//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SystemZTargetLowering class. // //===----------------------------------------------------------------------===// #include "SystemZISelLowering.h" #include "SystemZCallingConv.h" #include "SystemZConstantPoolValue.h" #include "SystemZMachineFunctionInfo.h" #include "SystemZTargetMachine.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/KnownBits.h" #include using namespace llvm; #define DEBUG_TYPE "systemz-lower" namespace { // Represents a sequence for extracting a 0/1 value from an IPM result: // (((X ^ XORValue) + AddValue) >> Bit) struct IPMConversion { IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) : XORValue(xorValue), AddValue(addValue), Bit(bit) {} int64_t XORValue; int64_t AddValue; unsigned Bit; }; // Represents information about a comparison. struct Comparison { Comparison(SDValue Op0In, SDValue Op1In) : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} // The operands to the comparison. SDValue Op0, Op1; // The opcode that should be used to compare Op0 and Op1. unsigned Opcode; // A SystemZICMP value. Only used for integer comparisons. unsigned ICmpType; // The mask of CC values that Opcode can produce. unsigned CCValid; // The mask of CC values for which the original condition is true. unsigned CCMask; }; } // end anonymous namespace // Classify VT as either 32 or 64 bit. static bool is32Bit(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { case MVT::i32: return true; case MVT::i64: return false; default: llvm_unreachable("Unsupported type"); } } // Return a version of MachineOperand that can be safely used before the // final use. static MachineOperand earlyUseOperand(MachineOperand Op) { if (Op.isReg()) Op.setIsKill(false); return Op; } SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, const SystemZSubtarget &STI) : TargetLowering(TM), Subtarget(STI) { MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); // Set up the register classes. if (Subtarget.hasHighWord()) addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); else addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); if (Subtarget.hasVector()) { addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); } else { addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); } if (Subtarget.hasVectorEnhancements1()) addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); else addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); if (Subtarget.hasVector()) { addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); } // Compute derived properties from the register classes computeRegisterProperties(Subtarget.getRegisterInfo()); // Set up special registers. setStackPointerRegisterToSaveRestore(SystemZ::R15D); // TODO: It may be better to default to latency-oriented scheduling, however // LLVM's current latency-oriented scheduler can't handle physreg definitions // such as SystemZ has with CC, so set this to the register-pressure // scheduler, because it can. setSchedulingPreference(Sched::RegPressure); setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // Instructions are strings of 2-byte aligned 2-byte values. setMinFunctionAlignment(2); // Handle operations that are handled in a similar way for all types. for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; I <= MVT::LAST_FP_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // Lower SET_CC into an IPM-based sequence. setOperationAction(ISD::SETCC, VT, Custom); // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). setOperationAction(ISD::SELECT, VT, Expand); // Lower SELECT_CC and BR_CC into separate comparisons and branches. setOperationAction(ISD::SELECT_CC, VT, Custom); setOperationAction(ISD::BR_CC, VT, Custom); } } // Expand jump table branches as address arithmetic followed by an // indirect jump. setOperationAction(ISD::BR_JT, MVT::Other, Expand); // Expand BRCOND into a BR_CC (see above). setOperationAction(ISD::BRCOND, MVT::Other, Expand); // Handle integer types. for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; I <= MVT::LAST_INTEGER_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // Expand individual DIV and REMs into DIVREMs. setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Custom); setOperationAction(ISD::UDIVREM, VT, Custom); // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and // stores, putting a serialization instruction after the stores. setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); setOperationAction(ISD::ATOMIC_STORE, VT, Custom); // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are // available, or if the operand is constant. setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); // Use POPCNT on z196 and above. if (Subtarget.hasPopulationCount()) setOperationAction(ISD::CTPOP, VT, Custom); else setOperationAction(ISD::CTPOP, VT, Expand); // No special instructions for these. setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); // Use *MUL_LOHI where possible instead of MULH*. setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Custom); setOperationAction(ISD::UMUL_LOHI, VT, Custom); // Only z196 and above have native support for conversions to unsigned. // On z10, promoting to i64 doesn't generate an inexact condition for // values that are outside the i32 range but in the i64 range, so use // the default expansion. if (!Subtarget.hasFPExtension()) setOperationAction(ISD::FP_TO_UINT, VT, Expand); } } // Type legalization will convert 8- and 16-bit atomic operations into // forms that operate on i32s (but still keeping the original memory VT). // Lower them into full i32 operations. setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); // Even though i128 is not a legal type, we still need to custom lower // the atomic operations in order to exploit SystemZ instructions. setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); // We can use the CC result of compare-and-swap to implement // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); // Traps are legal, as we will convert them to "j .+2". setOperationAction(ISD::TRAP, MVT::Other, Legal); // z10 has instructions for signed but not unsigned FP conversion. // Handle unsigned 32-bit types as signed 64-bit types. if (!Subtarget.hasFPExtension()) { setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); } // We have native support for a 64-bit CTLZ, via FLOGR. setOperationAction(ISD::CTLZ, MVT::i32, Promote); setOperationAction(ISD::CTLZ, MVT::i64, Legal); // Give LowerOperation the chance to replace 64-bit ORs with subregs. setOperationAction(ISD::OR, MVT::i64, Custom); // FIXME: Can we support these natively? setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); // We have native instructions for i8, i16 and i32 extensions, but not i1. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); } // Handle the various types of symbolic address. setOperationAction(ISD::ConstantPool, PtrVT, Custom); setOperationAction(ISD::GlobalAddress, PtrVT, Custom); setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); setOperationAction(ISD::BlockAddress, PtrVT, Custom); setOperationAction(ISD::JumpTable, PtrVT, Custom); // We need to handle dynamic allocations specially because of the // 160-byte area at the bottom of the stack. setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); // Use custom expanders so that we can force the function to use // a frame pointer. setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); // Handle prefetches with PFD or PFDRL. setOperationAction(ISD::PREFETCH, MVT::Other, Custom); for (MVT VT : MVT::vector_valuetypes()) { // Assume by default that all vector operations need to be expanded. for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) if (getOperationAction(Opcode, VT) == Legal) setOperationAction(Opcode, VT, Expand); // Likewise all truncating stores and extending loads. for (MVT InnerVT : MVT::vector_valuetypes()) { setTruncStoreAction(VT, InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); } if (isTypeLegal(VT)) { // These operations are legal for anything that can be stored in a // vector register, even if there is no native support for the format // as such. In particular, we can do these for v4f32 even though there // are no specific instructions for that format. setOperationAction(ISD::LOAD, VT, Legal); setOperationAction(ISD::STORE, VT, Legal); setOperationAction(ISD::VSELECT, VT, Legal); setOperationAction(ISD::BITCAST, VT, Legal); setOperationAction(ISD::UNDEF, VT, Legal); // Likewise, except that we need to replace the nodes with something // more specific. setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); } } // Handle integer vector types. for (MVT VT : MVT::integer_vector_valuetypes()) { if (isTypeLegal(VT)) { // These operations have direct equivalents. setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); setOperationAction(ISD::ADD, VT, Legal); setOperationAction(ISD::SUB, VT, Legal); if (VT != MVT::v2i64) setOperationAction(ISD::MUL, VT, Legal); setOperationAction(ISD::AND, VT, Legal); setOperationAction(ISD::OR, VT, Legal); setOperationAction(ISD::XOR, VT, Legal); if (Subtarget.hasVectorEnhancements1()) setOperationAction(ISD::CTPOP, VT, Legal); else setOperationAction(ISD::CTPOP, VT, Custom); setOperationAction(ISD::CTTZ, VT, Legal); setOperationAction(ISD::CTLZ, VT, Legal); // Convert a GPR scalar to a vector by inserting it into element 0. setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); // Use a series of unpacks for extensions. setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); // Detect shifts by a scalar amount and convert them into // V*_BY_SCALAR. setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); // At present ROTL isn't matched by DAGCombiner. ROTR should be // converted into ROTL. setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands // and inverting the result as necessary. setOperationAction(ISD::SETCC, VT, Custom); } } if (Subtarget.hasVector()) { // There should be no need to check for float types other than v2f64 // since <2 x f32> isn't a legal type. setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); } // Handle floating-point types. for (unsigned I = MVT::FIRST_FP_VALUETYPE; I <= MVT::LAST_FP_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // We can use FI for FRINT. setOperationAction(ISD::FRINT, VT, Legal); // We can use the extended form of FI for other rounding operations. if (Subtarget.hasFPExtension()) { setOperationAction(ISD::FNEARBYINT, VT, Legal); setOperationAction(ISD::FFLOOR, VT, Legal); setOperationAction(ISD::FCEIL, VT, Legal); setOperationAction(ISD::FTRUNC, VT, Legal); setOperationAction(ISD::FROUND, VT, Legal); } // No special instructions for these. setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); } } // Handle floating-point vector types. if (Subtarget.hasVector()) { // Scalar-to-vector conversion is just a subreg. setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); // Some insertions and extractions can be done directly but others // need to go via integers. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); // These operations have direct equivalents. setOperationAction(ISD::FADD, MVT::v2f64, Legal); setOperationAction(ISD::FNEG, MVT::v2f64, Legal); setOperationAction(ISD::FSUB, MVT::v2f64, Legal); setOperationAction(ISD::FMUL, MVT::v2f64, Legal); setOperationAction(ISD::FMA, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::FABS, MVT::v2f64, Legal); setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); setOperationAction(ISD::FRINT, MVT::v2f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); setOperationAction(ISD::FROUND, MVT::v2f64, Legal); } // The vector enhancements facility 1 has instructions for these. if (Subtarget.hasVectorEnhancements1()) { setOperationAction(ISD::FADD, MVT::v4f32, Legal); setOperationAction(ISD::FNEG, MVT::v4f32, Legal); setOperationAction(ISD::FSUB, MVT::v4f32, Legal); setOperationAction(ISD::FMUL, MVT::v4f32, Legal); setOperationAction(ISD::FMA, MVT::v4f32, Legal); setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::FABS, MVT::v4f32, Legal); setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); setOperationAction(ISD::FRINT, MVT::v4f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); setOperationAction(ISD::FROUND, MVT::v4f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); setOperationAction(ISD::FMAXNAN, MVT::f64, Legal); setOperationAction(ISD::FMINNUM, MVT::f64, Legal); setOperationAction(ISD::FMINNAN, MVT::f64, Legal); setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal); setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal); setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); setOperationAction(ISD::FMINNUM, MVT::f32, Legal); setOperationAction(ISD::FMINNAN, MVT::f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); setOperationAction(ISD::FMAXNAN, MVT::f128, Legal); setOperationAction(ISD::FMINNUM, MVT::f128, Legal); setOperationAction(ISD::FMINNAN, MVT::f128, Legal); } // We have fused multiply-addition for f32 and f64 but not f128. setOperationAction(ISD::FMA, MVT::f32, Legal); setOperationAction(ISD::FMA, MVT::f64, Legal); if (Subtarget.hasVectorEnhancements1()) setOperationAction(ISD::FMA, MVT::f128, Legal); else setOperationAction(ISD::FMA, MVT::f128, Expand); // We don't have a copysign instruction on vector registers. if (Subtarget.hasVectorEnhancements1()) setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); // Needed so that we don't try to implement f128 constant loads using // a load-and-extend of a f80 constant (in cases where the constant // would fit in an f80). for (MVT VT : MVT::fp_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); // We don't have extending load instruction on vector registers. if (Subtarget.hasVectorEnhancements1()) { setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); } // Floating-point truncation and stores need to be done separately. setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); // We have 64-bit FPR<->GPR moves, but need special handling for // 32-bit forms. if (!Subtarget.hasVector()) { setOperationAction(ISD::BITCAST, MVT::i32, Custom); setOperationAction(ISD::BITCAST, MVT::f32, Custom); } // VASTART and VACOPY need to deal with the SystemZ-specific varargs // structure, but VAEND is a no-op. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); // Codes for which we want to perform some z-specific combinations. setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::FP_ROUND); setTargetDAGCombine(ISD::BSWAP); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::ROTL); // Handle intrinsics. setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); // We want to use MVC in preference to even a single load/store pair. MaxStoresPerMemcpy = 0; MaxStoresPerMemcpyOptSize = 0; // The main memset sequence is a byte store followed by an MVC. // Two STC or MV..I stores win over that, but the kind of fused stores // generated by target-independent code don't when the byte value is // variable. E.g. "STC ;MHI ,257;STH " is not better // than "STC;MVC". Handle the choice in target-specific code instead. MaxStoresPerMemset = 0; MaxStoresPerMemsetOptSize = 0; } EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const { if (!VT.isVector()) return MVT::i32; return VT.changeVectorElementTypeToInteger(); } bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: case MVT::f64: return true; case MVT::f128: return Subtarget.hasVectorEnhancements1(); default: break; } return false; } bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. return Imm.isZero() || Imm.isNegZero(); } bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { // We can use CGFI or CLGFI. return isInt<32>(Imm) || isUInt<32>(Imm); } bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { // We can use ALGFI or SLGFI. return isUInt<32>(Imm) || isUInt<32>(-Imm); } bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, unsigned, bool *Fast) const { // Unaligned accesses should never be slower than the expanded version. // We check specifically for aligned accesses in the few cases where // they are required. if (Fast) *Fast = true; return true; } // Information about the addressing mode for a memory access. struct AddressingMode { // True if a long displacement is supported. bool LongDisplacement; // True if use of index register is supported. bool IndexReg; AddressingMode(bool LongDispl, bool IdxReg) : LongDisplacement(LongDispl), IndexReg(IdxReg) {} }; // Return the desired addressing mode for a Load which has only one use (in // the same block) which is a Store. static AddressingMode getLoadStoreAddrMode(bool HasVector, Type *Ty) { // With vector support a Load->Store combination may be combined to either // an MVC or vector operations and it seems to work best to allow the // vector addressing mode. if (HasVector) return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); // Otherwise only the MVC case is special. bool MVC = Ty->isIntegerTy(8); return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); } // Return the addressing mode which seems most desirable given an LLVM // Instruction pointer. static AddressingMode supportedAddressingMode(Instruction *I, bool HasVector) { if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::memset: case Intrinsic::memmove: case Intrinsic::memcpy: return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); } } if (isa(I) && I->hasOneUse()) { auto *SingleUser = dyn_cast(*I->user_begin()); if (SingleUser->getParent() == I->getParent()) { if (isa(SingleUser)) { if (auto *C = dyn_cast(SingleUser->getOperand(1))) if (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())) // Comparison of memory with 16 bit signed / unsigned immediate return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); } else if (isa(SingleUser)) // Load->Store return getLoadStoreAddrMode(HasVector, I->getType()); } } else if (auto *StoreI = dyn_cast(I)) { if (auto *LoadI = dyn_cast(StoreI->getValueOperand())) if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) // Load->Store return getLoadStoreAddrMode(HasVector, LoadI->getType()); } if (HasVector && (isa(I) || isa(I))) { // * Use LDE instead of LE/LEY for z13 to avoid partial register // dependencies (LDE only supports small offsets). // * Utilize the vector registers to hold floating point // values (vector load / store instructions only support small // offsets). Type *MemAccessTy = (isa(I) ? I->getType() : I->getOperand(0)->getType()); bool IsFPAccess = MemAccessTy->isFloatingPointTy(); bool IsVectorAccess = MemAccessTy->isVectorTy(); // A store of an extracted vector element will be combined into a VSTE type // instruction. if (!IsVectorAccess && isa(I)) { Value *DataOp = I->getOperand(0); if (isa(DataOp)) IsVectorAccess = true; } // A load which gets inserted into a vector element will be combined into a // VLE type instruction. if (!IsVectorAccess && isa(I) && I->hasOneUse()) { User *LoadUser = *I->user_begin(); if (isa(LoadUser)) IsVectorAccess = true; } if (IsFPAccess || IsVectorAccess) return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); } return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); } bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // Punt on globals for now, although they can be used in limited // RELATIVE LONG cases. if (AM.BaseGV) return false; // Require a 20-bit signed offset. if (!isInt<20>(AM.BaseOffs)) return false; AddressingMode SupportedAM(true, true); if (I != nullptr) SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) return false; if (!SupportedAM.IndexReg) // No indexing allowed. return AM.Scale == 0; else // Indexing is OK but no scale factor can be applied. return AM.Scale == 0 || AM.Scale == 1; } bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) return false; unsigned FromBits = FromType->getPrimitiveSizeInBits(); unsigned ToBits = ToType->getPrimitiveSizeInBits(); return FromBits > ToBits; } bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { if (!FromVT.isInteger() || !ToVT.isInteger()) return false; unsigned FromBits = FromVT.getSizeInBits(); unsigned ToBits = ToVT.getSizeInBits(); return FromBits > ToBits; } //===----------------------------------------------------------------------===// // Inline asm support //===----------------------------------------------------------------------===// TargetLowering::ConstraintType SystemZTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'a': // Address register case 'd': // Data register (equivalent to 'r') case 'f': // Floating-point register case 'h': // High-part register case 'r': // General-purpose register return C_RegisterClass; case 'Q': // Memory with base and unsigned 12-bit displacement case 'R': // Likewise, plus an index case 'S': // Memory with base and signed 20-bit displacement case 'T': // Likewise, plus an index case 'm': // Equivalent to 'T'. return C_Memory; case 'I': // Unsigned 8-bit constant case 'J': // Unsigned 12-bit constant case 'K': // Signed 16-bit constant case 'L': // Signed 20-bit displacement (on all targets we support) case 'M': // 0x7fffffff return C_Other; default: break; } } return TargetLowering::getConstraintType(Constraint); } TargetLowering::ConstraintWeight SystemZTargetLowering:: getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'a': // Address register case 'd': // Data register (equivalent to 'r') case 'h': // High-part register case 'r': // General-purpose register if (CallOperandVal->getType()->isIntegerTy()) weight = CW_Register; break; case 'f': // Floating-point register if (type->isFloatingPointTy()) weight = CW_Register; break; case 'I': // Unsigned 8-bit constant if (auto *C = dyn_cast(CallOperandVal)) if (isUInt<8>(C->getZExtValue())) weight = CW_Constant; break; case 'J': // Unsigned 12-bit constant if (auto *C = dyn_cast(CallOperandVal)) if (isUInt<12>(C->getZExtValue())) weight = CW_Constant; break; case 'K': // Signed 16-bit constant if (auto *C = dyn_cast(CallOperandVal)) if (isInt<16>(C->getSExtValue())) weight = CW_Constant; break; case 'L': // Signed 20-bit displacement (on all targets we support) if (auto *C = dyn_cast(CallOperandVal)) if (isInt<20>(C->getSExtValue())) weight = CW_Constant; break; case 'M': // 0x7fffffff if (auto *C = dyn_cast(CallOperandVal)) if (C->getZExtValue() == 0x7fffffff) weight = CW_Constant; break; } return weight; } // Parse a "{tNNN}" register constraint for which the register type "t" // has already been verified. MC is the class associated with "t" and // Map maps 0-based register numbers to LLVM register numbers. static std::pair parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, const unsigned *Map) { assert(*(Constraint.end()-1) == '}' && "Missing '}'"); if (isdigit(Constraint[2])) { unsigned Index; bool Failed = Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); if (!Failed && Index < 16 && Map[Index]) return std::make_pair(Map[Index], RC); } return std::make_pair(0U, nullptr); } std::pair SystemZTargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { default: break; case 'd': // Data register (equivalent to 'r') case 'r': // General-purpose register if (VT == MVT::i64) return std::make_pair(0U, &SystemZ::GR64BitRegClass); else if (VT == MVT::i128) return std::make_pair(0U, &SystemZ::GR128BitRegClass); return std::make_pair(0U, &SystemZ::GR32BitRegClass); case 'a': // Address register if (VT == MVT::i64) return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); else if (VT == MVT::i128) return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); case 'h': // High-part register (an LLVM extension) return std::make_pair(0U, &SystemZ::GRH32BitRegClass); case 'f': // Floating-point register if (VT == MVT::f64) return std::make_pair(0U, &SystemZ::FP64BitRegClass); else