//===-- SparcTargetMachine.cpp - Define TargetMachine for Sparc -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "SparcTargetMachine.h" #include "LeonPasses.h" #include "Sparc.h" #include "SparcTargetObjectFile.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; extern "C" void LLVMInitializeSparcTarget() { // Register the target. RegisterTargetMachine X(getTheSparcTarget()); RegisterTargetMachine Y(getTheSparcV9Target()); RegisterTargetMachine Z(getTheSparcelTarget()); } static std::string computeDataLayout(const Triple &T, bool is64Bit) { // Sparc is typically big endian, but some are little. std::string Ret = T.getArch() == Triple::sparcel ? "e" : "E"; Ret += "-m:e"; // Some ABIs have 32bit pointers. if (!is64Bit) Ret += "-p:32:32"; // Alignments for 64 bit integers. Ret += "-i64:64"; // On SparcV9 128 floats are aligned to 128 bits, on others only to 64. // On SparcV9 registers can hold 64 or 32 bits, on others only 32. if (is64Bit) Ret += "-n32:64"; else Ret += "-f128:64-n32"; if (is64Bit) Ret += "-S128"; else Ret += "-S64"; return Ret; } static Reloc::Model getEffectiveRelocModel(Optional RM) { if (!RM.hasValue()) return Reloc::Static; return *RM; } // Code models. Some only make sense for 64-bit code. // // SunCC Reloc CodeModel Constraints // abs32 Static Small text+data+bss linked below 2^32 bytes // abs44 Static Medium text+data+bss linked below 2^44 bytes // abs64 Static Large text smaller than 2^31 bytes // pic13 PIC_ Small GOT < 2^13 bytes // pic32 PIC_ Medium GOT < 2^32 bytes // // All code models require that the text segment is smaller than 2GB. static CodeModel::Model getEffectiveCodeModel(Optional CM, Reloc::Model RM, bool Is64Bit, bool JIT) { if (CM) return *CM; if (Is64Bit) { if (JIT) return CodeModel::Large; return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium; } return CodeModel::Small; } /// Create an ILP32 architecture model SparcTargetMachine::SparcTargetMachine( const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT, bool is64bit) : LLVMTargetMachine( T, computeDataLayout(TT, is64bit), TT, CPU, FS, Options, getEffectiveRelocModel(RM), getEffectiveCodeModel(CM, getEffectiveRelocModel(RM), is64bit, JIT), OL), TLOF(make_unique()), Subtarget(TT, CPU, FS, *this, is64bit), is64Bit(is64bit) { initAsmInfo(); } SparcTargetMachine::~SparcTargetMachine() {} const SparcSubtarget * SparcTargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString().str() : TargetCPU; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString().str() : TargetFS; // FIXME: This is related to the code below to reset the target options, // we need to know whether or not the soft float flag is set on the // function, so we can enable it as a subtarget feature. bool softFloat = F.hasFnAttribute("use-soft-float") && F.getFnAttribute("use-soft-float").getValueAsString() == "true"; if (softFloat) FS += FS.empty() ? "+soft-float" : ",+soft-float"; auto &I = SubtargetMap[CPU + FS]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique(TargetTriple, CPU, FS, *this, this->is64Bit); } return I.get(); } namespace { /// Sparc Code Generator Pass Configuration Options. class SparcPassConfig : public TargetPassConfig { public: SparcPassConfig(SparcTargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} SparcTargetMachine &getSparcTargetMachine() const { return getTM(); } void addIRPasses() override; bool addInstSelector() override; void addPreEmitPass() override; }; } // namespace TargetPassConfig *SparcTargetMachine::createPassConfig(PassManagerBase &PM) { return new SparcPassConfig(*this, PM); } void SparcPassConfig::addIRPasses() { addPass(createAtomicExpandPass()); TargetPassConfig::addIRPasses(); } bool SparcPassConfig::addInstSelector() { addPass(createSparcISelDag(getSparcTargetMachine())); return false; } void SparcPassConfig::addPreEmitPass(){ addPass(createSparcDelaySlotFillerPass()); if (this->getSparcTargetMachine().getSubtargetImpl()->insertNOPLoad()) { addPass(new InsertNOPLoad()); } if (this->getSparcTargetMachine().getSubtargetImpl()->detectRoundChange()) { addPass(new DetectRoundChange()); } if (this->getSparcTargetMachine().getSubtargetImpl()->fixAllFDIVSQRT()) { addPass(new FixAllFDIVSQRT()); } } void SparcV8TargetMachine::anchor() { } SparcV8TargetMachine::SparcV8TargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT) : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} void SparcV9TargetMachine::anchor() { } SparcV9TargetMachine::SparcV9TargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT) : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} void SparcelTargetMachine::anchor() {} SparcelTargetMachine::SparcelTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT) : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}