//===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISCV ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the RISCV target. // //===----------------------------------------------------------------------===// #include "RISCV.h" #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "RISCVTargetMachine.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "riscv-isel" // RISCV-specific code to select RISCV machine instructions for // SelectionDAG operations. namespace { class RISCVDAGToDAGISel final : public SelectionDAGISel { const RISCVSubtarget *Subtarget; public: explicit RISCVDAGToDAGISel(RISCVTargetMachine &TargetMachine) : SelectionDAGISel(TargetMachine) {} StringRef getPassName() const override { return "RISCV DAG->DAG Pattern Instruction Selection"; } bool runOnMachineFunction(MachineFunction &MF) override { Subtarget = &MF.getSubtarget(); return SelectionDAGISel::runOnMachineFunction(MF); } void PostprocessISelDAG() override; void Select(SDNode *Node) override; bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, std::vector &OutOps) override; bool SelectAddrFI(SDValue Addr, SDValue &Base); // Include the pieces autogenerated from the target description. #include "RISCVGenDAGISel.inc" private: void doPeepholeLoadStoreADDI(); void doPeepholeBuildPairF64SplitF64(); }; } void RISCVDAGToDAGISel::PostprocessISelDAG() { doPeepholeLoadStoreADDI(); doPeepholeBuildPairF64SplitF64(); } void RISCVDAGToDAGISel::Select(SDNode *Node) { unsigned Opcode = Node->getOpcode(); MVT XLenVT = Subtarget->getXLenVT(); // If we have a custom node, we have already selected if (Node->isMachineOpcode()) { LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n"); Node->setNodeId(-1); return; } // Instruction Selection not handled by the auto-generated tablegen selection // should be handled here. EVT VT = Node->getValueType(0); if (Opcode == ISD::Constant && VT == XLenVT) { auto *ConstNode = cast(Node); // Materialize zero constants as copies from X0. This allows the coalescer // to propagate these into other instructions. if (ConstNode->isNullValue()) { SDValue New = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node), RISCV::X0, XLenVT); ReplaceNode(Node, New.getNode()); return; } } if (Opcode == ISD::FrameIndex) { SDLoc DL(Node); SDValue Imm = CurDAG->getTargetConstant(0, DL, XLenVT); int FI = cast(Node)->getIndex(); EVT VT = Node->getValueType(0); SDValue TFI = CurDAG->getTargetFrameIndex(FI, VT); ReplaceNode(Node, CurDAG->getMachineNode(RISCV::ADDI, DL, VT, TFI, Imm)); return; } // Select the default instruction. SelectCode(Node); } bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand( const SDValue &Op, unsigned ConstraintID, std::vector &OutOps) { switch (ConstraintID) { case InlineAsm::Constraint_i: case InlineAsm::Constraint_m: // We just support simple memory operands that have a single address // operand and need no special handling. OutOps.push_back(Op); return false; default: break; } return true; } bool RISCVDAGToDAGISel::SelectAddrFI(SDValue Addr, SDValue &Base) { if (auto FIN = dyn_cast(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), Subtarget->getXLenVT()); return true; } return false; } // Merge an ADDI into the offset of a load/store instruction where possible. // (load (add base, off), 0) -> (load base, off) // (store val, (add base, off)) -> (store val, base, off) void RISCVDAGToDAGISel::doPeepholeLoadStoreADDI() { SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); ++Position; while (Position != CurDAG->allnodes_begin()) { SDNode *N = &*--Position; // Skip dead nodes and any non-machine opcodes. if (N->use_empty() || !N->isMachineOpcode()) continue; int OffsetOpIdx; int BaseOpIdx; // Only attempt this optimisation for I-type loads and S-type stores. switch (N->getMachineOpcode()) { default: continue; case RISCV::LB: case RISCV::LH: case RISCV::LW: case RISCV::LBU: case RISCV::LHU: case RISCV::LWU: case RISCV::LD: case RISCV::FLW: case RISCV::FLD: BaseOpIdx = 0; OffsetOpIdx = 1; break; case RISCV::SB: case RISCV::SH: case RISCV::SW: case RISCV::SD: case RISCV::FSW: case RISCV::FSD: BaseOpIdx = 1; OffsetOpIdx = 2; break; } // Currently, the load/store offset must be 0 to be considered for this // peephole optimisation. if (!isa(N->getOperand(OffsetOpIdx)) || N->getConstantOperandVal(OffsetOpIdx) != 0) continue; SDValue Base = N->getOperand(BaseOpIdx); // If the base is an ADDI, we can merge it in to the load/store. if (!Base.isMachineOpcode() || Base.getMachineOpcode() != RISCV::ADDI) continue; SDValue ImmOperand = Base.getOperand(1); if (auto Const = dyn_cast(ImmOperand)) { ImmOperand = CurDAG->getTargetConstant( Const->getSExtValue(), SDLoc(ImmOperand), ImmOperand.getValueType()); } else if (auto GA = dyn_cast(ImmOperand)) { ImmOperand = CurDAG->getTargetGlobalAddress( GA->getGlobal(), SDLoc(ImmOperand), ImmOperand.getValueType(), GA->getOffset(), GA->getTargetFlags()); } else { continue; } LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); LLVM_DEBUG(Base->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\nN: "); LLVM_DEBUG(N->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); // Modify the offset operand of the load/store. if (BaseOpIdx == 0) // Load CurDAG->UpdateNodeOperands(N, Base.getOperand(0), ImmOperand, N->getOperand(2)); else // Store CurDAG->UpdateNodeOperands(N, N->getOperand(0), Base.getOperand(0), ImmOperand, N->getOperand(3)); // The add-immediate may now be dead, in which case remove it. if (Base.getNode()->use_empty()) CurDAG->RemoveDeadNode(Base.getNode()); } } // Remove redundant BuildPairF64+SplitF64 pairs. i.e. cases where an f64 is // built of two i32 values, only to be split apart again. This must be done // here as a peephole optimisation as the DAG has not been fully legalized at // the point BuildPairF64/SplitF64 nodes are created in RISCVISelLowering, so // some nodes would not yet have been replaced with libcalls. void RISCVDAGToDAGISel::doPeepholeBuildPairF64SplitF64() { SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); ++Position; while (Position != CurDAG->allnodes_begin()) { SDNode *N = &*--Position; // Skip dead nodes and any nodes other than SplitF64Pseudo. if (N->use_empty() || !N->isMachineOpcode() || !(N->getMachineOpcode() == RISCV::SplitF64Pseudo)) continue; // If the operand to SplitF64 is a BuildPairF64, the split operation is // redundant. Just use the operands to BuildPairF64 as the result. SDValue F64Val = N->getOperand(0); if (F64Val.isMachineOpcode() && F64Val.getMachineOpcode() == RISCV::BuildPairF64Pseudo) { LLVM_DEBUG( dbgs() << "Removing redundant SplitF64Pseudo and replacing uses " "with BuildPairF64Pseudo operands:\n"); LLVM_DEBUG(dbgs() << "N: "); LLVM_DEBUG(N->dump(CurDAG)); LLVM_DEBUG(dbgs() << "F64Val: "); LLVM_DEBUG(F64Val->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); SDValue From[] = {SDValue(N, 0), SDValue(N, 1)}; SDValue To[] = {F64Val.getOperand(0), F64Val.getOperand(1)}; CurDAG->ReplaceAllUsesOfValuesWith(From, To, 2); } } CurDAG->RemoveDeadNodes(); } // This pass converts a legalized DAG into a RISCV-specific DAG, ready // for instruction scheduling. FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM) { return new RISCVDAGToDAGISel(TM); }