if (VT == MVT::f128) return std::make_pair(0U, &SystemZ::FP128BitRegClass); return std::make_pair(0U, &SystemZ::FP32BitRegClass); } } if (Constraint.size() > 0 && Constraint[0] == '{') { // We need to override the default register parsing for GPRs and FPRs // because the interpretation depends on VT. The internal names of // the registers are also different from the external names // (F0D and F0S instead of F0, etc.). if (Constraint[1] == 'r') { if (VT == MVT::i32) return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, SystemZMC::GR32Regs); if (VT == MVT::i128) return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, SystemZMC::GR128Regs); return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, SystemZMC::GR64Regs); } if (Constraint[1] == 'f') { if (VT == MVT::f32) return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, SystemZMC::FP32Regs); if (VT == MVT::f128) return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, SystemZMC::FP128Regs); return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, SystemZMC::FP64Regs); } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } void SystemZTargetLowering:: LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { // Only support length 1 constraints for now. if (Constraint.length() == 1) { switch (Constraint[0]) { case 'I': // Unsigned 8-bit constant if (auto *C = dyn_cast(Op)) if (isUInt<8>(C->getZExtValue())) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType())); return; case 'J': // Unsigned 12-bit constant if (auto *C = dyn_cast(Op)) if (isUInt<12>(C->getZExtValue())) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType())); return; case 'K': // Signed 16-bit constant if (auto *C = dyn_cast(Op)) if (isInt<16>(C->getSExtValue())) Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), Op.getValueType())); return; case 'L': // Signed 20-bit displacement (on all targets we support) if (auto *C = dyn_cast(Op)) if (isInt<20>(C->getSExtValue())) Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), Op.getValueType())); return; case 'M': // 0x7fffffff if (auto *C = dyn_cast(Op)) if (C->getZExtValue() == 0x7fffffff) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType())); return; } } TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } //===----------------------------------------------------------------------===// // Calling conventions //===----------------------------------------------------------------------===// #include "SystemZGenCallingConv.inc" bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, Type *ToType) const { return isTruncateFree(FromType, ToType); } bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { return CI->isTailCall(); } // We do not yet support 128-bit single-element vector types. If the user // attempts to use such types as function argument or return type, prefer // to error out instead of emitting code violating the ABI. static void VerifyVectorType(MVT VT, EVT ArgVT) { if (ArgVT.isVector() && !VT.isVector()) report_fatal_error("Unsupported vector argument or return type"); } static void VerifyVectorTypes(const SmallVectorImpl &Ins) { for (unsigned i = 0; i < Ins.size(); ++i) VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); } static void VerifyVectorTypes(const SmallVectorImpl &Outs) { for (unsigned i = 0; i < Outs.size(); ++i) VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); } // Value is a value that has been passed to us in the location described by VA // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining // any loads onto Chain. static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, CCValAssign &VA, SDValue Chain, SDValue Value) { // If the argument has been promoted from a smaller type, insert an // assertion to capture this. if (VA.getLocInfo() == CCValAssign::SExt) Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, DAG.getValueType(VA.getValVT())); if (VA.isExtInLoc()) Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); else if (VA.getLocInfo() == CCValAssign::BCvt) { // If this is a short vector argument loaded from the stack, // extend from i64 to full vector size and then bitcast. assert(VA.getLocVT() == MVT::i64); assert(VA.getValVT().isVector()); Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); } else assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); return Value; } // Value is a value of type VA.getValVT() that we need to copy into // the location described by VA. Return a copy of Value converted to // VA.getValVT(). The caller is responsible for handling indirect values. static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, CCValAssign &VA, SDValue Value) { switch (VA.getLocInfo()) { case CCValAssign::SExt: return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::ZExt: return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::AExt: return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::BCvt: // If this is a short vector argument to be stored to the stack, // bitcast to v2i64 and then extract first element. assert(VA.getLocVT() == MVT::i64); assert(VA.getValVT().isVector()); Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, DAG.getConstant(0, DL, MVT::i32)); case CCValAssign::Full: return Value; default: llvm_unreachable("Unhandled getLocInfo()"); } } SDValue SystemZTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); SystemZMachineFunctionInfo *FuncInfo = MF.getInfo(); auto *TFL = static_cast(Subtarget.getFrameLowering()); EVT PtrVT = getPointerTy(DAG.getDataLayout()); // Detect unsupported vector argument types. if (Subtarget.hasVector()) VerifyVectorTypes(Ins); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); unsigned NumFixedGPRs = 0; unsigned NumFixedFPRs = 0; for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { SDValue ArgValue; CCValAssign &VA = ArgLocs[I]; EVT LocVT = VA.getLocVT(); if (VA.isRegLoc()) { // Arguments passed in registers const TargetRegisterClass *RC; switch (LocVT.getSimpleVT().SimpleTy) { default: // Integers smaller than i64 should be promoted to i64. llvm_unreachable("Unexpected argument type"); case MVT::i32: NumFixedGPRs += 1; RC = &SystemZ::GR32BitRegClass; break; case MVT::i64: NumFixedGPRs += 1; RC = &SystemZ::GR64BitRegClass; break; case MVT::f32: NumFixedFPRs += 1; RC = &SystemZ::FP32BitRegClass; break; case MVT::f64: NumFixedFPRs += 1; RC = &SystemZ::FP64BitRegClass; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: RC = &SystemZ::VR128BitRegClass; break; } unsigned VReg = MRI.createVirtualRegister(RC); MRI.addLiveIn(VA.getLocReg(), VReg); ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); } else { assert(VA.isMemLoc() && "Argument not register or memory"); // Create the frame index object for this incoming parameter. int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter. Unpromoted ints and floats are // passed as right-justified 8-byte values. SDValue FIN = DAG.getFrameIndex(FI, PtrVT); if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, MachinePointerInfo::getFixedStack(MF, FI)); } // Convert the value of the argument register into the value that's // being passed. if (VA.getLocInfo() == CCValAssign::Indirect) { InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, MachinePointerInfo())); // If the original argument was split (e.g. i128), we need // to load all parts of it here (using the same address). unsigned ArgIndex = Ins[I].OrigArgIndex; assert (Ins[I].PartOffset == 0); while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { CCValAssign &PartVA = ArgLocs[I + 1]; unsigned PartOffset = Ins[I + 1].PartOffset; SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, DAG.getIntPtrConstant(PartOffset, DL)); InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, MachinePointerInfo())); ++I; } } else InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); } if (IsVarArg) { // Save the number of non-varargs registers for later use by va_start, etc. FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); // Likewise the address (in the form of a frame index) of where the // first stack vararg would be. The 1-byte size here is arbitrary. int64_t StackSize = CCInfo.getNextStackOffset(); FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); // ...and a similar frame index for the caller-allocated save area // that will be used to store the incoming registers. int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); FuncInfo->setRegSaveFrameIndex(RegSaveIndex); // Store the FPR varargs in the reserved frame slots. (We store the // GPRs as part of the prologue.) if (NumFixedFPRs < SystemZ::NumArgFPRs) { SDValue MemOps[SystemZ::NumArgFPRs]; for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], &SystemZ::FP64BitRegClass); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, MachinePointerInfo::getFixedStack(MF, FI)); } // Join the stores, which are independent of one another. Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, makeArrayRef(&MemOps[NumFixedFPRs], SystemZ::NumArgFPRs-NumFixedFPRs)); } } return Chain; } static bool canUseSiblingCall(const CCState &ArgCCInfo, SmallVectorImpl &ArgLocs, SmallVectorImpl &Outs) { // Punt if there are any indirect or stack arguments, or if the call // needs the callee-saved argument register R6, or if the call uses // the callee-saved register arguments SwiftSelf and SwiftError. for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { CCValAssign &VA = ArgLocs[I]; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (!VA.isRegLoc()) return false; unsigned Reg = VA.getLocReg(); if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) return false; if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) return false; } return true; } SDValue SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); EVT PtrVT = getPointerTy(MF.getDataLayout()); // Detect unsupported vector argument and return types. if (Subtarget.hasVector()) { VerifyVectorTypes(Outs); VerifyVectorTypes(Ins); } // Analyze the operands of the call, assigning locations to each operand. SmallVector ArgLocs; SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); // We don't support GuaranteedTailCallOpt, only automatically-detected // sibling calls. if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) IsTailCall = false; // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = ArgCCInfo.getNextStackOffset(); // Mark the start of the call. if (!IsTailCall) Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); // Copy argument values to their designated locations. SmallVector, 9> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { CCValAssign &VA = ArgLocs[I]; SDValue ArgValue = OutVals[I]; if (VA.getLocInfo() == CCValAssign::Indirect) { // Store the argument in a stack slot and pass its address. SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); int FI = cast(SpillSlot)->getIndex(); MemOpChains.push_back( DAG.getStore(Chain, DL, ArgValue, SpillSlot, MachinePointerInfo::getFixedStack(MF, FI))); // If the original argument was split (e.g. i128), we need // to store all parts of it here (and pass just one address). unsigned ArgIndex = Outs[I].OrigArgIndex; assert (Outs[I].PartOffset == 0); while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { SDValue PartValue = OutVals[I + 1]; unsigned PartOffset = Outs[I + 1].PartOffset; SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, DAG.getIntPtrConstant(PartOffset, DL)); MemOpChains.push_back( DAG.getStore(Chain, DL, PartValue, Address, MachinePointerInfo::getFixedStack(MF, FI))); ++I; } ArgValue = SpillSlot; } else ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); if (VA.isRegLoc()) // Queue up the argument copies and emit them at the end. RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); else { assert(VA.isMemLoc() && "Argument not register or memory"); // Work out the address of the stack slot. Unpromoted ints and // floats are passed as right-justified 8-byte values. if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) Offset += 4; SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, DAG.getIntPtrConstant(Offset, DL)); // Emit the store. MemOpChains.push_back( DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); } } // Join the stores, which are independent of one another. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // Accept direct calls by converting symbolic call addresses to the // associated Target* opcodes. Force %r1 to be used for indirect // tail calls. SDValue Glue; if (auto *G = dyn_cast(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); } else if (auto *E = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); } else if (IsTailCall) { Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); Glue = Chain.getValue(1); Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); } // Build a sequence of copy-to-reg nodes, chained and glued together. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, RegsToPass[I].second, Glue); Glue = Chain.getValue(1); } // The first call operand is the chain and the second is the target address. SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) Ops.push_back(DAG.getRegister(RegsToPass[I].first, RegsToPass[I].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); // Glue the call to the argument copies, if any. if (Glue.getNode()) Ops.push_back(Glue); // Emit the call. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); if (IsTailCall) return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); Glue = Chain.getValue(1); // Mark the end of the call, which is glued to the call itself. Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, DL, PtrVT, true), DAG.getConstant(0, DL, PtrVT, true), Glue, DL); Glue = Chain.getValue(1); // Assign locations to each value returned by this call. SmallVector RetLocs; CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); // Copy all of the result registers out of their specified physreg. for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { CCValAssign &VA = RetLocs[I]; // Copy the value out, gluing the copy to the end of the call sequence. SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); Chain = RetValue.getValue(1); Glue = RetValue.getValue(2); // Convert the value of the return register into the value that's // being returned. InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); } return Chain; } bool SystemZTargetLowering:: CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { // Detect unsupported vector return types. if (Subtarget.hasVector()) VerifyVectorTypes(Outs); // Special case that we cannot easily detect in RetCC_SystemZ since // i128 is not a legal type. for (auto &Out : Outs) if (Out.ArgVT == MVT::i128) return false; SmallVector RetLocs; CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); } SDValue SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); // Detect unsupported vector return types. if (Subtarget.hasVector()) VerifyVectorTypes(Outs); // Assign locations to each returned value. SmallVector RetLocs; CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); // Quick exit for void returns if (RetLocs.empty()) return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); // Copy the result values into the output registers. SDValue Glue; SmallVector RetOps; RetOps.push_back(Chain); for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { CCValAssign &VA = RetLocs[I]; SDValue RetValue = OutVals[I]; // Make the return register live on exit. assert(VA.isRegLoc() && "Can only return in registers!"); // Promote the value as required. RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); // Chain and glue the copies together. unsigned Reg = VA.getLocReg(); Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); } // Update chain and glue. RetOps[0] = Chain; if (Glue.getNode()) RetOps.push_back(Glue); return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); } // Return true if Op is an intrinsic node with chain that returns the CC value // as its only (other) argument. Provide the associated SystemZISD opcode and // the mask of valid CC values if so. static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, unsigned &CCValid) { unsigned Id = cast(Op.getOperand(1))->getZExtValue(); switch (Id) { case Intrinsic::s390_tbegin: Opcode = SystemZISD::TBEGIN; CCValid = SystemZ::CCMASK_TBEGIN; return true; case Intrinsic::s390_tbegin_nofloat: Opcode = SystemZISD::TBEGIN_NOFLOAT; CCValid = SystemZ::CCMASK_TBEGIN; return true; case Intrinsic::s390_tend: Opcode = SystemZISD::TEND; CCValid = SystemZ::CCMASK_TEND; return true; default: return false; } } // Return true if Op is an intrinsic node without chain that returns the // CC value as its final argument. Provide the associated SystemZISD // opcode and the mask of valid CC values if so. static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { unsigned Id = cast(Op.getOperand(0))->getZExtValue(); switch (Id) { case Intrinsic::s390_vpkshs: case Intrinsic::s390_vpksfs: case Intrinsic::s390_vpksgs: Opcode = SystemZISD::PACKS_CC; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vpklshs: case Intrinsic::s390_vpklsfs: case Intrinsic::s390_vpklsgs: Opcode = SystemZISD::PACKLS_CC; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vceqbs: case Intrinsic::s390_vceqhs: case Intrinsic::s390_vceqfs: case Intrinsic::s390_vceqgs: Opcode = SystemZISD::VICMPES; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vchbs: case Intrinsic::s390_vchhs: case Intrinsic::s390_vchfs: case Intrinsic::s390_vchgs: Opcode = SystemZISD::VICMPHS; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vchlbs: case Intrinsic::s390_vchlhs: case Intrinsic::s390_vchlfs: case Intrinsic::s390_vchlgs: Opcode = SystemZISD::VICMPHLS; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vtm: Opcode = SystemZISD::VTM; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vfaebs: case Intrinsic::s390_vfaehs: case Intrinsic::s390_vfaefs: Opcode = SystemZISD::VFAE_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vfaezbs: case Intrinsic::s390_vfaezhs: case Intrinsic::s390_vfaezfs: Opcode = SystemZISD::VFAEZ_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vfeebs: case Intrinsic::s390_vfeehs: case Intrinsic::s390_vfeefs: Opcode = SystemZISD::VFEE_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vfeezbs: case Intrinsic::s390_vfeezhs: case Intrinsic::s390_vfeezfs: Opcode = SystemZISD::VFEEZ_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vfenebs: case Intrinsic::s390_vfenehs: case Intrinsic::s390_vfenefs: Opcode = SystemZISD::VFENE_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vfenezbs: case Intrinsic::s390_vfenezhs: case Intrinsic::s390_vfenezfs: Opcode = SystemZISD::VFENEZ_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vistrbs: case Intrinsic::s390_vistrhs: case Intrinsic::s390_vistrfs: Opcode = SystemZISD::VISTR_CC; CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; return true; case Intrinsic::s390_vstrcbs: case Intrinsic::s390_vstrchs: case Intrinsic::s390_vstrcfs: Opcode = SystemZISD::VSTRC_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vstrczbs: case Intrinsic::s390_vstrczhs: case Intrinsic::s390_vstrczfs: Opcode = SystemZISD::VSTRCZ_CC; CCValid = SystemZ::CCMASK_ANY; return true; case Intrinsic::s390_vfcedbs: case Intrinsic::s390_vfcesbs: Opcode = SystemZISD::VFCMPES; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vfchdbs: case Intrinsic::s390_vfchsbs: Opcode = SystemZISD::VFCMPHS; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vfchedbs: case Intrinsic::s390_vfchesbs: Opcode = SystemZISD::VFCMPHES; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_vftcidb: case Intrinsic::s390_vftcisb: Opcode = SystemZISD::VFTCI; CCValid = SystemZ::CCMASK_VCMP; return true; case Intrinsic::s390_tdc: Opcode = SystemZISD::TDC; CCValid = SystemZ::CCMASK_TDC; return true; default: return false; } } // Emit an intrinsic with chain with a glued value instead of its CC result. static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, unsigned Opcode) { // Copy all operands except the intrinsic ID. unsigned NumOps = Op.getNumOperands(); SmallVector Ops; Ops.reserve(NumOps - 1); Ops.push_back(Op.getOperand(0)); for (unsigned I = 2; I < NumOps; ++I) Ops.push_back(Op.getOperand(I)); assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); SDValue OldChain = SDValue(Op.getNode(), 1); SDValue NewChain = SDValue(Intr.getNode(), 0); DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); return Intr; } // Emit an intrinsic with a glued value instead of its CC result. static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, unsigned Opcode) { // Copy all operands except the intrinsic ID. unsigned NumOps = Op.getNumOperands(); SmallVector Ops; Ops.reserve(NumOps - 1); for (unsigned I = 1; I < NumOps; ++I) Ops.push_back(Op.getOperand(I)); if (Op->getNumValues() == 1) return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); } // CC is a comparison that will be implemented using an integer or // floating-point comparison. Return the condition code mask for // a branch on true. In the integer case, CCMASK_CMP_UO is set for // unsigned comparisons and clear for signed ones. In the floating-point // case, CCMASK_CMP_UO has its normal mask meaning (unordered). static unsigned CCMaskForCondCode(ISD::CondCode CC) { #define CONV(X) \ case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X switch (CC) { default: llvm_unreachable("Invalid integer condition!"); CONV(EQ); CONV(NE); CONV(GT); CONV(GE); CONV(LT); CONV(LE); case ISD::SETO: return SystemZ::CCMASK_CMP_O; case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; } #undef CONV } // Return a sequence for getting a 1 from an IPM result when CC has a // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. // The handling of CC values outside CCValid doesn't matter. static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { // Deal with cases where the result can be taken directly from a bit // of the IPM result. if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) return IPMConversion(0, 0, SystemZ::IPM_CC); if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) return IPMConversion(0, 0, SystemZ::IPM_CC + 1); // Deal with cases where we can add a value to force the sign bit // to contain the right value. Putting the bit in 31 means we can // use SRL rather than RISBG(L), and also makes it easier to get a // 0/-1 value, so it has priority over the other tests below. // // These sequences rely on the fact that the upper two bits of the // IPM result are zero. uint64_t TopBit = uint64_t(1) << 31; if (CCMask == (CCValid & SystemZ::CCMASK_0)) return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & SystemZ::CCMASK_3)) return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); // Next try inverting the value and testing a bit. 0/1 could be // handled this way too, but we dealt with that case above. if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) return IPMConversion(-1, 0, SystemZ::IPM_CC); // Handle cases where adding a value forces a non-sign bit to contain // the right value. if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are // can be done by inverting the low CC bit and applying one of the // sign-based extractions above. if (CCMask == (CCValid & SystemZ::CCMASK_1)) return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & SystemZ::CCMASK_2)) return IPMConversion(1 << SystemZ::IPM_CC, TopBit - (3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) return IPMConversion(1 << SystemZ::IPM_CC, TopBit - (1 << SystemZ::IPM_CC), 31); llvm_unreachable("Unexpected CC combination"); } // If C can be converted to a comparison against zero, adjust the operands // as necessary. static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { if (C.ICmpType == SystemZICMP::UnsignedOnly) return; auto *ConstOp1 = dyn_cast(C.Op1.getNode()); if (!ConstOp1) return; int64_t Value = ConstOp1->getSExtValue(); if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { C.CCMask ^= SystemZ::CCMASK_CMP_EQ; C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); } } // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, // adjust the operands as necessary. static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { // For us to make any changes, it must a comparison between a single-use // load and a constant. if (!C.Op0.hasOneUse() || C.Op0.getOpcode() != ISD::LOAD || C.Op1.getOpcode() != ISD::Constant) return; // We must have an 8- or 16-bit load. auto *Load = cast(C.Op0); unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); if (NumBits != 8 && NumBits != 16) return; // The load must be an extending one and the constant must be within the // range of the unextended value. auto *ConstOp1 = cast(C.Op1); uint64_t Value = ConstOp1->getZExtValue(); uint64_t Mask = (1 << NumBits) - 1; if (Load->getExtensionType() == ISD::SEXTLOAD) { // Make sure that ConstOp1 is in range of C.Op0. int64_t SignedValue = ConstOp1->getSExtValue(); if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) return; if (C.ICmpType != SystemZICMP::SignedOnly) { // Unsigned comparison between two sign-extended values is equivalent // to unsigned comparison between two zero-extended values. Value &= Mask; } else if (NumBits == 8) { // Try to treat the comparison as unsigned, so that we can use CLI. // Adjust CCMask and Value as necessary. if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) // Test whether the high bit of the byte is set. Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) // Test whether the high bit of the byte is clear. Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; else // No instruction exists for this combination. return; C.ICmpType = SystemZICMP::UnsignedOnly; } } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { if (Value > Mask) return; // If the constant is in range, we can use any comparison. C.ICmpType = SystemZICMP::Any; } else return; // Make sure that the first operand is an i32 of the right extension type. ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? ISD::SEXTLOAD : ISD::ZEXTLOAD); if (C.Op0.getValueType() != MVT::i32 || Load->getExtensionType() != ExtType) { C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), Load->getBasePtr(), Load->getPointerInfo(), Load->getMemoryVT(), Load->getAlignment(), Load->getMemOperand()->getFlags()); // Update the chain uses. DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); } // Make sure that the second operand is an i32 with the right value. if (C.Op1.getValueType() != MVT::i32 || Value != ConstOp1->getZExtValue()) C.Op1 = DAG.getConstant(Value, DL, MVT::i32); } // Return true if Op is either an unextended load, or a load suitable // for integer register-memory comparisons of type ICmpType. static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { auto *Load = dyn_cast(Op.getNode()); if (Load) { // There are no instructions to compare a register with a memory byte. if (Load->getMemoryVT() == MVT::i8) return false; // Otherwise decide on extension type. switch (Load->getExtensionType()) { case ISD::NON_EXTLOAD: return true; case ISD::SEXTLOAD: return ICmpType != SystemZICMP::UnsignedOnly; case ISD::ZEXTLOAD: return ICmpType != SystemZICMP::SignedOnly; default: break; } } return false; } // Return true if it is better to swap the operands of C. static bool shouldSwapCmpOperands(const Comparison &C) { // Leave f128 comparisons alone, since they have no memory forms. if (C.Op0.getValueType() == MVT::f128) return false; // Always keep a floating-point constant second, since comparisons with // zero can use LOAD TEST and comparisons with other constants make a // natural memory operand. if (isa(C.Op1)) return false; // Never swap comparisons with zero since there are many ways to optimize // those later. auto *ConstOp1 = dyn_cast(C.Op1); if (ConstOp1 && ConstOp1->getZExtValue() == 0) return false; // Also keep natural memory operands second if the loaded value is // only used here. Several comparisons have memory forms. if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) return false; // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. // In that case we generally prefer the memory to be second. if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { // The only exceptions are when the second operand is a constant and // we can use things like CHHSI. if (!ConstOp1) return true; // The unsigned memory-immediate instructions can handle 16-bit // unsigned integers. if (C.ICmpType != SystemZICMP::SignedOnly && isUInt<16>(ConstOp1->getZExtValue())) return false; // The signed memory-immediate instructions can handle 16-bit // signed integers. if (C.ICmpType != SystemZICMP::UnsignedOnly && isInt<16>(ConstOp1->getSExtValue())) return false; return true; } // Try to promote the use of CGFR and CLGFR. unsigned Opcode0 = C.Op0.getOpcode(); if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) return true; if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) return true; if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND && C.Op0.getOperand(1).getOpcode() == ISD::Constant && cast(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) return true; return false; } // Return a version of comparison CC mask CCMask in which the LT and GT // actions are swapped. static unsigned reverseCCMask(unsigned CCMask) { return ((CCMask & SystemZ::CCMASK_CMP_EQ) | (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | (CCMask & SystemZ::CCMASK_CMP_UO)); } // Check whether C tests for equality between X and Y and whether X - Y // or Y - X is also computed. In that case it's better to compare the // result of the subtraction against zero. static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { if (C.CCMask == SystemZ::CCMASK_CMP_EQ || C.CCMask == SystemZ::CCMASK_CMP_NE) { for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { SDNode *N = *I; if (N->getOpcode() == ISD::SUB && ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { C.Op0 = SDValue(N, 0); C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); return; } } } } // Check whether C compares a floating-point value with zero and if that // floating-point value is also negated. In this case we can use the // negation to set CC, so avoiding separate LOAD AND TEST and // LOAD (NEGATIVE/COMPLEMENT) instructions. static void adjustForFNeg(Comparison &C) { auto *C1 = dyn_cast(C.Op1); if (C1 && C1->isZero()) { for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { SDNode *N = *I; if (N->getOpcode() == ISD::FNEG) { C.Op0 = SDValue(N, 0); C.CCMask = reverseCCMask(C.CCMask); return; } } } } // Check whether C compares (shl X, 32) with 0 and whether X is // also sign-extended. In that case it is better to test the result // of the sign extension using LTGFR. // // This case is important because InstCombine transforms a comparison // with (sext (trunc X)) into a comparison with (shl X, 32). static void adjustForLTGFR(Comparison &C) { // Check for a comparison between (shl X, 32) and 0. if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 && C.Op1.getOpcode() == ISD::Constant && cast(C.Op1)->getZExtValue() == 0) { auto *C1 = dyn_cast(C.Op0.getOperand(1)); if (C1 && C1->getZExtValue() == 32) { SDValue ShlOp0 = C.Op0.getOperand(0); // See whether X has any SIGN_EXTEND_INREG uses. for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { SDNode *N = *I; if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N->getOperand(1))->getVT() == MVT::i32) { C.Op0 = SDValue(N, 0); return; } } } } } // If C compares the truncation of an extending load, try to compare // the untruncated value instead. This exposes more opportunities to // reuse CC. static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { if (C.Op0.getOpcode() == ISD::TRUNCATE && C.Op0.getOperand(0).getOpcode() == ISD::LOAD && C.Op1.getOpcode() == ISD::Constant && cast(C.Op1)->getZExtValue() == 0) { auto *L = cast(C.Op0.getOperand(0)); if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { unsigned Type = L->getExtensionType(); if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { C.Op0 = C.Op0.getOperand(0); C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); } } } } // Return true if shift operation N has an in-range constant shift value. // Store it in ShiftVal if so. static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { auto *Shift = dyn_cast(N.getOperand(1)); if (!Shift) return false; uint64_t Amount = Shift->getZExtValue(); if (Amount >= N.getValueSizeInBits()) return false; ShiftVal = Amount; return true; } // Check whether an AND with Mask is suitable for a TEST UNDER MASK // instruction and whether the CC value is descriptive enough to handle // a comparison of type Opcode between the AND result and CmpVal. // CCMask says which comparison result is being tested and BitSize is // the number of bits in the operands. If TEST UNDER MASK can be used, // return the corresponding CC mask, otherwise return 0. static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, uint64_t Mask, uint64_t CmpVal, unsigned ICmpType) { assert(Mask != 0 && "ANDs with zero should have been removed by now"); // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) return 0; // Work out the masks for the lowest and highest bits. unsigned HighShift = 63 - countLeadingZeros(Mask); uint64_t High = uint64_t(1) << HighShift; uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); // Signed ordered comparisons are effectively unsigned if the sign // bit is dropped. bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); // Check for equality comparisons with 0, or the equivalent. if (CmpVal == 0) { if (CCMask == SystemZ::CCMASK_CMP_EQ) return SystemZ::CCMASK_TM_ALL_0; if (CCMask == SystemZ::CCMASK_CMP_NE) return SystemZ::CCMASK_TM_SOME_1; } if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { if (CCMask == SystemZ::CCMASK_CMP_LT) return SystemZ::CCMASK_TM_ALL_0; if (CCMask == SystemZ::CCMASK_CMP_GE) return SystemZ::CCMASK_TM_SOME_1; } if (EffectivelyUnsigned && CmpVal < Low) { if (CCMask == SystemZ::CCMASK_CMP_LE) return SystemZ::CCMASK_TM_ALL_0; if (CCMask == SystemZ::CCMASK_CMP_GT) return SystemZ::CCMASK_TM_SOME_1; } // Check for equality comparisons with the mask, or the equivalent. if (CmpVal == Mask) { if (CCMask == SystemZ::CCMASK_CMP_EQ) return SystemZ::CCMASK_TM_ALL_1; if (CCMask == SystemZ::CCMASK_CMP_NE) return SystemZ::CCMASK_TM_SOME_0; } if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { if (CCMask == SystemZ::CCMASK_CMP_GT) return SystemZ::CCMASK_TM_ALL_1; if (CCMask == SystemZ::CCMASK_CMP_LE) return SystemZ::CCMASK_TM_SOME_0; } if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { if (CCMask == SystemZ::CCMASK_CMP_GE) return SystemZ::CCMASK_TM_ALL_1; if (CCMask == SystemZ::CCMASK_CMP_LT) return SystemZ::CCMASK_TM_SOME_0; } // Check for ordered comparisons with the top bit. if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { if (CCMask == SystemZ::CCMASK_CMP_LE) return SystemZ::CCMASK_TM_MSB_0; if (CCMask == SystemZ::CCMASK_CMP_GT) return SystemZ::CCMASK_TM_MSB_1; } if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { if (CCMask == SystemZ::CCMASK_CMP_LT) return SystemZ::CCMASK_TM_MSB_0; if (CCMask == SystemZ::CCMASK_CMP_GE) return SystemZ::CCMASK_TM_MSB_1; } // If there are just two bits, we can do equality checks for Low and High // as well. if (Mask == Low + High) { if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) return SystemZ::CCMASK_TM_MIXED_MSB_0; if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) return SystemZ::CCMASK_TM_MIXED_MSB_1; if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; } // Looks like we've exhausted our options. return 0; } // See whether C can be implemented as a TEST UNDER MASK instruction. // Update the arguments with the TM version if so. static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { // Check that we have a comparison with a constant. auto *ConstOp1 = dyn_cast(C.Op1); if (!ConstOp1) return; uint64_t CmpVal = ConstOp1->getZExtValue(); // Check whether the nonconstant input is an AND with a constant mask. Comparison NewC(C); uint64_t MaskVal; ConstantSDNode *Mask = nullptr; if (C.Op0.getOpcode() == ISD::AND) { NewC.Op0 = C.Op0.getOperand(0); NewC.Op1 = C.Op0.getOperand(1); Mask = dyn_cast(NewC.Op1); if (!Mask) return; MaskVal = Mask->getZExtValue(); } else { // There is no instruction to compare with a 64-bit immediate // so use TMHH instead if possible. We need an unsigned ordered // comparison with an i64 immediate. if (NewC.Op0.getValueType() != MVT::i64 || NewC.CCMask == SystemZ::CCMASK_CMP_EQ || NewC.CCMask == SystemZ::CCMASK_CMP_NE || NewC.ICmpType == SystemZICMP::SignedOnly) return; // Convert LE and GT comparisons into LT and GE. if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || NewC.CCMask == SystemZ::CCMASK_CMP_GT) { if (CmpVal == uint64_t(-1)) return; CmpVal += 1; NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; } // If the low N bits of Op1 are zero than the low N bits of Op0 can // be masked off without changing the result. MaskVal = -(CmpVal & -CmpVal); NewC.ICmpType = SystemZICMP::UnsignedOnly; } if (!MaskVal) return; // Check whether the combination of mask, comparison value and comparison // type are suitable. unsigned BitSize = NewC.Op0.getValueSizeInBits(); unsigned NewCCMask, ShiftVal; if (NewC.ICmpType != SystemZICMP::SignedOnly && NewC.Op0.getOpcode() == ISD::SHL && isSimpleShift(NewC.Op0, ShiftVal) && (MaskVal >> ShiftVal != 0) && ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal >> ShiftVal, CmpVal >> ShiftVal, SystemZICMP::Any))) { NewC.Op0 = NewC.Op0.getOperand(0); MaskVal >>= ShiftVal; } else if (NewC.ICmpType != SystemZICMP::SignedOnly && NewC.Op0.getOpcode() == ISD::SRL && isSimpleShift(NewC.Op0, ShiftVal) && (MaskVal << ShiftVal != 0) && ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal << ShiftVal, CmpVal << ShiftVal, SystemZICMP::UnsignedOnly))) { NewC.Op0 = NewC.Op0.getOperand(0); MaskVal <<= ShiftVal; } else { NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, NewC.ICmpType); if (!NewCCMask) return; } // Go ahead and make the change. C.Opcode = SystemZISD::TM; C.Op0 = NewC.Op0; if (Mask && Mask->getZExtValue() == MaskVal) C.Op1 = SDValue(Mask, 0); else C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); C.CCValid = SystemZ::CCMASK_TM; C.CCMask = NewCCMask; } // Return a Comparison that tests the condition-code result of intrinsic // node Call against constant integer CC using comparison code Cond. // Opcode is the opcode of the SystemZISD operation for the intrinsic // and CCValid is the set of possible condition-code results. static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, SDValue Call, unsigned CCValid, uint64_t CC, ISD::CondCode Cond) { Comparison C(Call, SDValue()); C.Opcode = Opcode; C.CCValid = CCValid; if (Cond == ISD::SETEQ) // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; else if (Cond == ISD::SETNE) // ...and the inverse of that. C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; else if (Cond == ISD::SETLT || Cond == ISD::SETULT) // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, // always true for CC>3. C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) // ...and the inverse of that. C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; else if (Cond == ISD::SETLE || Cond == ISD::SETULE) // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), // always true for CC>3. C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) // ...and the inverse of that. C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; else llvm_unreachable("Unexpected integer comparison type"); C.CCMask &= CCValid; return C; } // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, ISD::CondCode Cond, const SDLoc &DL) { if (CmpOp1.getOpcode() == ISD::Constant) { uint64_t Constant = cast(CmpOp1)->getZExtValue(); unsigned Opcode, CCValid; if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); } Comparison C(CmpOp0, CmpOp1); C.CCMask = CCMaskForCondCode(Cond); if (C.Op0.getValueType().isFloatingPoint()) { C.CCValid = SystemZ::CCMASK_FCMP; C.Opcode = SystemZISD::FCMP; adjustForFNeg(C); } else { C.CCValid = SystemZ::CCMASK_ICMP; C.Opcode = SystemZISD::ICMP; // Choose the type of comparison. Equality and inequality tests can // use either signed or unsigned comparisons. The choice also doesn't // matter if both sign bits are known to be clear. In those cases we // want to give the main isel code the freedom to choose whichever // form fits best. if (C.CCMask == SystemZ::CCMASK_CMP_EQ || C.CCMask == SystemZ::CCMASK_CMP_NE || (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) C.ICmpType = SystemZICMP::Any; else if (C.CCMask & SystemZ::CCMASK_CMP_UO) C.ICmpType = SystemZICMP::UnsignedOnly; else C.ICmpType = SystemZICMP::SignedOnly; C.CCMask &= ~SystemZ::CCMASK_CMP_UO; adjustZeroCmp(DAG, DL, C); adjustSubwordCmp(DAG, DL, C); adjustForSubtraction(DAG, DL, C); adjustForLTGFR(C); adjustICmpTruncate(DAG, DL, C); } if (shouldSwapCmpOperands(C)) { std::swap(C.Op0, C.Op1); C.CCMask = reverseCCMask(C.CCMask); } adjustForTestUnderMask(DAG, DL, C); return C; } // Emit the comparison instruction described by C. static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { if (!C.Op1.getNode()) { SDValue Op; switch (C.Op0.getOpcode()) { case ISD::INTRINSIC_W_CHAIN: Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); break; case ISD::INTRINSIC_WO_CHAIN: Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); break; default: llvm_unreachable("Invalid comparison operands"); } return SDValue(Op.getNode(), Op->getNumValues() - 1); } if (C.Opcode == SystemZISD::ICMP) return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, DAG.getConstant(C.ICmpType, DL, MVT::i32)); if (C.Opcode == SystemZISD::TM) { bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, DAG.getConstant(RegisterOnly, DL, MVT::i32)); } return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); } // Implement a 32-bit *MUL_LOHI operation by extending both operands to // 64 bits. Extend is the extension type to use. Store the high part // in Hi and the low part in Lo. static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, SDValue Op0, SDValue Op1, SDValue &Hi, SDValue &Lo) { Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, DL, MVT::i64)); Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); } // Lower a binary operation that produces two VT results, one in each // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, // and Opcode performs the GR128 operation. Store the even register result // in Even and the odd register result in Odd. static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, unsigned Opcode, SDValue Op0, SDValue Op1, SDValue &Even, SDValue &Odd) { SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); bool Is32Bit = is32Bit(VT); Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); } // Return an i32 value that is 1 if the CC value produced by Glue is // in the mask CCMask and 0 otherwise. CC is known to have a value // in CCValid, so other values can be ignored. static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, unsigned CCValid, unsigned CCMask) { IPMConversion Conversion = getIPMConversion(CCValid, CCMask); SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); if (Conversion.XORValue) Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); if (Conversion.AddValue) Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); // The SHR/AND sequence should get optimized to an RISBG. Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, DAG.getConstant(Conversion.Bit, DL, MVT::i32)); if (Conversion.Bit != 31) Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, DAG.getConstant(1, DL, MVT::i32)); return Result; } // Return the SystemISD vector comparison operation for CC, or 0 if it cannot // be done directly. IsFP is true if CC is for a floating-point rather than // integer comparison. static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { switch (CC) { case ISD::SETOEQ: case ISD::SETEQ: return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; case ISD::SETOGE: case ISD::SETGE: return IsFP ? SystemZISD::VFCMPHE : static_cast(0); case ISD::SETOGT: case ISD::SETGT: return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; case ISD::SETUGT: return IsFP ? static_cast(0) : SystemZISD::VICMPHL; default: return 0; } } // Return the SystemZISD vector comparison operation for CC or its inverse, // or 0 if neither can be done directly. Indicate in Invert whether the // result is for the inverse of CC. IsFP is true if CC is for a // floating-point rather than integer comparison. static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, bool &Invert) { if (unsigned Opcode = getVectorComparison(CC, IsFP)) { Invert = false; return Opcode; } CC = ISD::getSetCCInverse(CC, !IsFP); if (unsigned Opcode = getVectorComparison(CC, IsFP)) { Invert = true; return Opcode; } return 0; } // Return a v2f64 that contains the extended form of elements Start and Start+1 // of v4f32 value Op. static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, SDValue Op) { int Mask[] = { Start, -1, Start + 1, -1 }; Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); } // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, // producing a result of type VT. SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL, EVT VT, SDValue CmpOp0, SDValue CmpOp1) const { // There is no hardware support for v4f32 (unless we have the vector // enhancements facility 1), so extend the vector into two v2f64s // and compare those. if (CmpOp0.getValueType() == MVT::v4f32 && !Subtarget.hasVectorEnhancements1()) { SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); } return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); } // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing // an integer mask of type VT. SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT, ISD::CondCode CC, SDValue CmpOp0, SDValue CmpOp1) const { bool IsFP = CmpOp0.getValueType().isFloatingPoint(); bool Invert = false; SDValue Cmp; switch (CC) { // Handle tests for order using (or (ogt y x) (oge x y)). case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH; case ISD::SETO: { assert(IsFP && "Unexpected integer comparison"); SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); break; } // Handle <> tests using (or (ogt y x) (ogt x y)). case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH; case ISD::SETONE: { assert(IsFP && "Unexpected integer comparison"); SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); break; } // Otherwise a single comparison is enough. It doesn't really // matter whether we try the inversion or the swap first, since // there are no cases where both work. default: if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); else { CC = ISD::getSetCCSwappedOperands(CC); if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); else llvm_unreachable("Unhandled comparison"); } break; } if (Invert) { SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, DAG.getConstant(65535, DL, MVT::i32)); Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); } return Cmp; } SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { SDValue CmpOp0 = Op.getOperand(0); SDValue CmpOp1 = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(2))->get(); SDLoc DL(Op); EVT VT = Op.getValueType(); if (VT.isVector()) return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); SDValue Glue = emitCmp(DAG, DL, C); return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); } SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue CmpOp0 = Op.getOperand(2); SDValue