHandler Handler(MIRBuilder, MRI, RetCC_X86, MIB); if (!handleAssignments(MIRBuilder, SplitArgs, Handler)) return false; if (!NewRegs.empty()) MIRBuilder.buildMerge(OrigRet.Reg, NewRegs); } CallSeqStart.addImm(Handler.getStackSize()) .addImm(0 /* see getFrameTotalSize */) .addImm(0 /* see getFrameAdjustment */); unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); MIRBuilder.buildInstr(AdjStackUp) .addImm(Handler.getStackSize()) .addImm(0 /* NumBytesForCalleeToPop */); return true; }