//===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===---------------------------------------------------------------------===// // // This pass analyzes vector computations and removes unnecessary // doubleword swaps (xxswapd instructions). This pass is performed // only for little-endian VSX code generation. // // For this specific case, loads and stores of v4i32, v4f32, v2i64, // and v2f64 vectors are inefficient. These are implemented using // the lxvd2x and stxvd2x instructions, which invert the order of // doublewords in a vector register. Thus code generation inserts // an xxswapd after each such load, and prior to each such store. // // The extra xxswapd instructions reduce performance. The purpose // of this pass is to reduce the number of xxswapd instructions // required for correctness. // // The primary insight is that much code that operates on vectors // does not care about the relative order of elements in a register, // so long as the correct memory order is preserved. If we have a // computation where all input values are provided by lxvd2x/xxswapd, // all outputs are stored using xxswapd/lxvd2x, and all intermediate // computations are lane-insensitive (independent of element order), // then all the xxswapd instructions associated with the loads and // stores may be removed without changing observable semantics. // // This pass uses standard equivalence class infrastructure to create // maximal webs of computations fitting the above description. Each // such web is then optimized by removing its unnecessary xxswapd // instructions. // // There are some lane-sensitive operations for which we can still // permit the optimization, provided we modify those operations // accordingly. Such operations are identified as using "special // handling" within this module. // //===---------------------------------------------------------------------===// #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCInstrInfo.h" #include "PPCTargetMachine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "ppc-vsx-swaps" namespace llvm { void initializePPCVSXSwapRemovalPass(PassRegistry&); } namespace { // A PPCVSXSwapEntry is created for each machine instruction that // is relevant to a vector computation. struct PPCVSXSwapEntry { // Pointer to the instruction. MachineInstr *VSEMI; // Unique ID (position in the swap vector). int VSEId; // Attributes of this node. unsigned int IsLoad : 1; unsigned int IsStore : 1; unsigned int IsSwap : 1; unsigned int MentionsPhysVR : 1; unsigned int IsSwappable : 1; unsigned int MentionsPartialVR : 1; unsigned int SpecialHandling : 3; unsigned int WebRejected : 1; unsigned int WillRemove : 1; }; enum SHValues { SH_NONE = 0, SH_EXTRACT, SH_INSERT, SH_NOSWAP_LD, SH_NOSWAP_ST, SH_SPLAT, SH_XXPERMDI, SH_COPYWIDEN }; struct PPCVSXSwapRemoval : public MachineFunctionPass { static char ID; const PPCInstrInfo *TII; MachineFunction *MF; MachineRegisterInfo *MRI; // Swap entries are allocated in a vector for better performance. std::vector SwapVector; // A mapping is maintained between machine instructions and // their swap entries. The key is the address of the MI. DenseMap SwapMap; // Equivalence classes are used to gather webs of related computation. // Swap entries are represented by their VSEId fields. EquivalenceClasses *EC; PPCVSXSwapRemoval() : MachineFunctionPass(ID) { initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry()); } private: // Initialize data structures. void initialize(MachineFunction &MFParm); // Walk the machine instructions to gather vector usage information. // Return true iff vector mentions are present. bool gatherVectorInstructions(); // Add an entry to the swap vector and swap map. int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry); // Hunt backwards through COPY and SUBREG_TO_REG chains for a // source register. VecIdx indicates the swap vector entry to // mark as mentioning a physical register if the search leads // to one. unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx); // Generate equivalence classes for related computations (webs). void formWebs(); // Analyze webs and determine those that cannot be optimized. void recordUnoptimizableWebs(); // Record which swap instructions can be safely removed. void markSwapsForRemoval(); // Remove swaps and update other instructions requiring special // handling. Return true iff any changes are made. bool removeSwaps(); // Insert a swap instruction from SrcReg to DstReg at the given // InsertPoint. void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, unsigned DstReg, unsigned SrcReg); // Update instructions requiring special handling. void handleSpecialSwappables(int EntryIdx); // Dump a description of the entries in the swap vector. void dumpSwapVector(); // Return true iff the given register is in the given class. bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) { if (TargetRegisterInfo::isVirtualRegister(Reg)) return RC->hasSubClassEq(MRI->getRegClass(Reg)); return RC->contains(Reg); } // Return true iff the given register is a full vector register. bool isVecReg(unsigned Reg) { return (isRegInClass(Reg, &PPC::VSRCRegClass) || isRegInClass(Reg, &PPC::VRRCRegClass)); } // Return true iff the given register is a partial vector register. bool isScalarVecReg(unsigned Reg) { return (isRegInClass(Reg, &PPC::VSFRCRegClass) || isRegInClass(Reg, &PPC::VSSRCRegClass)); } // Return true iff the given register mentions all or part of a // vector register. Also sets Partial to true if the mention // is for just the floating-point register overlap of the register. bool isAnyVecReg(unsigned Reg, bool &Partial) { if (isScalarVecReg(Reg)) Partial = true; return isScalarVecReg(Reg) || isVecReg(Reg); } public: // Main entry point for this pass. bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; // If we don't have VSX on the subtarget, don't do anything. // Also, on Power 9 the load and store ops preserve element order and so // the swaps are not required. const PPCSubtarget &STI = MF.getSubtarget(); if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps()) return false; bool Changed = false; initialize(MF); if (gatherVectorInstructions()) { formWebs(); recordUnoptimizableWebs(); markSwapsForRemoval(); Changed = removeSwaps(); } // FIXME: See the allocation of EC in initialize(). delete