CmpOp1 = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc DL(Op); Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); SDValue Glue = emitCmp(DAG, DL, C); return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); } // Return true if Pos is CmpOp and Neg is the negative of CmpOp, // allowing Pos and Neg to be wider than CmpOp. static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { return (Neg.getOpcode() == ISD::SUB && Neg.getOperand(0).getOpcode() == ISD::Constant && cast(Neg.getOperand(0))->getZExtValue() == 0 && Neg.getOperand(1) == Pos && (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND && Pos.getOperand(0) == CmpOp))); } // Return the absolute or negative absolute of Op; IsNegative decides which. static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, bool IsNegative) { Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); if (IsNegative) Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), DAG.getConstant(0, DL, Op.getValueType()), Op); return Op; } SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue CmpOp0 = Op.getOperand(0); SDValue CmpOp1 = Op.getOperand(1); SDValue TrueOp = Op.getOperand(2); SDValue FalseOp = Op.getOperand(3); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDLoc DL(Op); Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); // Check for absolute and negative-absolute selections, including those // where the comparison value is sign-extended (for LPGFR and LNGFR). // This check supplements the one in DAGCombiner. if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ && C.CCMask != SystemZ::CCMASK_CMP_NE && C.Op1.getOpcode() == ISD::Constant && cast(C.Op1)->getZExtValue() == 0) { if (isAbsolute(C.Op0, TrueOp, FalseOp)) return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); if (isAbsolute(C.Op0, FalseOp, TrueOp)) return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); } SDValue Glue = emitCmp(DAG, DL, C); // Special case for handling -1/0 results. The shifts we use here // should get optimized with the IPM conversion sequence. auto *TrueC = dyn_cast(TrueOp); auto *FalseC = dyn_cast(FalseOp); if (TrueC && FalseC) { int64_t TrueVal = TrueC->getSExtValue(); int64_t FalseVal = FalseC->getSExtValue(); if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { // Invert the condition if we want -1 on false. if (TrueVal == 0) C.CCMask ^= C.CCValid; SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); EVT VT = Op.getValueType(); // Extend the result to VT. Upper bits are ignored. if (!is32Bit(VT)) Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); // Sign-extend from the low bit. SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); } } SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); } SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { SDLoc DL(Node); const GlobalValue *GV = Node->getGlobal(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); CodeModel::Model CM = DAG.getTarget().getCodeModel(); SDValue Result; if (Subtarget.isPC32DBLSymbol(GV, CM)) { // Assign anchors at 1<<12 byte boundaries. uint64_t Anchor = Offset & ~uint64_t(0xfff); Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); // The offset can be folded into the address if it is aligned to a halfword. Offset -= Anchor; if (Offset != 0 && (Offset & 1) == 0) { SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); Offset = 0; } } else { Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction())); } // If there was a non-zero offset that we didn't fold, create an explicit // addition for it. if (Offset != 0) Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, DAG.getConstant(Offset, DL, PtrVT)); return Result; } SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, SelectionDAG &DAG, unsigned Opcode, SDValue GOTOffset) const { SDLoc DL(Node); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Chain = DAG.getEntryNode(); SDValue Glue; // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); Glue = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); Glue = Chain.getValue(1); // The first call operand is the chain and the second is the TLS symbol. SmallVector Ops; Ops.push_back(Chain); Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, Node->getValueType(0), 0, 0)); // Add argument registers to the end of the list so that they are // known live into the call. Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); // Glue the call to the argument copies. Ops.push_back(Glue); // Emit the call. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); Glue = Chain.getValue(1); // Copy the return value from %r2. return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); } SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const { SDValue Chain = DAG.getEntryNode(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); // The high part of the thread pointer is in access register 0. SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); // The low part of the thread pointer is in access register 1. SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); // Merge them into a single 64-bit address. SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, DAG.getConstant(32, DL, PtrVT)); return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); } SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { if (DAG.getTarget().Options.EmulatedTLS) return LowerToTLSEmulatedModel(Node, DAG); SDLoc DL(Node); const GlobalValue *GV = Node->getGlobal(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); TLSModel::Model model = DAG.getTarget().getTLSModel(GV); SDValue TP = lowerThreadPointer(DL, DAG); // Get the offset of GA from the thread pointer, based on the TLS model. SDValue Offset; switch (model) { case TLSModel::GeneralDynamic: { // Load the GOT offset of the tls_index (module ID / per-symbol offset). SystemZConstantPoolValue *CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); Offset = DAG.getConstantPool(CPV, PtrVT, 8); Offset = DAG.getLoad( PtrVT, DL, DAG.getEntryNode(), Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); // Call __tls_get_offset to retrieve the offset. Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); break; } case TLSModel::LocalDynamic: { // Load the GOT offset of the module ID. SystemZConstantPoolValue *CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); Offset = DAG.getConstantPool(CPV, PtrVT, 8); Offset = DAG.getLoad( PtrVT, DL, DAG.getEntryNode(), Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); // Call __tls_get_offset to retrieve the module base offset. Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); // Note: The SystemZLDCleanupPass will remove redundant computations // of the module base offset. Count total number of local-dynamic // accesses to trigger execution of that pass. SystemZMachineFunctionInfo* MFI = DAG.getMachineFunction().getInfo(); MFI->incNumLocalDynamicTLSAccesses(); // Add the per-symbol offset. CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); DTPOffset = DAG.getLoad( PtrVT, DL, DAG.getEntryNode(), DTPOffset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); break; } case TLSModel::InitialExec: { // Load the offset from the GOT. Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_INDNTPOFF); Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, MachinePointerInfo::getGOT(DAG.getMachineFunction())); break; } case TLSModel::LocalExec: { // Force the offset into the constant pool and load it from there. SystemZConstantPoolValue *CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); Offset = DAG.getConstantPool(CPV, PtrVT, 8); Offset = DAG.getLoad( PtrVT, DL, DAG.getEntryNode(), Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); break; } } // Add the base and offset together. return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); } SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, SelectionDAG &DAG) const { SDLoc DL(Node); const BlockAddress *BA = Node->getBlockAddress(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); return Result; } SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const { SDLoc DL(JT); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); // Use LARL to load the address of the table. return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const { SDLoc DL(CP); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result; if (CP->isMachineConstantPoolEntry()) Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment()); else Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset()); // Use LARL to load the address of the constant pool entry. return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setFrameAddressIsTaken(true); SDLoc DL(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); // If the back chain frame index has not been allocated yet, do so. SystemZMachineFunctionInfo *FI = MF.getInfo(); int BackChainIdx = FI->getFramePointerSaveIndex(); if (!BackChainIdx) { // By definition, the frame address is the address of the back chain. BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); FI->setFramePointerSaveIndex(BackChainIdx); } SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); // FIXME The frontend should detect this case. if (Depth > 0) { report_fatal_error("Unsupported stack frame traversal count"); } return BackChain; } SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); SDLoc DL(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); // FIXME The frontend should detect this case. if (Depth > 0) { report_fatal_error("Unsupported stack frame traversal count"); } // Return R14D, which has the return address. Mark it an implicit live-in. unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); } SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue In = Op.getOperand(0); EVT InVT = In.getValueType(); EVT ResVT = Op.getValueType(); // Convert loads directly. This is normally done by DAGCombiner, // but we need this case for bitcasts that are created during lowering // and which are then lowered themselves. if (auto *LoadN = dyn_cast(In)) if (ISD::isNormalLoad(LoadN)) { SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), LoadN->getMemOperand()); // Update the chain uses. DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); return NewLoad; } if (InVT == MVT::i32 && ResVT == MVT::f32) { SDValue In64; if (Subtarget.hasHighWord()) { SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64); In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, MVT::i64, SDValue(U64, 0), In); } else { In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, DAG.getConstant(32, DL, MVT::i64)); } SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, DL, MVT::f32, Out64); } if (InVT == MVT::f32 && ResVT == MVT::i32) { SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, MVT::f64, SDValue(U64, 0), In); SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); if (Subtarget.hasHighWord()) return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, MVT::i32, Out64); SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, DAG.getConstant(32, DL, MVT::i64)); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); } llvm_unreachable("Unexpected bitcast combination"); } SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SystemZMachineFunctionInfo *FuncInfo = MF.getInfo(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); SDLoc DL(Op); // The initial values of each field. const unsigned NumFields = 4; SDValue Fields[NumFields] = { DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) }; // Store each field into its respective slot. SDValue MemOps[NumFields]; unsigned Offset = 0; for (unsigned I = 0; I < NumFields; ++I) { SDValue FieldAddr = Addr; if (Offset != 0) FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, DAG.getIntPtrConstant(Offset, DL)); MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, MachinePointerInfo(SV, Offset)); Offset += 8; } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue DstPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); SDLoc DL(Op); return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, /*isTailCall*/false, MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); } SDValue SystemZTargetLowering:: lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); MachineFunction &MF = DAG.getMachineFunction(); bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDValue Align = Op.getOperand(2); SDLoc DL(Op); // If user has set the no alignment function attribute, ignore // alloca alignments. uint64_t AlignVal = (RealignOpt ? dyn_cast(Align)->getZExtValue() : 0); uint64_t StackAlign = TFI->getStackAlignment(); uint64_t RequiredAlign = std::max(AlignVal, StackAlign); uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; unsigned SPReg = getStackPointerRegisterToSaveRestore(); SDValue NeededSpace = Size; // Get a reference to the stack pointer. SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); // If we need a backchain, save it now. SDValue Backchain; if (StoreBackchain) Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); // Add extra space for alignment if needed. if (ExtraAlignSpace) NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); // Get the new stack pointer value. SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); // Copy the new stack pointer back. Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); // The allocated data lives above the 160 bytes allocated for the standard // frame, plus any outgoing stack arguments. We don't know how much that // amounts to yet, so emit a special ADJDYNALLOC placeholder. SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); // Dynamically realign if needed. if (RequiredAlign > StackAlign) { Result = DAG.getNode(ISD::ADD, DL, MVT::i64, Result, DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); Result = DAG.getNode(ISD::AND, DL, MVT::i64, Result, DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); } if (StoreBackchain) Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); SDValue Ops[2] = { Result, Chain }; return DAG.getMergeValues(Ops, DL); } SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); } SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Ops[2]; if (is32Bit(VT)) // Just do a normal 64-bit multiplication and extract the results. // We define this so that it can be used for constant division. lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); else if (Subtarget.hasMiscellaneousExtensions2()) // SystemZISD::SMUL_LOHI returns the low result in the odd register and // the high result in the even register. ISD::SMUL_LOHI is defined to // return the low half first, so the results are in reverse order. lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); else { // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: // // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) // // but using the fact that the upper halves are either all zeros // or all ones: // // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) // // and grouping the right terms together since they are quicker than the // multiplication: // // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) SDValue C63 = DAG.getConstant(63, DL, MVT::i64); SDValue LL = Op.getOperand(0); SDValue RL = Op.getOperand(1); SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); // SystemZISD::UMUL_LOHI returns the low result in the odd register and // the high result in the even register. ISD::SMUL_LOHI is defined to // return the low half first, so the results are in reverse order. lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, LL, RL, Ops[1], Ops[0]); SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); } return DAG.getMergeValues(Ops, DL); } SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Ops[2]; if (is32Bit(VT)) // Just do a normal 64-bit multiplication and extract the results. // We define this so that it can be used for constant division. lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); else // SystemZISD::UMUL_LOHI returns the low result in the odd register and // the high result in the even register. ISD::UMUL_LOHI is defined to // return the low half first, so the results are in reverse order. lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); return DAG.getMergeValues(Ops, DL); } SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); EVT VT = Op.getValueType(); SDLoc DL(Op); // We use DSGF for 32-bit division. This means the first operand must // always be 64-bit, and the second operand should be 32-bit whenever // that is possible, to improve performance. if (is32Bit(VT)) Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); else if (DAG.ComputeNumSignBits(Op1) > 32) Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); // DSG(F) returns the remainder in the even register and the // quotient in the odd register. SDValue Ops[2]; lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); return DAG.getMergeValues(Ops, DL); } SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); // DL(G) returns the remainder in the even register and the // quotient in the odd register. SDValue Ops[2]; lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); return DAG.getMergeValues(Ops, DL); } SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); // Get the known-zero masks for each operand. SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; KnownBits Known[2]; DAG.computeKnownBits(Ops[0], Known[0]); DAG.computeKnownBits(Ops[1], Known[1]); // See if the upper 32 bits of one operand and the lower 32 bits of the // other are known zero. They are the low and high operands respectively. uint64_t Masks[] = { Known[0].Zero.getZExtValue(), Known[1].Zero.getZExtValue() }; unsigned High, Low; if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) High = 1, Low = 0; else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) High = 0, Low = 1; else return Op; SDValue LowOp = Ops[Low]; SDValue HighOp = Ops[High]; // If the high part is a constant, we're better off using IILH. if (HighOp.getOpcode() == ISD::Constant) return Op; // If the low part is a constant that is outside the range of LHI, // then we're better off using IILF. if (LowOp.getOpcode() == ISD::Constant) { int64_t Value = int32_t(cast(LowOp)->getZExtValue()); if (!isInt<16>(Value)) return Op; } // Check whether the high part is an AND that doesn't change the // high 32 bits and just masks out low bits. We can skip it if so. if (HighOp.getOpcode() == ISD::AND && HighOp.getOperand(1).getOpcode() == ISD::Constant) { SDValue HighOp0 = HighOp.getOperand(0); uint64_t Mask = cast(HighOp.getOperand(1))->getZExtValue(); if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) HighOp = HighOp0; } // Take advantage of the fact that all GR32 operations only change the // low 32 bits by truncating Low to an i32 and inserting it directly // using a subreg. The interesting cases are those where the truncation // can be folded. SDLoc DL(Op); SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, MVT::i64, HighOp, Low32); } SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); Op = Op.getOperand(0); // Handle vector types via VPOPCT. if (VT.isVector()) { Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); switch (VT.getScalarSizeInBits()) { case 8: break; case 16: { Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); SDValue Shift = DAG.getConstant(8, DL, MVT::i32); SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); break; } case 32: { SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, DAG.getConstant(0, DL, MVT::i32)); Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); break; } case 64: { SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, DAG.getConstant(0, DL, MVT::i32)); Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); break; } default: llvm_unreachable("Unexpected type"); } return Op; } // Get the known-zero mask for the operand. KnownBits Known; DAG.computeKnownBits(Op, Known); unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); if (NumSignificantBits == 0) return DAG.getConstant(0, DL, VT); // Skip known-zero high parts of the operand. int64_t OrigBitSize = VT.getSizeInBits(); int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); BitSize = std::min(BitSize, OrigBitSize); // The POPCNT instruction counts the number of bits in each byte. Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); // Add up per-byte counts in a binary tree. All bits of Op at // position larger than BitSize remain zero throughout. for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); if (BitSize != OrigBitSize) Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); } // Extract overall result from high byte. if (BitSize > 8) Op = DAG.getNode(ISD::SRL, DL, VT, Op, DAG.getConstant(BitSize - 8, DL, VT)); return Op; } SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); AtomicOrdering FenceOrdering = static_cast( cast(Op.getOperand(1))->getZExtValue()); SyncScope::ID FenceSSID = static_cast( cast(Op.getOperand(2))->getZExtValue()); // The only fence that needs an instruction is a sequentially-consistent // cross-thread fence. if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && FenceSSID == SyncScope::System) { return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, Op.getOperand(0)), 0); } // MEMBARRIER is a compiler barrier; it codegens to a no-op. return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); } // Op is an atomic load. Lower it into a normal volatile load. SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { auto *Node = cast(Op.getNode()); return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), Node->getChain(), Node->getBasePtr(), Node->getMemoryVT(), Node->getMemOperand()); } // Op is an atomic store. Lower it into a normal volatile store. SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { auto *Node = cast(Op.getNode()); SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), Node->getBasePtr(), Node->getMemoryVT(), Node->getMemOperand()); // We have to enforce sequential consistency by performing a // serialization operation after the store. if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, Chain), 0); return Chain; } // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first // two into the fullword ATOMIC_LOADW_* operation given by Opcode. SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG, unsigned Opcode) const { auto *Node = cast(Op.getNode()); // 32-bit operations need no code outside the main loop. EVT NarrowVT = Node->getMemoryVT(); EVT WideVT = MVT::i32; if (NarrowVT == WideVT) return Op; int64_t BitSize = NarrowVT.getSizeInBits(); SDValue ChainIn = Node->getChain(); SDValue Addr = Node->getBasePtr(); SDValue Src2 = Node->getVal(); MachineMemOperand *MMO = Node->getMemOperand(); SDLoc DL(Node); EVT PtrVT = Addr.getValueType(); // Convert atomic subtracts of constants into additions. if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) if (auto *Const = dyn_cast(Src2)) { Opcode = SystemZISD::ATOMIC_LOADW_ADD; Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); } // Get the address of the containing word. SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, DAG.getConstant(-4, DL, PtrVT)); // Get the number of bits that the word must be rotated left in order // to bring the field to the top bits of a GR32. SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, DAG.getConstant(3, DL, PtrVT)); BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); // Get the complementing shift amount, for rotating a field in the top // bits back to its proper position. SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, DAG.getConstant(0, DL, WideVT), BitShift); // Extend the source operand to 32 bits and prepare it for the inner loop. // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other // operations require the source to be shifted in advance. (This shift // can be folded if the source is constant.) For AND and NAND, the lower // bits must be set, while for other opcodes they should be left clear. if (Opcode != SystemZISD::ATOMIC_SWAPW) Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, DAG.getConstant(32 - BitSize, DL, WideVT)); if (Opcode == SystemZISD::ATOMIC_LOADW_AND || Opcode == SystemZISD::ATOMIC_LOADW_NAND) Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); // Construct the ATOMIC_LOADW_* node. SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, NarrowVT, MMO); // Rotate the result of the final CS so that the field is in the lower // bits of a GR32, then truncate it. SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, DAG.getConstant(BitSize, DL, WideVT)); SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; return DAG.getMergeValues(RetOps, DL); } // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit // operations into additions. SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const { auto *Node = cast(Op.getNode()); EVT MemVT = Node->getMemoryVT(); if (MemVT == MVT::i32 || MemVT == MVT::i64) { // A full-width operation. assert(Op.getValueType() == MemVT && "Mismatched VTs"); SDValue Src2 = Node->getVal(); SDValue NegSrc2; SDLoc DL(Src2); if (auto *Op2 = dyn_cast(Src2)) { // Use an addition if the operand is constant and either LAA(G) is // available or the negative value is in the range of A(G)FHI. int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) NegSrc2 = DAG.getConstant(Value, DL, MemVT); } else if (Subtarget.hasInterlockedAccess1()) // Use LAA(G) if available. NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2); if (NegSrc2.getNode()) return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, Node->getChain(), Node->getBasePtr(), NegSrc2, Node->getMemOperand()); // Use the node as-is. return Op; } return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); } // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { auto *Node = cast(Op.getNode()); SDValue ChainIn = Node->getOperand(0); SDValue Addr = Node->getOperand(1); SDValue CmpVal = Node->getOperand(2); SDValue SwapVal = Node->getOperand(3); MachineMemOperand *MMO = Node->getMemOperand(); SDLoc DL(Node); // We have native support for 32-bit and 64-bit compare and swap, but we // still need to expand extracting the "success" result from the CC. EVT NarrowVT = Node->getMemoryVT(); EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; if (NarrowVT == WideVT) { SDVTList Tys = DAG.getVTList(WideVT, MVT::Other, MVT::Glue); SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, DL, Tys, Ops, NarrowVT, MMO); SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2), SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1)); return SDValue(); } // Convert 8-bit and 16-bit compare and swap to a loop, implemented // via a fullword ATOMIC_CMP_SWAPW operation. int64_t BitSize = NarrowVT.getSizeInBits(); EVT PtrVT = Addr.getValueType(); // Get the address of the containing word. SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, DAG.getConstant(-4, DL, PtrVT)); // Get the number of bits that the word must be rotated left in order // to bring the field to the top bits of a GR32. SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, DAG.getConstant(3, DL, PtrVT)); BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); // Get the complementing shift amount, for rotating a field in the top // bits back to its proper position. SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, DAG.getConstant(0, DL, WideVT), BitShift); // Construct the ATOMIC_CMP_SWAPW node. SDVTList VTList = DAG.getVTList(WideVT, MVT::Other, MVT::Glue); SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, VTList, Ops, NarrowVT, MMO); SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2), SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1)); return SDValue(); } SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo()->setManipulatesSP(true); return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), SystemZ::R15D, Op.getValueType()); } SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo()->setManipulatesSP(true); bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); SDValue Chain = Op.getOperand(0); SDValue NewSP = Op.getOperand(1); SDValue Backchain; SDLoc DL(Op); if (StoreBackchain) { SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); } Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); if (StoreBackchain) Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); return Chain; } SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { bool IsData = cast(Op.getOperand(4))->getZExtValue(); if (!IsData) // Just preserve the chain. return Op.getOperand(0); SDLoc DL(Op); bool IsWrite = cast(Op.getOperand(2))->getZExtValue(); unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; auto *Node = cast(Op.getNode()); SDValue Ops[] = { Op.getOperand(0), DAG.getConstant(Code, DL, MVT::i32), Op.getOperand(1) }; return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, Node->getVTList(), Ops, Node->getMemoryVT(), Node->getMemOperand()); } // Return an i32 that contains the value of CC immediately after After, // whose final operand must be MVT::Glue. static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { SDLoc DL(After); SDValue Glue = SDValue(After, After->getNumValues() - 1); SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); } SDValue SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned Opcode, CCValid; if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); SDValue CC = getCCResult(DAG, Glued.getNode()); DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); return SDValue(); } return SDValue(); } SDValue SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned Opcode, CCValid; if (isIntrinsicWithCC(Op, Opcode, CCValid)) { SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); SDValue CC = getCCResult(DAG, Glued.getNode()); if (Op->getNumValues() == 1) return CC; assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, CC); } unsigned Id = cast(Op.getOperand(0))->getZExtValue(); switch (Id) { case Intrinsic::thread_pointer: return lowerThreadPointer(SDLoc(Op), DAG); case Intrinsic::s390_vpdi: return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::s390_vperm: return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::s390_vuphb: case Intrinsic::s390_vuphh: case Intrinsic::s390_vuphf: return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), Op.getOperand(1)); case Intrinsic::s390_vuplhb: case Intrinsic::s390_vuplhh: case Intrinsic::s390_vuplhf: return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), Op.getOperand(1)); case Intrinsic::s390_vuplb: case Intrinsic::s390_vuplhw: case Intrinsic::s390_vuplf: return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), Op.getOperand(1)); case Intrinsic::s390_vupllb: case Intrinsic::s390_vupllh: case Intrinsic::s390_vupllf: return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), Op.getOperand(1)); case Intrinsic::s390_vsumb: case Intrinsic::s390_vsumh: case Intrinsic::s390_vsumgh: case Intrinsic::s390_vsumgf: case Intrinsic::s390_vsumqf: case Intrinsic::s390_vsumqg: return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } return SDValue(); } namespace { // Says that SystemZISD operation Opcode can be used to perform the equivalent // of a VPERM with permute vector Bytes. If Opcode takes three operands, // Operand is the constant third operand, otherwise it is the number of // bytes in each element of the result. struct Permute { unsigned Opcode; unsigned Operand; unsigned char Bytes[SystemZ::VectorBytes]; }; } static const Permute PermuteForms[] = { // VMRHG { SystemZISD::MERGE_HIGH, 8, { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, // VMRHF { SystemZISD::MERGE_HIGH, 4, { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, // VMRHH { SystemZISD::MERGE_HIGH, 2, { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, // VMRHB { SystemZISD::MERGE_HIGH, 1, { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, // VMRLG { SystemZISD::MERGE_LOW, 8, { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, // VMRLF { SystemZISD::MERGE_LOW, 4, { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, // VMRLH { SystemZISD::MERGE_LOW, 2, { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, // VMRLB { SystemZISD::MERGE_LOW, 1, { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, // VPKG { SystemZISD::PACK, 4, { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, // VPKF { SystemZISD::PACK, 2, { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, // VPKH { SystemZISD::PACK, 1, { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, // VPDI V1, V2, 4 (low half of V1, high half of V2) { SystemZISD::PERMUTE_DWORDS, 4, { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, // VPDI V1, V2, 1 (high half of V1, low half of V2) { SystemZISD::PERMUTE_DWORDS, 1, { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } }; // Called after matching a vector shuffle against a particular pattern. // Both the original shuffle and the pattern have two vector operands. // OpNos[0] is the operand of the original shuffle that should be used for // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and // set OpNo0 and OpNo1 to the shuffle operands that should actually be used // for operands 0 and 1 of the pattern. static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { if (OpNos[0] < 0) { if (OpNos[1] < 0) return false; OpNo0 = OpNo1 = OpNos[1]; } else if (OpNos[1] < 0) { OpNo0 = OpNo1 = OpNos[0]; } else { OpNo0 = OpNos[0]; OpNo1 = OpNos[1]; } return true; } // Bytes is a VPERM-like permute vector, except that -1 is used for // undefined bytes. Return true if the VPERM can be implemented using P. // When returning true set OpNo0 to the VPERM operand that should be // used for operand 0 of P and likewise OpNo1 for operand 1 of P. // // For example, if swapping the VPERM operands allows P to match, OpNo0 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one // operand, but rewriting it to use two duplicated operands allows it to // match P, then OpNo0 and OpNo1 will be the same. static bool matchPermute(const SmallVectorImpl &Bytes, const Permute &P, unsigned &OpNo0, unsigned &OpNo1) { int OpNos[] = { -1, -1 }; for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { int Elt = Bytes[I]; if (Elt >= 0) { // Make sure that the two permute vectors use the same suboperand // byte number. Only the operand numbers (the high bits) are // allowed to differ. if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) return false; int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; // Make sure that the operand mappings are consistent with previous // elements. if (OpNos[ModelOpNo] == 1 - RealOpNo) return false; OpNos[ModelOpNo] = RealOpNo; } } return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); } // As above, but search for a matching permute. static const Permute *matchPermute(const SmallVectorImpl &Bytes, unsigned &OpNo0, unsigned &OpNo1) { for (auto &P : PermuteForms) if (matchPermute(Bytes, P, OpNo0, OpNo1)) return &P; return nullptr; } // Bytes is a VPERM-like permute vector, except that -1 is used for // undefined bytes. This permute is an operand of an outer permute. // See whether redistributing the -1 bytes gives a shuffle that can be // implemented using P. If so, set Transform to a VPERM-like permute vector // that, when applied to the result of P, gives the original permute in Bytes. static bool matchDoublePermute(const SmallVectorImpl &Bytes, const Permute &P, SmallVectorImpl &Transform) { unsigned To = 0; for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { int Elt = Bytes[From]; if (Elt < 0) // Byte number From of the result is undefined. Transform[From] = -1; else { while (P.Bytes[To] != Elt) { To += 1; if (To == SystemZ::VectorBytes) return false; } Transform[From] = To; } } return true; } // As above, but search for a matching permute. static const Permute *matchDoublePermute(const SmallVectorImpl &Bytes, SmallVectorImpl &Transform) { for (auto &P : PermuteForms) if (matchDoublePermute(Bytes, P, Transform)) return &P; return nullptr; } // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, // as if it had type vNi8. static void getVPermMask(ShuffleVectorSDNode *VSN, SmallVectorImpl &Bytes) { EVT VT = VSN->getValueType(0); unsigned NumElements = VT.getVectorNumElements(); unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); Bytes.resize(NumElements * BytesPerElement, -1); for (unsigned I = 0; I < NumElements; ++I) { int Index = VSN->getMaskElt(I); if (Index >= 0) for (unsigned J = 0; J < BytesPerElement; ++J) Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; } } // Bytes is a VPERM-like permute vector, except that -1 is used for // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of // the result come from a contiguous sequence of bytes from one input. // Set Base to the selector for the first byte if so. static bool getShuffleInput(const SmallVectorImpl &Bytes, unsigned Start, unsigned BytesPerElement, int &Base) { Base = -1; for (unsigned I = 0; I < BytesPerElement; ++I) { if (Bytes[Start + I] >= 0) { unsigned Elem = Bytes[Start + I]; if (Base < 0) { Base = Elem - I; // Make sure the bytes would come from one input operand. if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) return false; } else if (unsigned(Base) != Elem - I) return false; } } return true; } // Bytes is a VPERM-like permute vector, except that -1 is used for // undefined bytes. Return true if it can be performed using VSLDI. // When returning true, set StartIndex to the shift amount and OpNo0 // and OpNo1 to the VPERM operands that should be used as the first // and second shift operand respectively. static bool isShlDoublePermute(const SmallVectorImpl &Bytes, unsigned &StartIndex, unsigned &OpNo0, unsigned &OpNo1) { int OpNos[] = { -1, -1 }; int Shift = -1; for (unsigned I = 0; I < 16; ++I) { int Index = Bytes[I]; if (Index >= 0) { int ExpectedShift = (Index - I) % SystemZ::VectorBytes; int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; if (Shift < 0) Shift = ExpectedShift; else if (Shift != ExpectedShift) return false; // Make sure that the operand mappings are consistent with previous // elements. if (OpNos[ModelOpNo] == 1 - RealOpNo) return false; OpNos[ModelOpNo] = RealOpNo; } } StartIndex = Shift; return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); } // Create a node that performs P on operands Op0 and Op1, casting the // operands to the appropriate type. The type of the result is determined by P. static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, const Permute &P, SDValue Op0, SDValue Op1) { // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input // elements of a PACK are twice as wide as the outputs. unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : P.Opcode == SystemZISD::PACK ? P.Operand * 2 : P.Operand); // Cast both operands to the appropriate type. MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), SystemZ::VectorBytes / InBytes); Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); SDValue Op; if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); } else if (P.Opcode == SystemZISD::PACK) { MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), SystemZ::VectorBytes / P.Operand); Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); } else { Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); } return Op; } // Bytes is a VPERM-like permute vector, except that -1 is used for // undefined bytes. Implement it on operands Ops[0] and Ops[1] using // VSLDI or VPERM. static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, SDValue *Ops, const SmallVectorImpl &Bytes) { for (unsigned I = 0; I < 2; ++I) Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); // First see whether VSLDI can be used. unsigned StartIndex, OpNo0, OpNo1; if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); // Fall back on VPERM. Construct an SDNode for the permute vector. SDValue IndexNodes[SystemZ::VectorBytes]; for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) if (Bytes[I] >= 0) IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); else IndexNodes[I] = DAG.getUNDEF(MVT::i32); SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); } namespace { // Describes a general N-operand vector shuffle. struct GeneralShuffle { GeneralShuffle(EVT vt) : VT(vt) {} void addUndef(); bool add(SDValue, unsigned); SDValue getNode(SelectionDAG &, const SDLoc &); // The operands of the shuffle. SmallVector Ops; // Index I is -1 if byte I of the result is undefined. Otherwise the // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand // Bytes[I] / SystemZ::VectorBytes. SmallVector Bytes; // The type of the shuffle result. EVT VT; }; } // Add an extra undefined element to the shuffle. void GeneralShuffle::addUndef() { unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); for (unsigned I = 0; I < BytesPerElement; ++I) Bytes.push_back(-1); } // Add an extra element to the shuffle, taking it from element Elem of Op. // A null Op indicates a vector input whose value will be calculated later; // there is at most one such input per shuffle and it always has the same // type as the result. Aborts and returns false if the source vector elements // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per // LLVM they become implicitly extended, but this is rare and not optimized. bool GeneralShuffle::add(SDValue Op, unsigned Elem) { unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); // The source vector can have wider elements than the result, // either through an explicit TRUNCATE or because of type legalization. // We want the least significant part. EVT FromVT = Op.getNode() ? Op.getValueType() : VT; unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); // Return false if the source elements are smaller than their destination // elements. if (FromBytesPerElement < BytesPerElement) return false; unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + (FromBytesPerElement - BytesPerElement)); // Look through things like shuffles and bitcasts. while (Op.getNode()) { if (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { // See whether the bytes we need come from a contiguous part of one // operand. SmallVector OpBytes; getVPermMask(cast(Op), OpBytes); int NewByte; if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) break; if (NewByte < 0) { addUndef(); return true; } Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); Byte = unsigned(NewByte) % SystemZ::VectorBytes; } else if (Op.isUndef()) { addUndef(); return true; } else break; } // Make sure that the source of the extraction is in Ops. unsigned OpNo = 0; for (; OpNo < Ops.size(); ++OpNo) if (Ops[OpNo] == Op) break; if (OpNo == Ops.size()) Ops.push_back(Op); // Add the element to Bytes. unsigned Base = OpNo * SystemZ::VectorBytes + Byte; for (unsigned I = 0; I < BytesPerElement; ++I) Bytes.push_back(Base + I); return true; } // Return SDNodes for the completed shuffle. SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); if (Ops.size() == 0) return DAG.getUNDEF(VT); // Make sure that there are at least two shuffle operands. if (Ops.size() == 1) Ops.push_back(DAG.getUNDEF(MVT::v16i8)); // Create a tree of shuffles, deferring root node until after the loop. // Try to redistribute the undefined elements of non-root nodes so that // the non-root shuffles match something like a pack or merge, then adjust // the parent node's permute vector to compensate for the new order. // Among other things, this copes with vectors like <2 x i16> that were // padded with undefined elements during type legalization. // // In the best case this redistribution will lead to the whole tree // using packs and merges. It should rarely be a loss in other cases. unsigned Stride = 1; for (; Stride * 2 < Ops.size(); Stride *= 2) { for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; // Create a mask for just these two operands. SmallVector NewBytes(SystemZ::VectorBytes); for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; if (OpNo == I) NewBytes[J] = Byte; else if (OpNo == I + Stride) NewBytes[J] = SystemZ::VectorBytes + Byte; else NewBytes[J] = -1; } // See if it would be better to reorganize NewMask to avoid using VPERM. SmallVector NewBytesMap(SystemZ::VectorBytes); if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); // Applying NewBytesMap to Ops[I] gets back to NewBytes. for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { if (NewBytes[J] >= 0) { assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && "Invalid double permute"); Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; } else assert(NewBytesMap[J] < 0 && "Invalid double permute"); } } else { // Just use NewBytes on the operands. Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) if (NewBytes[J] >= 0) Bytes[J] = I * SystemZ::VectorBytes + J; } } } // Now we just have 2 inputs. Put the second operand in Ops[1]. if (Stride > 1) { Ops[1] = Ops[Stride]; for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) if (Bytes[I] >= int(SystemZ::VectorBytes)) Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; } // Look for an instruction that can do the permute without resorting // to VPERM. unsigned OpNo0, OpNo1; SDValue Op; if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); else Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. static bool isScalarToVector(SDValue Op) { for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) if (!Op.getOperand(I).isUndef()) return false; return true; } // Return a vector of type VT that contains Value in the first element. // The other elements don't matter. static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Value) { // If we have a constant, replicate it to all elements and let the // BUILD_VECTOR lowering take care of it. if (Value.getOpcode() == ISD::Constant || Value.getOpcode() == ISD::ConstantFP) { SmallVector Ops(VT.getVectorNumElements(), Value); return DAG.getBuildVector(VT, DL, Ops); } if (Value.isUndef()) return DAG.getUNDEF(VT); return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); } // Return a vector of type VT in which Op0 is in element 0 and Op1 is in // element 1. Used for cases in which replication is cheap. static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op0, SDValue Op1) { if (Op0.isUndef()) { if (Op1.isUndef()) return DAG.getUNDEF(VT); return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); } if (Op1.isUndef()) return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, buildScalarToVector(DAG, DL, VT, Op0), buildScalarToVector(DAG, DL, VT, Op1)); } // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 // vector for them. static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, SDValue Op1) { if (Op0.isUndef() && Op1.isUndef()) return DAG.getUNDEF(MVT::v2i64); // If one of the two inputs is undefined then replicate the other one, // in order to avoid using another register unnecessarily. if (Op0.isUndef()) Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); else if (Op1.isUndef()) Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); else { Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); } return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); } // Try to represent constant BUILD_VECTOR node BVN using a // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask // on success. static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { EVT ElemVT = BVN->getValueType(0).getVectorElementType(); unsigned BytesPerElement = ElemVT.getStoreSize(); for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { SDValue Op = BVN->getOperand(I); if (!Op.isUndef()) { uint64_t Value; if (Op.getOpcode() == ISD::Constant) Value = dyn_cast(Op)->getZExtValue(); else if (Op.getOpcode() == ISD::ConstantFP) Value = (dyn_cast(Op)->getValueAPF().bitcastToAPInt() .getZExtValue()); else return false; for (unsigned J = 0; J < BytesPerElement; ++J) { uint64_t Byte = (Value >> (J * 8)) & 0xff; if (Byte == 0xff) Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); else if (Byte != 0) return false; } } } return true; } // Try to load a vector constant in which BitsPerElement-bit value Value // is replicated to fill the vector. VT is the type of the resulting // constant, which may have elements of a different size from BitsPerElement. // Return the SDValue of the constant on success, otherwise return // an empty value. static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, const SystemZInstrInfo *TII, const SDLoc &DL, EVT VT, uint64_t Value, unsigned BitsPerElement) { // Signed 16-bit values can be replicated using VREPI. int64_t SignedValue = SignExtend64(Value, BitsPerElement); if (isInt<16>(SignedValue)) { MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), SystemZ::VectorBits / BitsPerElement); SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, DAG.getConstant(SignedValue, DL, MVT::i32)); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } // See whether rotating the constant left some N places gives a value that // is one less than a power of 2 (i.e. all zeros followed by all ones). // If so we can use VGM. unsigned Start, End; if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { // isRxSBGMask returns the bit numbers for a full 64-bit value, // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to // bit numbers for an BitsPerElement value, so that 0 denotes // 1 << (BitsPerElement-1). Start -= 64 - BitsPerElement; End -= 64 - BitsPerElement; MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), SystemZ::VectorBits / BitsPerElement); SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, DAG.getConstant(Start, DL, MVT::i32), DAG.getConstant(End, DL, MVT::i32)); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } return SDValue(); } // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR // would benefit from this representation and return it if so. static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, BuildVectorSDNode *BVN) { EVT VT = BVN->getValueType(0); unsigned NumElements = VT.getVectorNumElements(); // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still // need a BUILD_VECTOR, add an additional placeholder operand for that // BUILD_VECTOR and store its operands in ResidueOps. GeneralShuffle GS(VT); SmallVector ResidueOps; bool FoundOne = false; for (unsigned I = 0; I < NumElements; ++I) { SDValue Op = BVN->getOperand(I); if (Op.getOpcode() == ISD::TRUNCATE) Op = Op.getOperand(0); if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op.getOperand(1).getOpcode() == ISD::Constant) { unsigned Elem = cast(Op.getOperand(1))->getZExtValue(); if (!GS.add(Op.getOperand(0), Elem)) return SDValue(); FoundOne = true; } else if (Op.isUndef()) { GS.addUndef(); } else { if (!GS.add(SDValue(), ResidueOps.size())) return SDValue(); ResidueOps.push_back(BVN->getOperand(I)); } } // Nothing to do if there are no EXTRACT_VECTOR_ELTs. if (!FoundOne) return SDValue(); // Create the BUILD_VECTOR for the remaining elements, if any. if (!ResidueOps.empty()) { while (ResidueOps.size() < NumElements) ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); for (auto &Op : GS.Ops) { if (!Op.getNode()) { Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); break; } } } return GS.getNode(DAG, SDLoc(BVN)); } // Combine GPR scalar values Elems into a vector of type VT. static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, SmallVectorImpl &Elems) { // See whether there is a single replicated value. SDValue Single; unsigned int NumElements = Elems.size(); unsigned int Count = 0; for (auto Elem : Elems) { if (!Elem.isUndef()) { if (!Single.getNode()) Single = Elem; else if (Elem != Single) { Single = SDValue(); break; } Count += 1; } } // There are three cases here: // // - if the only defined element is a loaded one, the best sequence // is a replicating load. // // - otherwise, if the only defined element is an i64 value, we will // end up with the same VLVGP sequence regardless of whether we short-cut // for replication or fall through to the later code. // // - otherwise, if the only defined element is an i32 or smaller value, // we would need 2 instructions to replicate it: VLVGP followed by VREPx. // This is only a win if the single defined element is used more than once. // In other cases we're better off using a single VLVGx. if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); // If all elements are loads, use VLREP/VLEs (below). bool AllLoads = true; for (auto Elem : Elems) if (Elem.getOpcode() != ISD::LOAD || cast(Elem)->isIndexed()) { AllLoads = false; break; } // The best way of building a v2i64 from two i64s is to use VLVGP. if (VT == MVT::v2i64 && !AllLoads) return joinDwords(DAG, DL, Elems[0], Elems[1]); // Use a 64-bit merge high to combine two doubles. if (VT == MVT::v2f64 && !AllLoads) return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); // Build v4f32 values directly from the FPRs: // // // V V VMRHF // // V VMRHG // if (VT == MVT::v4f32 && !AllLoads) { SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); // Avoid unnecessary undefs by reusing the other operand. if (Op01.isUndef()) Op01 = Op23; else if (Op23.isUndef()) Op23 = Op01; // Merging identical replications is a no-op. if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) return Op01; Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, DL, MVT::v2i64, Op01, Op23); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } // Collect the constant terms. SmallVector Constants(NumElements, SDValue()); SmallVector Done(NumElements, false); unsigned NumConstants = 0; for (unsigned I = 0; I < NumElements; ++I) { SDValue Elem = Elems[I]; if (Elem.getOpcode() == ISD::Constant || Elem.getOpcode() == ISD::ConstantFP) { NumConstants += 1; Constants[I] = Elem; Done[I] = true; } } // If there was at least one constant, fill in the other elements of // Constants with undefs to get a full vector constant and use that // as the starting point. SDValue Result; if (NumConstants > 0) { for (unsigned I = 0; I < NumElements; ++I) if (!Constants[I].getNode()) Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); Result = DAG.getBuildVector(VT, DL, Constants); } else { // Otherwise try to use VLREP or VLVGP to start the sequence in order to // avoid a false dependency on any previous contents of the vector // register. // Use a VLREP if at least one element is a load. unsigned LoadElIdx = UINT_MAX; for (unsigned I = 0; I < NumElements; ++I) if (Elems[I].getOpcode() == ISD::LOAD && cast(Elems[I])->isUnindexed()) { LoadElIdx = I; break; } if (LoadElIdx != UINT_MAX) { Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]); Done[LoadElIdx] = true; } else { // Try to use VLVGP. unsigned I1 = NumElements / 2 - 1; unsigned I2 = NumElements - 1; bool Def1 = !Elems[I1].isUndef(); bool Def2 = !Elems[I2].isUndef(); if (Def1 || Def2) { SDValue Elem1 = Elems[Def1 ? I1 : I2]; SDValue Elem2 = Elems[Def2 ? I2 : I1]; Result = DAG.getNode(ISD::BITCAST, DL, VT, joinDwords(DAG, DL, Elem1, Elem2)); Done[I1] = true; Done[I2] = true; } else Result = DAG.getUNDEF(VT); } } // Use VLVGx to insert the other elements. for (unsigned I = 0; I < NumElements; ++I) if (!Done[I] && !Elems[I].isUndef()) Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], DAG.getConstant(I, DL, MVT::i32)); return Result; } SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); auto *BVN = cast(Op.getNode()); SDLoc DL(Op); EVT VT = Op.getValueType(); if (BVN->isConstant()) { // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- // preferred way of creating all-zero and all-one vectors so give it // priority over other methods below. uint64_t Mask = 0; if (tryBuildVectorByteMask(BVN, Mask)) { SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, DAG.getConstant(Mask, DL, MVT::i32)); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } // Try using some form of replication. APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, true) && SplatBitSize <= 64) { // First try assuming that any undefined bits above the highest set bit // and below the lowest set bit are 1s. This increases the likelihood of // being able to use a sign-extended element value in VECTOR REPLICATE // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. uint64_t SplatBitsZ = SplatBits.getZExtValue(); uint64_t SplatUndefZ = SplatUndef.getZExtValue(); uint64_t Lower = (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); uint64_t Upper = (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); uint64_t Value = SplatBitsZ | Upper | Lower; SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); if (Op.getNode()) return Op; // Now try assuming that any undefined bits between the first and // last defined set bits are set. This increases the chances of // using a non-wraparound mask. uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; Value = SplatBitsZ | Middle; Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); if (Op.getNode()) return Op; } // Fall back to loading it from memory. return SDValue(); } // See if we should use shuffles to construct the vector from other vectors. if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) return Res; // Detect SCALAR_TO_VECTOR conversions. if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); // Otherwise use buildVector to build the vector up from GPRs. unsigned NumElements = Op.getNumOperands(); SmallVector Ops(NumElements); for (unsigned I = 0; I < NumElements; ++I) Ops[I] = Op.getOperand(I); return buildVector(DAG, DL, VT, Ops); } SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { auto *VSN = cast(Op.getNode()); SDLoc DL(Op); EVT VT = Op.getValueType(); unsigned NumElements = VT.getVectorNumElements(); if (VSN->isSplat()) { SDValue Op0 = Op.getOperand(0); unsigned Index = VSN->getSplatIndex(); assert(Index < VT.getVectorNumElements() && "Splat index should be defined and in first operand"); // See whether the value we're splatting is directly available as a scalar. if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || Op0.getOpcode() == ISD::BUILD_VECTOR) return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); // Otherwise keep it as a vector-to-vector operation. return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), DAG.getConstant(Index, DL, MVT::i32)); } GeneralShuffle GS(VT); for (unsigned I = 0; I < NumElements; ++I) { int Elt = VSN->getMaskElt(I); if (Elt < 0) GS.addUndef(); else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), unsigned(Elt) % NumElements)) return SDValue(); } return GS.getNode(DAG, SDLoc(VSN)); } SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); // Just insert the scalar into element 0 of an undefined vector. return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(), DAG.getUNDEF(Op.getValueType()), Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); } SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { // Handle insertions of floating-point values. SDLoc DL(Op); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); EVT VT = Op.getValueType(); // Insertions into constant indices of a v2f64 can be done using VPDI. // However, if the inserted value is a bitcast or a constant then it's // better to use GPRs, as below. if (VT == MVT::v2f64 && Op1.getOpcode() != ISD::BITCAST && Op1.getOpcode() != ISD::ConstantFP && Op2.getOpcode() == ISD::Constant) { uint64_t Index = dyn_cast(Op2)->getZExtValue(); unsigned Mask = VT.getVectorNumElements() - 1; if (Index <= Mask) return Op; } // Otherwise bitcast to the equivalent integer form and insert via a GPR. MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); return DAG.getNode(ISD::BITCAST, DL, VT, Res); } SDValue SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { // Handle extractions of floating-point values. SDLoc DL(Op); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); EVT VT = Op.getValueType(); EVT VecVT = Op0.getValueType(); // Extractions of constant indices can be done directly. if (auto *CIndexN = dyn_cast(Op1)) { uint64_t Index = CIndexN->getZExtValue(); unsigned Mask = VecVT.getVectorNumElements() - 1; if (Index <= Mask) return Op; } // Otherwise bitcast to the equivalent integer form and extract via a GPR. MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); return DAG.getNode(ISD::BITCAST, DL, VT, Res); } SDValue SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, unsigned UnpackHigh) const { SDValue PackedOp = Op.getOperand(0); EVT OutVT = Op.getValueType(); EVT InVT = PackedOp.getValueType(); unsigned ToBits = OutVT.getScalarSizeInBits(); unsigned FromBits = InVT.getScalarSizeInBits(); do { FromBits *= 2; EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), SystemZ::VectorBits / FromBits); PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); } while (FromBits != ToBits); return PackedOp; } SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const { // Look for cases where a vector shift can use the *_BY_SCALAR form. SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDLoc DL(Op); EVT VT = Op.getValueType(); unsigned ElemBitSize = VT.getScalarSizeInBits(); // See whether the shift vector is a splat represented as BUILD_VECTOR. if (auto *BVN = dyn_cast(Op1)) { APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; // Check for constant splats. Use ElemBitSize as the minimum element // width and reject splats that need wider elements. if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElemBitSize, true) && SplatBitSize == ElemBitSize) { SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, DL, MVT::i32); return DAG.getNode(ByScalar, DL, VT, Op0, Shift); } // Check for variable splats. BitVector UndefElements; SDValue Splat = BVN->getSplatValue(&UndefElements); if (Splat) { // Since i32 is the smallest legal type, we either need a no-op // or a truncation. SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); return DAG.getNode(ByScalar, DL, VT, Op0, Shift); } } // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, // and the shift amount is directly available in a GPR. if (auto *VSN = dyn_cast(Op1)) { if (VSN->isSplat()) { SDValue VSNOp0 = VSN->getOperand(0); unsigned Index = VSN->getSplatIndex(); assert(Index < VT.getVectorNumElements() && "Splat index should be defined and in first operand"); if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { // Since i32 is the smallest legal type, we either need a no-op // or a truncation. SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, VSNOp0.getOperand(Index)); return DAG.getNode(ByScalar, DL, VT, Op0, Shift); } } } // Otherwise just treat the current form as legal. return Op; } SDValue SystemZTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); case ISD::BR_CC: return lowerBR_CC(Op, DAG); case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG); case ISD::SETCC: return lowerSETCC(Op, DAG); case ISD::GlobalAddress: return lowerGlobalAddress(cast(Op), DAG); case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(cast(Op), DAG); case ISD::BlockAddress: return lowerBlockAddress(cast(Op), DAG); case ISD::JumpTable: return lowerJumpTable(cast(Op), DAG); case ISD::ConstantPool: return lowerConstantPool(cast(Op), DAG); case ISD::BITCAST: return lowerBITCAST(Op, DAG); case ISD::VASTART: return lowerVASTART(Op, DAG); case ISD::VACOPY: return lowerVACOPY(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return lowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::GET_DYNAMIC_AREA_OFFSET: return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); case ISD::SMUL_LOHI: return lowerSMUL_LOHI(Op, DAG); case ISD::UMUL_LOHI: return lowerUMUL_LOHI(Op, DAG); case ISD::SDIVREM: return lowerSDIVREM(Op, DAG); case ISD::UDIVREM: return lowerUDIVREM(Op, DAG); case ISD::OR: return lowerOR(Op, DAG); case ISD::CTPOP: return lowerCTPOP(Op, DAG); case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); case ISD::ATOMIC_SWAP: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); case ISD::ATOMIC_STORE: return lowerATOMIC_STORE(Op, DAG); case ISD::ATOMIC_LOAD: return lowerATOMIC_LOAD(Op, DAG); case ISD::ATOMIC_LOAD_ADD: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); case ISD::ATOMIC_LOAD_SUB: return lowerATOMIC_LOAD_SUB(Op, DAG); case ISD::ATOMIC_LOAD_AND: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); case ISD::ATOMIC_LOAD_OR: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); case ISD::ATOMIC_LOAD_XOR: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); case ISD::ATOMIC_LOAD_NAND: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); case ISD::ATOMIC_LOAD_MIN: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); case ISD::ATOMIC_LOAD_MAX: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); case ISD::ATOMIC_LOAD_UMIN: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); case ISD::ATOMIC_LOAD_UMAX: return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: return lowerATOMIC_CMP_SWAP(Op, DAG); case ISD::STACKSAVE: return lowerSTACKSAVE(Op, DAG); case ISD::STACKRESTORE: return lowerSTACKRESTORE(Op, DAG); case ISD::PREFETCH: return lowerPREFETCH(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG); case ISD::SCALAR_TO_VECTOR: return lowerSCALAR_TO_VECTOR(Op, DAG); case ISD::INSERT_VECTOR_ELT: return lowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::SIGN_EXTEND_VECTOR_INREG: return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); case ISD::ZERO_EXTEND_VECTOR_INREG: return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); case ISD::SHL: return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); case ISD::SRL: return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); case ISD::SRA: return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); default: llvm_unreachable("Unexpected node to lower"); } } // Lower operations with invalid operand or result types (currently used // only for 128-bit integer types). static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { SDLoc DL(In); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, DAG.getIntPtrConstant(0, DL)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, DAG.getIntPtrConstant(1, DL)); SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, MVT::Untyped, Hi, Lo); return SDValue(Pair, 0); } static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { SDLoc DL(In); SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, DL, MVT::i64, In); SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, DL, MVT::i64, In); return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); } void SystemZTargetLowering::LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::ATOMIC_LOAD: { SDLoc DL(N); SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; MachineMemOperand *MMO = cast(N)->getMemOperand(); SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, DL, Tys, Ops, MVT::i128, MMO); Results.push_back(lowerGR128ToI128(DAG, Res)); Results.push_back(Res.getValue(1)); break; } case ISD::ATOMIC_STORE: { SDLoc DL(N); SDVTList Tys = DAG.getVTList(MVT::Other); SDValue Ops[] = { N->getOperand(0), lowerI128ToGR128(DAG, N->getOperand(2)), N->getOperand(1) }; MachineMemOperand *MMO = cast(N)->getMemOperand(); SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, DL, Tys, Ops, MVT::i128, MMO); // We have to enforce sequential consistency by performing a // serialization operation after the store. if (cast(N)->getOrdering() == AtomicOrdering::SequentiallyConsistent) Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, Res), 0); Results.push_back(Res); break; } case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { SDLoc DL(N); SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other, MVT::Glue); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), lowerI128ToGR128(DAG, N->getOperand(2)), lowerI128ToGR128(DAG, N->getOperand(3)) }; MachineMemOperand *MMO = cast(N)->getMemOperand(); SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, DL, Tys, Ops, MVT::i128, MMO); SDValue Success = emitSETCC(DAG, DL, Res.getValue(2), SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); Results.push_back(lowerGR128ToI128(DAG, Res)); Results.push_back(Success); Results.push_back(Res.getValue(1)); break; } default: llvm_unreachable("Unexpected node to lower"); } } void SystemZTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { return LowerOperationWrapper(N, Results, DAG); } const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME switch ((SystemZISD::NodeType)Opcode) { case SystemZISD::FIRST_NUMBER: break; OPCODE(RET_FLAG); OPCODE(CALL); OPCODE(SIBCALL); OPCODE(TLS_GDCALL); OPCODE(TLS_LDCALL); OPCODE(PCREL_WRAPPER); OPCODE(PCREL_OFFSET); OPCODE(IABS); OPCODE(ICMP); OPCODE(FCMP); OPCODE(TM); OPCODE(BR_CCMASK); OPCODE(SELECT_CCMASK); OPCODE(ADJDYNALLOC); OPCODE(POPCNT); OPCODE(SMUL_LOHI); OPCODE(UMUL_LOHI); OPCODE(SDIVREM); OPCODE(UDIVREM); OPCODE(MVC); OPCODE(MVC_LOOP); OPCODE(NC); OPCODE(NC_LOOP); OPCODE(OC); OPCODE(OC_LOOP); OPCODE(XC); OPCODE(XC_LOOP); OPCODE(CLC); OPCODE(CLC_LOOP); OPCODE(STPCPY); OPCODE(STRCMP); OPCODE(SEARCH_STRING); OPCODE(IPM); OPCODE(MEMBARRIER); OPCODE(TBEGIN); OPCODE(TBEGIN_NOFLOAT); OPCODE(TEND); OPCODE(BYTE_MASK); OPCODE(ROTATE_MASK); OPCODE(REPLICATE); OPCODE(JOIN_DWORDS); OPCODE(SPLAT); OPCODE(MERGE_HIGH); OPCODE(MERGE_LOW); OPCODE(SHL_DOUBLE); OPCODE(PERMUTE_DWORDS); OPCODE(PERMUTE); OPCODE(PACK); OPCODE(PACKS_CC); OPCODE(PACKLS_CC); OPCODE(UNPACK_HIGH); OPCODE(UNPACKL_HIGH); OPCODE(UNPACK_LOW); OPCODE(UNPACKL_LOW); OPCODE(VSHL_BY_SCALAR); OPCODE(VSRL_BY_SCALAR); OPCODE(VSRA_BY_SCALAR); OPCODE(VSUM); OPCODE(VICMPE); OPCODE(VICMPH); OPCODE(VICMPHL); OPCODE(VICMPES); OPCODE(VICMPHS); OPCODE(VICMPHLS); OPCODE(VFCMPE); OPCODE(VFCMPH); OPCODE(VFCMPHE); OPCODE(VFCMPES); OPCODE(VFCMPHS); OPCODE(VFCMPHES); OPCODE(VFTCI); OPCODE(VEXTEND); OPCODE(VROUND); OPCODE(VTM); OPCODE(VFAE_CC); OPCODE(VFAEZ_CC); OPCODE(VFEE_CC); OPCODE(VFEEZ_CC); OPCODE(VFENE_CC); OPCODE(VFENEZ_CC); OPCODE(VISTR_CC); OPCODE(VSTRC_CC); OPCODE(VSTRCZ_CC); OPCODE(TDC); OPCODE(ATOMIC_SWAPW); OPCODE(ATOMIC_LOADW_ADD); OPCODE(ATOMIC_LOADW_SUB); OPCODE(ATOMIC_LOADW_AND); OPCODE(ATOMIC_LOADW_OR); OPCODE(ATOMIC_LOADW_XOR); OPCODE(ATOMIC_LOADW_NAND); OPCODE(ATOMIC_LOADW_MIN); OPCODE(ATOMIC_LOADW_MAX); OPCODE(ATOMIC_LOADW_UMIN); OPCODE(ATOMIC_LOADW_UMAX); OPCODE(ATOMIC_CMP_SWAPW); OPCODE(ATOMIC_CMP_SWAP); OPCODE(ATOMIC_LOAD_128); OPCODE(ATOMIC_STORE_128); OPCODE(ATOMIC_CMP_SWAP_128); OPCODE(LRV); OPCODE(STRV); OPCODE(PREFETCH); } return nullptr; #undef OPCODE } // Return true if VT is a vector whose elements are a whole number of bytes // in width. Also check for presence of vector support. bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { if (!Subtarget.hasVector()) return false; return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); } // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT // producing a result of type ResVT. Op is a possibly bitcast version // of the input vector and Index is the index (based on type VecVT) that // should be extracted. Return the new extraction if a simplification // was possible or if Force is true. SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, EVT VecVT, SDValue Op, unsigned Index, DAGCombinerInfo &DCI, bool Force) const { SelectionDAG &DAG = DCI.DAG; // The number of bytes being extracted. unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); for (;;) { unsigned Opcode = Op.getOpcode(); if (Opcode == ISD::BITCAST) // Look through bitcasts. Op = Op.getOperand(0); else if (Opcode == ISD::VECTOR_SHUFFLE && canTreatAsByteVector(Op.getValueType())) { // Get a VPERM-like permute mask and see whether the bytes covered // by the extracted element are a contiguous sequence from one // source operand. SmallVector Bytes; getVPermMask(cast(Op), Bytes); int First; if (!getShuffleInput(Bytes, Index * BytesPerElement, BytesPerElement, First)) break; if (First < 0) return DAG.getUNDEF(ResVT); // Make sure the contiguous sequence starts at a multiple of the // original element size. unsigned Byte = unsigned(First) % Bytes.size(); if (Byte % BytesPerElement != 0) break; // We can get the extracted value directly from an input. Index = Byte / BytesPerElement; Op = Op.getOperand(unsigned(First) / Bytes.size()); Force = true; } else if (Opcode == ISD::BUILD_VECTOR && canTreatAsByteVector(Op.getValueType())) { // We can only optimize this case if the BUILD_VECTOR elements are // at least as wide as the extracted value. EVT OpVT = Op.getValueType(); unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); if (OpBytesPerElement < BytesPerElement) break; // Make sure that the least-significant bit of the extracted value // is the least significant bit of an input. unsigned End = (Index + 1) * BytesPerElement; if (End % OpBytesPerElement != 0) break; // We're extracting the low part of one operand of the BUILD_VECTOR. Op = Op.getOperand(End / OpBytesPerElement - 1); if (!Op.getValueType().isInteger()) { EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); DCI.AddToWorklist(Op.getNode()); } EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); if (VT != ResVT) { DCI.AddToWorklist(Op.getNode()); Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); } return Op; } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && canTreatAsByteVector(Op.getValueType()) && canTreatAsByteVector(Op.getOperand(0).getValueType())) { // Make sure that only the unextended bits are significant. EVT ExtVT = Op.getValueType(); EVT OpVT = Op.getOperand(0).getValueType(); unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); unsigned Byte = Index * BytesPerElement; unsigned SubByte = Byte % ExtBytesPerElement; unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; if (SubByte < MinSubByte || SubByte + BytesPerElement > ExtBytesPerElement) break; // Get the byte offset of the unextended element Byte = Byte / ExtBytesPerElement * OpBytesPerElement; // ...then add the byte offset relative to that element. Byte += SubByte - MinSubByte; if (Byte % BytesPerElement != 0) break; Op = Op.getOperand(0); Index = Byte / BytesPerElement; Force = true; } else break; } if (Force) { if (Op.getValueType() != VecVT) { Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); DCI.AddToWorklist(Op.getNode()); } return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, DAG.getConstant(Index, DL, MVT::i32)); } return SDValue(); } // Optimize vector operations in scalar value Op on the basis that Op // is truncated to TruncVT. SDValue SystemZTargetLowering::combineTruncateExtract( const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { // If we have (trunc (extract_vector_elt X, Y)), try to turn it into // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements // of type TruncVT. if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && TruncVT.getSizeInBits() % 8 == 0) { SDValue Vec = Op.getOperand(0); EVT VecVT = Vec.getValueType(); if (canTreatAsByteVector(VecVT)) { if (auto *IndexN = dyn_cast(Op.getOperand(1))) { unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); unsigned TruncBytes = TruncVT.getStoreSize(); if (BytesPerElement % TruncBytes == 0) { // Calculate the value of Y' in the above description. We are // splitting the original elements into Scale equal-sized pieces // and for truncation purposes want the last (least-significant) // of these pieces for IndexN. This is easiest to do by calculating // the start index of the following element and then subtracting 1. unsigned Scale = BytesPerElement / TruncBytes; unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; // Defer the creation of the bitcast from X to combineExtract, // which might be able to optimize the extraction. VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), VecVT.getStoreSize() / TruncBytes); EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); } } } } return SDValue(); } SDValue SystemZTargetLowering::combineSIGN_EXTEND( SDNode *N, DAGCombinerInfo &DCI) const { // Convert (sext (ashr (shl X, C1), C2)) to // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as // cheap as narrower ones. SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { auto *SraAmt = dyn_cast(N0.getOperand(1)); SDValue Inner = N0.getOperand(0); if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { if (auto *ShlAmt = dyn_cast(Inner.getOperand(1))) { unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; EVT ShiftVT = N0.getOperand(1).getValueType(); SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, Inner.getOperand(0)); SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, DAG.getConstant(NewShlAmt, SDLoc(Inner), ShiftVT)); return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); } } } return SDValue(); } SDValue SystemZTargetLowering::combineMERGE( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; unsigned Opcode = N->getOpcode(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0.getOpcode() == ISD::BITCAST) Op0 = Op0.getOperand(0); if (Op0.getOpcode() == SystemZISD::BYTE_MASK && cast(Op0.getOperand(0))->getZExtValue() == 0) { // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF // for v4f32. if (Op1 == N->getOperand(0)) return Op1; // (z_merge_? 0, X) -> (z_unpackl_? 0, X). EVT VT = Op1.getValueType(); unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); if (ElemBytes <= 4) { Opcode = (Opcode == SystemZISD::MERGE_HIGH ? SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); EVT InVT = VT.changeVectorElementTypeToInteger(); EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), SystemZ::VectorBytes / ElemBytes / 2); if (VT != InVT) { Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); DCI.AddToWorklist(Op1.getNode()); } SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); DCI.AddToWorklist(Op.getNode()); return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); } } return SDValue(); } SDValue SystemZTargetLowering::combineSTORE( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; auto *SN = cast(N); auto &Op1 = N->getOperand(1); EVT MemVT = SN->getMemoryVT(); // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better // for the extraction to be done on a vMiN value, so that we can use VSTE. // If X has wider elements then convert it to: // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). if (MemVT.isInteger()) { if (SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { DCI.AddToWorklist(Value.getNode()); // Rewrite the store with the new form of stored value. return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, SN->getBasePtr(), SN->getMemoryVT(), SN->getMemOperand()); } } // Combine STORE (BSWAP) into STRVH/STRV/STRVG // See comment in combineBSWAP about volatile accesses. if (!SN->isTruncatingStore() && !SN->isVolatile() && Op1.getOpcode() == ISD::BSWAP && Op1.getNode()->hasOneUse() && (Op1.getValueType() == MVT::i16 || Op1.getValueType() == MVT::i32 || Op1.getValueType() == MVT::i64)) { SDValue BSwapOp = Op1.getOperand(0); if (BSwapOp.getValueType() == MVT::i16) BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); SDValue Ops[] = { N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(Op1.getValueType()) }; return DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), Ops, MemVT, SN->getMemOperand()); } return SDValue(); } SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( SDNode *N, DAGCombinerInfo &DCI) const { if (!Subtarget.hasVector()) return SDValue(); // Try to simplify a vector extraction. if (auto *IndexN = dyn_cast(N->getOperand(1))) { SDValue Op0 = N->getOperand(0); EVT VecVT = Op0.getValueType(); return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, IndexN->getZExtValue(), DCI, false); } return SDValue(); } SDValue SystemZTargetLowering::combineJOIN_DWORDS( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; // (join_dwords X, X) == (replicate X) if (N->getOperand(0) == N->getOperand(1)) return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), N->getOperand(0)); return SDValue(); } SDValue SystemZTargetLowering::combineFP_ROUND( SDNode *N, DAGCombinerInfo &DCI) const { // (fpround (extract_vector_elt X 0)) // (fpround (extract_vector_elt X 1)) -> // (extract_vector_elt (VROUND X) 0) // (extract_vector_elt (VROUND X) 1) // // This is a special case since the target doesn't really support v2f32s. SelectionDAG &DAG = DCI.DAG; SDValue Op0 = N->getOperand(0); if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() && Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op0.getOperand(0).getValueType() == MVT::v2f64 && Op0.getOperand(1).getOpcode() == ISD::Constant && cast(Op0.getOperand(1))->getZExtValue() == 0) { SDValue Vec = Op0.getOperand(0); for (auto *U : Vec->uses()) { if (U != Op0.getNode() && U->hasOneUse() && U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && U->getOperand(0) == Vec && U->getOperand(1).getOpcode() == ISD::Constant && cast(U->getOperand(1))->getZExtValue() == 1) { SDValue OtherRound = SDValue(*U->use_begin(), 0); if (OtherRound.getOpcode() == ISD::FP_ROUND && OtherRound.getOperand(0) == SDValue(U, 0) && OtherRound.getValueType() == MVT::f32) { SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), MVT::v4f32, Vec); DCI.AddToWorklist(VRound.getNode()); SDValue Extract1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); DCI.AddToWorklist(Extract1.getNode()); DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); return Extract0; } } } } return SDValue(); } SDValue SystemZTargetLowering::combineBSWAP( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; // Combine BSWAP (LOAD) into LRVH/LRV/LRVG // These loads are allowed to access memory multiple times, and so we must check // that the loads are not volatile before performing the combine. if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && N->getOperand(0).hasOneUse() && (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) && !cast(N->getOperand(0))->isVolatile()) { SDValue Load = N->getOperand(0); LoadSDNode *LD = cast(Load); // Create the byte-swapping load. SDValue Ops[] = { LD->getChain(), // Chain LD->getBasePtr(), // Ptr DAG.getValueType(N->getValueType(0)) // VT }; SDValue BSLoad = DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), DAG.getVTList(N->getValueType(0) == MVT::i64 ? MVT::i64 : MVT::i32, MVT::Other), Ops, LD->getMemoryVT(), LD->getMemOperand()); // If this is an i16 load, insert the truncate. SDValue ResVal = BSLoad; if (N->getValueType(0) == MVT::i16) ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); // First, combine the bswap away. This makes the value produced by the // load dead. DCI.CombineTo(N, ResVal); // Next, combine the load away, we give it a bogus result value but a real // chain result. The result value is dead because the bswap is dead. DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); // Return N so it doesn't get rechecked! return SDValue(N, 0); } return SDValue(); } SDValue SystemZTargetLowering::combineSHIFTROT( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; // Shift/rotate instructions only use the last 6 bits of the second operand // register. If the second operand is the result of an AND with an immediate // value that has its last 6 bits set, we can safely remove the AND operation. // // If the AND operation doesn't have the last 6 bits set, we can't remove it // entirely, but we can still truncate it to a 16-bit value. This prevents // us from ending up with a NILL with a signed operand, which will cause the // instruction printer to abort. SDValue N1 = N->getOperand(1); if (N1.getOpcode() == ISD::AND) { SDValue AndMaskOp = N1->getOperand(1); auto *AndMask = dyn_cast(AndMaskOp); // The AND mask is constant if (AndMask) { auto AmtVal = AndMask->getZExtValue(); // Bottom 6 bits are set if ((AmtVal & 0x3f) == 0x3f) { SDValue AndOp = N1->getOperand(0); // This is the only use, so remove the node if (N1.hasOneUse()) { // Combine the AND away DCI.CombineTo(N1.getNode(), AndOp); // Return N so it isn't rechecked return SDValue(N, 0); // The node will be reused, so create a new node for this one use } else { SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), N->getOperand(0), AndOp); DCI.AddToWorklist(Replace.getNode()); return Replace; } // We can't remove the AND, but we can use NILL here (normally we would // use NILF). Only keep the last 16 bits of the mask. The actual // transformation will be handled by .td definitions. } else if (AmtVal >> 16 != 0) { SDValue AndOp = N1->getOperand(0); auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, SDLoc(AndMaskOp), AndMaskOp.getValueType()); auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), AndOp, NewMask); SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), N->getOperand(0), NewAnd); DCI.AddToWorklist(Replace.getNode()); return Replace; } } } return SDValue(); } SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch(N->getOpcode()) { default: break; case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); case SystemZISD::MERGE_HIGH: case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); case ISD::STORE: return combineSTORE(N, DCI); case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); case ISD::BSWAP: return combineBSWAP(N, DCI); case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: return combineSHIFTROT(N, DCI); } return SDValue(); } //===----------------------------------------------------------------------===// // Custom insertion //===----------------------------------------------------------------------===// // Create a new basic block after MBB. static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { MachineFunction &MF = *MBB->getParent(); MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); return NewMBB; } // Split MBB after MI and return the new block (the one that contains // instructions after MI). static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB) { MachineBasicBlock *NewMBB = emitBlockAfter(MBB); NewMBB->splice(NewMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); NewMBB->transferSuccessorsAndUpdatePHIs(MBB); return NewMBB; } // Split MBB before MI and return the new block (the one that contains MI). static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB) { MachineBasicBlock *NewMBB = emitBlockAfter(MBB); NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); NewMBB->transferSuccessorsAndUpdatePHIs(MBB); return NewMBB; } // Force base value Base into a register before MI. Return the register. static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, const SystemZInstrInfo *TII) { if (Base.isReg()) return Base.getReg(); MachineBasicBlock *MBB = MI.getParent(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) .add(Base) .addImm(0) .addReg(0); return Reg; } // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. MachineBasicBlock * SystemZTargetLowering::emitSelect(MachineInstr &MI, MachineBasicBlock *MBB, unsigned LOCROpcode) const { const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); unsigned DestReg = MI.getOperand(0).getReg(); unsigned TrueReg = MI.getOperand(1).getReg(); unsigned FalseReg = MI.getOperand(2).getReg(); unsigned CCValid = MI.getOperand(3).getImm(); unsigned CCMask = MI.getOperand(4).getImm(); DebugLoc DL = MI.getDebugLoc(); // Use LOCROpcode if possible. if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) { BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg) .addReg(FalseReg).addReg(TrueReg) .addImm(CCValid).addImm(CCMask); MI.eraseFromParent(); return MBB; } MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); // StartMBB: // BRC CCMask, JoinMBB // # fallthrough to FalseMBB MBB = StartMBB; BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); MBB->addSuccessor(JoinMBB); MBB->addSuccessor(FalseMBB); // FalseMBB: // # fallthrough to JoinMBB MBB = FalseMBB; MBB->addSuccessor(JoinMBB); // JoinMBB: // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] // ... MBB = JoinMBB; BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) .addReg(TrueReg).addMBB(StartMBB) .addReg(FalseReg).addMBB(FalseMBB); MI.eraseFromParent(); return JoinMBB; } // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. // StoreOpcode is the store to use and Invert says whether the store should // happen when the condition is false rather than true. If a STORE ON // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, MachineBasicBlock *MBB, unsigned StoreOpcode, unsigned STOCOpcode, bool Invert) const { const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); unsigned SrcReg = MI.getOperand(0).getReg(); MachineOperand Base = MI.getOperand(1); int64_t Disp = MI.getOperand(2).getImm(); unsigned IndexReg = MI.getOperand(3).getReg(); unsigned CCValid = MI.getOperand(4).getImm(); unsigned CCMask = MI.getOperand(5).getImm(); DebugLoc DL = MI.getDebugLoc(); StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); // Use STOCOpcode if possible. We could use different store patterns in // order to avoid matching the index register, but the performance trade-offs // might be more complicated in that case. if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { if (Invert) CCMask ^= CCValid; // ISel pattern matching also adds a load memory operand of the same // address, so take special care to find the storing memory operand. MachineMemOperand *MMO = nullptr; for (auto *I : MI.memoperands()) if (I->isStore()) { MMO = I; break; } BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) .addReg(SrcReg) .add(Base) .addImm(Disp) .addImm(CCValid) .addImm(CCMask) .addMemOperand(MMO); MI.eraseFromParent(); return MBB; } // Get the condition needed to branch around the store. if (!Invert) CCMask ^= CCValid; MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); // StartMBB: // BRC CCMask, JoinMBB // # fallthrough to FalseMBB MBB = StartMBB; BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); MBB->addSuccessor(JoinMBB); MBB->addSuccessor(FalseMBB); // FalseMBB: // store %SrcReg, %Disp(%Index,%Base) // # fallthrough to JoinMBB MBB = FalseMBB; BuildMI(MBB, DL, TII->get(StoreOpcode)) .addReg(SrcReg) .add(Base) .addImm(Disp) .addReg(IndexReg); MBB->addSuccessor(JoinMBB); MI.eraseFromParent(); return JoinMBB; } // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. // BitSize is the width of the field in bits, or 0 if this is a partword // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize // is one of the operands. Invert says whether the field should be // inverted after performing BinOpcode (e.g. for NAND). MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, unsigned BitSize, bool Invert) const { MachineFunction &MF = *MBB->getParent(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); MachineRegisterInfo &MRI = MF.getRegInfo(); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. // Src2 can be a register or immediate. unsigned Dest = MI.getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI.getOperand(1)); int64_t Disp = MI.getOperand(2).getImm(); MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); DebugLoc DL = MI.getDebugLoc(); if (IsSubWord) BitSize = MI.getOperand(6).getImm(); // Subword operations use 32-bit registers. const TargetRegisterClass *RC = (BitSize <= 32 ? &SystemZ::GR32BitRegClass : &SystemZ::GR64BitRegClass); unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; // Get the right opcodes for the displacement. LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned NewVal = (BinOpcode || IsSubWord ? MRI.createVirtualRegister(RC) : Src2.getReg()); unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); // Insert a basic block for the main loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); // StartMBB: // ... // %OrigVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] // %RotatedOldVal = RLL %OldVal, 0(%BitShift) // %RotatedNewVal = OP %RotatedOldVal, %Src2 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) // %Dest = CS %OldVal, %NewVal, Disp(%Base) // JNE LoopMBB // # fall through to DoneMMB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigVal).addMBB(StartMBB) .addReg(Dest).addMBB(LoopMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) .addReg(OldVal).addReg(BitShift).addImm(0); if (Invert) { // Perform the operation normally and then invert every bit of the field. unsigned Tmp = MRI.createVirtualRegister(RC); BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); if (BitSize <= 32) // XILF with the upper BitSize bits set. BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) .addReg(Tmp).addImm(-1U << (32 - BitSize)); else { // Use LCGR and add -1 to the result, which is more compact than // an XILF, XILH pair. unsigned Tmp2 = MRI.createVirtualRegister(RC); BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) .addReg(Tmp2).addImm(-1); } } else if (BinOpcode) // A simply binary operation. BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) .addReg(RotatedOldVal) .add(Src2); else if (IsSubWord) // Use RISBG to rotate Src2 into position and use it to replace the // field in RotatedOldVal. BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) .addReg(RotatedOldVal).addReg(Src2.getReg()) .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal) .addReg(NewVal) .add(Base) .addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI.eraseFromParent(); return DoneMBB; } // Implement EmitInstrWithCustomInserter for pseudo // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the // instruction that should be used to compare the current field with the // minimum or maximum value. KeepOldMask is the BRC condition-code mask // for when the current field should be kept. BitSize is the width of // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, unsigned KeepOldMask, unsigned BitSize) const { MachineFunction &MF = *MBB->getParent(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); MachineRegisterInfo &MRI = MF.getRegInfo(); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. unsigned Dest = MI.getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI.getOperand(1)); int64_t Disp = MI.getOperand(2).getImm(); unsigned Src2 = MI.getOperand(3).getReg(); unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); DebugLoc DL = MI.getDebugLoc(); if (IsSubWord) BitSize = MI.getOperand(6).getImm(); // Subword operations use 32-bit registers. const TargetRegisterClass *RC = (BitSize <= 32 ? &SystemZ::GR32BitRegClass : &SystemZ::GR64BitRegClass); unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; // Get the right opcodes for the displacement. LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned NewVal = MRI.createVirtualRegister(RC); unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); // Insert 3 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); // StartMBB: // ... // %OrigVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] // %RotatedOldVal = RLL %OldVal, 0(%BitShift) // CompareOpcode %RotatedOldVal, %Src2 // BRC KeepOldMask, UpdateMBB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigVal).addMBB(StartMBB) .addReg(Dest).addMBB(UpdateMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) .addReg(OldVal).addReg(BitShift).addImm(0); BuildMI(MBB, DL, TII->get(CompareOpcode)) .addReg(RotatedOldVal).addReg(Src2); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); MBB->addSuccessor(UpdateMBB); MBB->addSuccessor(UseAltMBB); // UseAltMBB: // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 // # fall through to UpdateMMB MBB = UseAltMBB; if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) .addReg(RotatedOldVal).addReg(Src2) .addImm(32).addImm(31 + BitSize).addImm(0); MBB->addSuccessor(UpdateMBB); // UpdateMBB: // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], // [ %RotatedAltVal, UseAltMBB ] // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) // %Dest = CS %OldVal, %NewVal, Disp(%Base) // JNE LoopMBB // # fall through to DoneMMB MBB = UpdateMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) .addReg(RotatedOldVal).addMBB(LoopMBB) .addReg(RotatedAltVal).addMBB(UseAltMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal) .addReg(NewVal) .add(Base) .addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI.eraseFromParent(); return DoneMBB; } // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW // instruction MI. MachineBasicBlock * SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, MachineBasicBlock *MBB) const { MachineFunction &MF = *MBB->getParent(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); MachineRegisterInfo &MRI = MF.getRegInfo(); // Extract the operands. Base can be a register or a frame index. unsigned Dest = MI.getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI.getOperand(1)); int64_t Disp = MI.getOperand(2).getImm(); unsigned OrigCmpVal = MI.getOperand(3).getReg(); unsigned OrigSwapVal = MI.getOperand(4).getReg(); unsigned BitShift = MI.getOperand(5).getReg(); unsigned NegBitShift = MI.getOperand(6).getReg(); int64_t BitSize = MI.getOperand(7).getImm(); DebugLoc DL = MI.getDebugLoc(); const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; // Get the right opcodes for the displacement. unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigOldVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned CmpVal = MRI.createVirtualRegister(RC); unsigned SwapVal = MRI.createVirtualRegister(RC); unsigned StoreVal = MRI.createVirtualRegister(RC); unsigned RetryOldVal = MRI.createVirtualRegister(RC); unsigned RetryCmpVal = MRI.createVirtualRegister(RC); unsigned RetrySwapVal = MRI.createVirtualRegister(RC); // Insert 2 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); // StartMBB: // ... // %OrigOldVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) .add(Base) .addImm(Disp) .addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] // %Dest = RLL %OldVal, BitSize(%BitShift) // ^^ The low BitSize bits contain the field // of interest. // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 // ^^ Replace the upper 32-BitSize bits of the // comparison value with those that we loaded, // so that we can use a full word comparison. // CR %Dest, %RetryCmpVal // JNE DoneMBB // # Fall through to SetMBB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigOldVal).addMBB(StartMBB) .addReg(RetryOldVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) .addReg(OrigCmpVal).addMBB(StartMBB) .addReg(RetryCmpVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) .addReg(OrigSwapVal).addMBB(StartMBB) .addReg(RetrySwapVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) .addReg(OldVal).addReg(BitShift).addImm(BitSize); BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::CR)) .addReg(Dest).addReg(RetryCmpVal); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP) .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); MBB->addSuccessor(DoneMBB); MBB->addSuccessor(SetMBB); // SetMBB: // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 // ^^ Replace the upper 32-BitSize bits of the new // value with those that we loaded. // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) // ^^ Rotate the new field to its proper position. // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) // JNE LoopMBB // # fall through to ExitMMB MBB = SetMBB; BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) .addReg(OldVal) .addReg(StoreVal) .add(Base) .addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in // to the block after the loop. At this point, CC may have been defined // either by the CR in LoopMBB or by the CS in SetMBB. if (!MI.registerDefIsDead(SystemZ::CC)) DoneMBB->addLiveIn(SystemZ::CC); MI.eraseFromParent(); return DoneMBB; } // Emit a move from two GR64s to a GR128. MachineBasicBlock * SystemZTargetLowering::emitPair128(MachineInstr &MI, MachineBasicBlock *MBB) const { MachineFunction &MF = *MBB->getParent(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI.getDebugLoc(); unsigned Dest = MI.getOperand(0).getReg(); unsigned Hi = MI.getOperand(1).getReg(); unsigned Lo = MI.getOperand(2).getReg(); unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); MI.eraseFromParent(); return MBB; } // Emit an extension from a GR64 to a GR128. ClearEven is true // if the high register of the GR128 value must be cleared or false if // it's "don't care". MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, MachineBasicBlock *MBB, bool ClearEven) const { MachineFunction &MF = *MBB->getParent(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI.getDebugLoc(); unsigned Dest = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); if (ClearEven) { unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) .addImm(0); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); In128 = NewIn128; } BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); MI.eraseFromParent(); return MBB; } MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { MachineFunction &MF = *MBB->getParent(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI.getDebugLoc(); MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); uint64_t DestDisp = MI.getOperand(1).getImm(); MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); uint64_t SrcDisp = MI.getOperand(3).getImm(); uint64_t Length = MI.getOperand(4).getImm(); // When generating more than one CLC, all but the last will need to // branch to the end when a difference is found. MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? splitBlockAfter(MI, MBB) : nullptr); // Check for the loop form, in which operand 5 is the trip count. if (MI.getNumExplicitOperands() > 5) { bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); uint64_t StartCountReg = MI.getOperand(5).getReg(); uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); uint64_t NextSrcReg = MRI.createVirtualRegister(RC); uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); RC = &SystemZ::GR64BitRegClass; uint64_t ThisCountReg = MRI.createVirtualRegister(RC); uint64_t NextCountReg = MRI.createVirtualRegister(RC); MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); // StartMBB: // # fall through to LoopMMB MBB->addSuccessor(LoopMBB); // LoopMBB: // %ThisDestReg = phi [ %StartDestReg, StartMBB ], // [ %NextDestReg, NextMBB ] // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], // [ %NextSrcReg, NextMBB ] // %ThisCountReg = phi [ %StartCountReg, StartMBB ], // [ %NextCountReg, NextMBB ] // ( PFD 2, 768+DestDisp(%ThisDestReg) ) // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) // ( JLH EndMBB ) // // The prefetch is used only for MVC. The JLH is used only for CLC. MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) .addReg(StartDestReg).addMBB(StartMBB) .addReg(NextDestReg).addMBB(NextMBB); if (!HaveSingleBase) BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) .addReg(StartSrcReg).addMBB(StartMBB) .addReg(NextSrcReg).addMBB(NextMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) .addReg(StartCountReg).addMBB(StartMBB) .addReg(NextCountReg).addMBB(NextMBB); if (Opcode == SystemZ::MVC) BuildMI(MBB, DL, TII->get(SystemZ::PFD)) .addImm(SystemZ::PFD_WRITE) .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); BuildMI(MBB, DL, TII->get(Opcode)) .addReg(ThisDestReg).addImm(DestDisp).addImm(256) .addReg(ThisSrcReg).addImm(SrcDisp); if (EndMBB) { BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) .addMBB(EndMBB); MBB->addSuccessor(EndMBB); MBB->addSuccessor(NextMBB); } // NextMBB: // %NextDestReg = LA 256(%ThisDestReg) // %NextSrcReg = LA 256(%ThisSrcReg) // %NextCountReg = AGHI %ThisCountReg, -1 // CGHI %NextCountReg, 0 // JLH LoopMBB // # fall through to DoneMMB // // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. MBB = NextMBB; BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) .addReg(ThisDestReg).addImm(256).addReg(0); if (!HaveSingleBase) BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) .addReg(ThisSrcReg).addImm(256).addReg(0); BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) .addReg(ThisCountReg).addImm(-1); BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) .addReg(NextCountReg).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) .addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); DestBase = MachineOperand::CreateReg(NextDestReg, false); SrcBase = MachineOperand::CreateReg(NextSrcReg, false); Length &= 255; MBB = DoneMBB; } // Handle any remaining bytes with straight-line code. while (Length > 0) { uint64_t ThisLength = std::min(Length, uint64_t(256)); // The previous iteration might have created out-of-range displacements. // Apply them using LAY if so. if (!isUInt<12>(DestDisp)) { unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) .add(DestBase) .addImm(DestDisp) .addReg(0); DestBase = MachineOperand::CreateReg(Reg, false); DestDisp = 0; } if (!isUInt<12>(SrcDisp)) { unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) .add(SrcBase) .addImm(SrcDisp) .addReg(0); SrcBase = MachineOperand::CreateReg(Reg, false); SrcDisp = 0; } BuildMI(*MBB, MI, DL, TII->get(Opcode)) .add(DestBase) .addImm(DestDisp) .addImm(ThisLength) .add(SrcBase) .addImm(SrcDisp) ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); DestDisp += ThisLength; SrcDisp += ThisLength; Length -= ThisLength; // If there's another CLC to go, branch to the end if a difference // was found. if (EndMBB && Length > 0) { MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) .addMBB(EndMBB); MBB->addSuccessor(EndMBB); MBB->addSuccessor(NextMBB); MBB = NextMBB; } } if (EndMBB) { MBB->addSuccessor(EndMBB); MBB = EndMBB; MBB->addLiveIn(SystemZ::CC); } MI.eraseFromParent(); return MBB; } // Decompose string pseudo-instruction MI into a loop that continually performs // Opcode until CC != 3. MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { MachineFunction &MF = *MBB->getParent(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI.getDebugLoc(); uint64_t End1Reg = MI.getOperand(0).getReg(); uint64_t Start1Reg = MI.getOperand(1).getReg(); uint64_t Start2Reg = MI.getOperand(2).getReg(); uint64_t CharReg = MI.getOperand(3).getReg(); const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; uint64_t This1Reg = MRI.createVirtualRegister(RC); uint64_t This2Reg = MRI.createVirtualRegister(RC); uint64_t End2Reg = MRI.createVirtualRegister(RC); MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); // StartMBB: // # fall through to LoopMMB MBB->addSuccessor(LoopMBB); // LoopMBB: // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] // R0L = %CharReg // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L // JO LoopMBB // # fall through to DoneMMB // // The load of R0L can be hoisted by post-RA LICM. MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) .addReg(Start1Reg).addMBB(StartMBB) .addReg(End1Reg).addMBB(LoopMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) .addReg(Start2Reg).addMBB(StartMBB) .addReg(End2Reg).addMBB(LoopMBB); BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); BuildMI(MBB, DL, TII->get(Opcode)) .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) .addReg(This1Reg).addReg(This2Reg); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); DoneMBB->addLiveIn(SystemZ::CC); MI.eraseFromParent(); return DoneMBB; } // Update TBEGIN instruction with final opcode and register clobbers. MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, bool NoFloat) const { MachineFunction &MF = *MBB->getParent(); const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); // Update opcode. MI.setDesc(TII->get(Opcode)); // We cannot handle a TBEGIN that clobbers the stack or frame pointer. // Make sure to add the corresponding GRSM bits if they are missing. uint64_t Control = MI.getOperand(2).getImm(); static const unsigned GPRControlBit[16] = { 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 }; Control |= GPRControlBit[15]; if (TFI->hasFP(MF)) Control |= GPRControlBit[11]; MI.getOperand(2).setImm(Control); // Add GPR clobbers. for (int I = 0; I < 16; I++) { if ((Control & GPRControlBit[I]) == 0) { unsigned Reg = SystemZMC::GR64Regs[I]; MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); } } // Add FPR/VR clobbers. if (!NoFloat && (Control & 4) != 0) { if (Subtarget.hasVector()) { for (int I = 0; I < 32; I++) { unsigned Reg = SystemZMC::VR128Regs[I]; MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); } } else { for (int I = 0; I < 16; I++) { unsigned Reg = SystemZMC::FP64Regs[I]; MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); } } } return MBB; } MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo *MRI = &MF.getRegInfo(); const SystemZInstrInfo *TII = static_cast(Subtarget.getInstrInfo()); DebugLoc DL = MI.getDebugLoc(); unsigned SrcReg = MI.getOperand(0).getReg(); // Create new virtual register of the same class as source. const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); unsigned DstReg = MRI->createVirtualRegister(RC); // Replace pseudo with a normal load-and-test that models the def as // well. BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) .addReg(SrcReg); MI.eraseFromParent(); return MBB; } MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *MBB) const { switch (MI.getOpcode()) { case SystemZ::Select32Mux: return emitSelect(MI, MBB, Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0); case SystemZ::Select32: return emitSelect(MI, MBB, SystemZ::LOCR); case SystemZ::Select64: return emitSelect(MI, MBB, SystemZ::LOCGR); case SystemZ::SelectF32: case SystemZ::SelectF64: case SystemZ::SelectF128: case SystemZ::SelectVR128: return emitSelect(MI, MBB, 0); case SystemZ::CondStore8Mux: return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); case SystemZ::CondStore8MuxInv: return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); case SystemZ::CondStore16Mux: return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); case SystemZ::CondStore16MuxInv: return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); case SystemZ::CondStore32Mux: return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); case SystemZ::CondStore32MuxInv: return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); case SystemZ::CondStore8: return emitCondStore(MI, MBB, SystemZ::STC, 0, false); case SystemZ::CondStore8Inv: return emitCondStore(MI, MBB, SystemZ::STC, 0, true); case SystemZ::CondStore16: return emitCondStore(MI, MBB, SystemZ::STH, 0, false); case SystemZ::CondStore16Inv: return emitCondStore(MI, MBB, SystemZ::STH, 0, true); case SystemZ::CondStore32: return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); case SystemZ::CondStore32Inv: return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); case SystemZ::CondStore64: return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); case SystemZ::CondStore64Inv: return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); case SystemZ::CondStoreF32: return emitCondStore(MI, MBB, SystemZ::STE, 0, false); case SystemZ::CondStoreF32Inv: return emitCondStore(MI, MBB, SystemZ::STE, 0, true); case SystemZ::CondStoreF64: return emitCondStore(MI, MBB, SystemZ::STD, 0, false); case SystemZ::CondStoreF64Inv: return emitCondStore(MI, MBB, SystemZ::STD, 0, true); case SystemZ::PAIR128: return emitPair128(MI, MBB); case SystemZ::AEXT128: return emitExt128(MI, MBB, false); case SystemZ::ZEXT128: return emitExt128(MI, MBB, true); case SystemZ::ATOMIC_SWAPW: return emitAtomicLoadBinary(MI, MBB, 0, 0); case SystemZ::ATOMIC_SWAP_32: return emitAtomicLoadBinary(MI, MBB, 0, 32); case SystemZ::ATOMIC_SWAP_64: return emitAtomicLoadBinary(MI, MBB, 0, 64); case SystemZ::ATOMIC_LOADW_AR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); case SystemZ::ATOMIC_LOADW_AFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); case SystemZ::ATOMIC_LOAD_AR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); case SystemZ::ATOMIC_LOAD_AHI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); case SystemZ::ATOMIC_LOAD_AFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); case SystemZ::ATOMIC_LOAD_AGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); case SystemZ::ATOMIC_LOAD_AGHI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); case SystemZ::ATOMIC_LOAD_AGFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); case SystemZ::ATOMIC_LOADW_SR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); case SystemZ::ATOMIC_LOAD_SR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); case SystemZ::ATOMIC_LOAD_SGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); case SystemZ::ATOMIC_LOADW_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); case SystemZ::ATOMIC_LOADW_NILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); case SystemZ::ATOMIC_LOAD_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); case SystemZ::ATOMIC_LOAD_NILL: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); case SystemZ::ATOMIC_LOAD_NILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); case SystemZ::ATOMIC_LOAD_NILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); case SystemZ::ATOMIC_LOAD_NGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); case SystemZ::ATOMIC_LOAD_NILL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); case SystemZ::ATOMIC_LOAD_NILH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); case SystemZ::ATOMIC_LOAD_NIHL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); case SystemZ::ATOMIC_LOAD_NIHH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); case SystemZ::ATOMIC_LOAD_NILF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); case SystemZ::ATOMIC_LOAD_NIHF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); case SystemZ::ATOMIC_LOADW_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); case SystemZ::ATOMIC_LOADW_OILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); case SystemZ::ATOMIC_LOAD_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); case SystemZ::ATOMIC_LOAD_OILL: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); case SystemZ::ATOMIC_LOAD_OILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); case SystemZ::ATOMIC_LOAD_OILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); case SystemZ::ATOMIC_LOAD_OGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); case SystemZ::ATOMIC_LOAD_OILL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); case SystemZ::ATOMIC_LOAD_OILH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); case SystemZ::ATOMIC_LOAD_OIHL64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); case SystemZ::ATOMIC_LOAD_OIHH64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); case SystemZ::ATOMIC_LOAD_OILF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); case SystemZ::ATOMIC_LOAD_OIHF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); case SystemZ::ATOMIC_LOADW_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); case SystemZ::ATOMIC_LOADW_XILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); case SystemZ::ATOMIC_LOAD_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); case SystemZ::ATOMIC_LOAD_XILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); case SystemZ::ATOMIC_LOAD_XGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); case SystemZ::ATOMIC_LOAD_XILF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); case SystemZ::ATOMIC_LOAD_XIHF64: return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); case SystemZ::ATOMIC_LOADW_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); case SystemZ::ATOMIC_LOADW_NILHi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); case SystemZ::ATOMIC_LOAD_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); case SystemZ::ATOMIC_LOAD_NILLi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); case SystemZ::ATOMIC_LOAD_NILHi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); case SystemZ::ATOMIC_LOAD_NILFi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); case SystemZ::ATOMIC_LOAD_NGRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); case SystemZ::ATOMIC_LOAD_NILL64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); case SystemZ::ATOMIC_LOAD_NILH64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); case SystemZ::ATOMIC_LOAD_NIHL64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); case SystemZ::ATOMIC_LOAD_NIHH64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); case SystemZ::ATOMIC_LOAD_NILF64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); case SystemZ::ATOMIC_LOAD_NIHF64i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); case SystemZ::ATOMIC_LOADW_MIN: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE, 0); case SystemZ::ATOMIC_LOAD_MIN_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE, 32); case SystemZ::ATOMIC_LOAD_MIN_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, SystemZ::CCMASK_CMP_LE, 64); case SystemZ::ATOMIC_LOADW_MAX: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE, 0); case SystemZ::ATOMIC_LOAD_MAX_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE, 32); case SystemZ::ATOMIC_LOAD_MAX_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, SystemZ::CCMASK_CMP_GE, 64); case SystemZ::ATOMIC_LOADW_UMIN: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE, 0); case SystemZ::ATOMIC_LOAD_UMIN_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE, 32); case SystemZ::ATOMIC_LOAD_UMIN_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, SystemZ::CCMASK_CMP_LE, 64); case SystemZ::ATOMIC_LOADW_UMAX: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE, 0); case SystemZ::ATOMIC_LOAD_UMAX_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE, 32); case SystemZ::ATOMIC_LOAD_UMAX_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, SystemZ::CCMASK_CMP_GE, 64); case SystemZ::ATOMIC_CMP_SWAPW: return emitAtomicCmpSwapW(MI, MBB); case SystemZ::MVCSequence: case SystemZ::MVCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::MVC); case SystemZ::NCSequence: case SystemZ::NCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::NC); case SystemZ::OCSequence: case SystemZ::OCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::OC); case SystemZ::XCSequence: case SystemZ::XCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::XC); case SystemZ::CLCSequence: case SystemZ::CLCLoop: return emitMemMemWrapper(MI, MBB, SystemZ::CLC); case SystemZ::CLSTLoop: return emitStringWrapper(MI, MBB, SystemZ::CLST); case SystemZ::MVSTLoop: return emitStringWrapper(MI, MBB, SystemZ::MVST); case SystemZ::SRSTLoop: return emitStringWrapper(MI, MBB, SystemZ::SRST); case SystemZ::TBEGIN: return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); case SystemZ::TBEGIN_nofloat: return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); case SystemZ::TBEGINC: return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); case SystemZ::LTEBRCompare_VecPseudo: return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); case SystemZ::LTDBRCompare_VecPseudo: return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); case SystemZ::LTXBRCompare_VecPseudo: return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); default: llvm_unreachable("Unexpected instr type to insert"); } } // This is only used by the isel schedulers, and is needed only to prevent // compiler from crashing when list-ilp is used. const TargetRegisterClass * SystemZTargetLowering::getRepRegClassFor(MVT VT) const { if (VT == MVT::Untyped) return &SystemZ::ADDR128BitRegClass; return TargetLowering::getRepRegClassFor(VT); }