EC; return Changed; } }; // Initialize data structures for this pass. In particular, clear the // swap vector and allocate the equivalence class mapping before // processing each function. void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) { MF = &MFParm; MRI = &MF->getRegInfo(); TII = MF->getSubtarget().getInstrInfo(); // An initial vector size of 256 appears to work well in practice. // Small/medium functions with vector content tend not to incur a // reallocation at this size. Three of the vector tests in // projects/test-suite reallocate, which seems like a reasonable rate. const int InitialVectorSize(256); SwapVector.clear(); SwapVector.reserve(InitialVectorSize); // FIXME: Currently we allocate EC each time because we don't have // access to the set representation on which to call clear(). Should // consider adding a clear() method to the EquivalenceClasses class. EC = new EquivalenceClasses; } // Create an entry in the swap vector for each instruction that mentions // a full vector register, recording various characteristics of the // instructions there. bool PPCVSXSwapRemoval::gatherVectorInstructions() { bool RelevantFunction = false; for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { if (MI.isDebugInstr()) continue; bool RelevantInstr = false; bool Partial = false; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (isAnyVecReg(Reg, Partial)) { RelevantInstr = true; break; } } if (!RelevantInstr) continue; RelevantFunction = true; // Create a SwapEntry initialized to zeros, then fill in the // instruction and ID fields before pushing it to the back // of the swap vector. PPCVSXSwapEntry SwapEntry{}; int VecIdx = addSwapEntry(&MI, SwapEntry); switch(MI.getOpcode()) { default: // Unless noted otherwise, an instruction is considered // safe for the optimization. There are a large number of // such true-SIMD instructions (all vector math, logical, // select, compare, etc.). However, if the instruction // mentions a partial vector register and does not have // special handling defined, it is not swappable. if (Partial) SwapVector[VecIdx].MentionsPartialVR = 1; else SwapVector[VecIdx].IsSwappable = 1; break; case PPC::XXPERMDI: { // This is a swap if it is of the form XXPERMDI t, s, s, 2. // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2, // for example. We have to look through chains of COPY and // SUBREG_TO_REG to find the real source value for comparison. // If the real source value is a physical register, then mark the // XXPERMDI as mentioning a physical register. int immed = MI.getOperand(3).getImm(); if (immed == 2) { unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), VecIdx); unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), VecIdx); if (trueReg1 == trueReg2) SwapVector[VecIdx].IsSwap = 1; else { // We can still handle these if the two registers are not // identical, by adjusting the form of the XXPERMDI. SwapVector[VecIdx].IsSwappable = 1; SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; } // This is a doubleword splat if it is of the form // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we // must look through chains of copy-likes to find the source // register. We turn off the marking for mention of a physical // register, because splatting it is safe; the optimization // will not swap the value in the physical register. Whether // or not the two input registers are identical, we can handle // these by adjusting the form of the XXPERMDI. } else if (immed == 0 || immed == 3) { SwapVector[VecIdx].IsSwappable = 1; SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), VecIdx); unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), VecIdx); if (trueReg1 == trueReg2) SwapVector[VecIdx].MentionsPhysVR = 0; } else { // We can still handle these by adjusting the form of the XXPERMDI. SwapVector[VecIdx].IsSwappable = 1; SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; } break; } case PPC::LVX: // Non-permuting loads are currently unsafe. We can use special // handling for this in the future. By not marking these as // IsSwap, we ensure computations containing them will be rejected // for now. SwapVector[VecIdx].IsLoad = 1; break; case PPC::LXVD2X: case PPC::LXVW4X: // Permuting loads are marked as both load and swap, and are // safe for optimization. SwapVector[VecIdx].IsLoad = 1; SwapVector[VecIdx].IsSwap = 1; break; case PPC::LXSDX: case PPC::LXSSPX: case PPC::XFLOADf64: case PPC::XFLOADf32: // A load of a floating-point value into the high-order half of // a vector register is safe, provided that we introduce a swap // following the load, which will be done by the SUBREG_TO_REG // support. So just mark these as safe. SwapVector[VecIdx].IsLoad = 1; SwapVector[VecIdx].IsSwappable = 1; break; case PPC::STVX: // Non-permuting stores are currently unsafe. We can use special // handling for this in the future. By not marking these as // IsSwap, we ensure computations containing them will be rejected // for now. SwapVector[VecIdx].IsStore = 1; break; case PPC::STXVD2X: case PPC::STXVW4X: // Permuting stores are marked as both store and swap, and are // safe for optimization. SwapVector[VecIdx].IsStore = 1; SwapVector[VecIdx].IsSwap = 1; break; case PPC::COPY: // These are fine provided they are moving between full vector // register classes. if (isVecReg(MI.getOperand(0).getReg()) && isVecReg(MI.getOperand(1).getReg())) SwapVector[VecIdx].IsSwappable = 1; // If we have a copy from one scalar floating-point register // to another, we can accept this even if it is a physical // register. The only way this gets involved is if it feeds // a SUBREG_TO_REG, which is handled by introducing a swap. else if (isScalarVecReg(MI.getOperand(0).getReg()) && isScalarVecReg(MI.getOperand(1).getReg())) SwapVector[VecIdx].IsSwappable = 1; break; case PPC::SUBREG_TO_REG: { // These are fine provided they are moving between full vector // register classes. If they are moving from a scalar // floating-point class to a vector class, we can handle those // as well, provided we introduce a swap. It is generally the // case that we will introduce fewer swaps than we remove, but // (FIXME) a cost model could be used. However, introduced // swaps could potentially be CSEd, so this is not trivial. if (isVecReg(MI.getOperand(0).getReg()) && isVecReg(MI.getOperand(2).getReg())) SwapVector[VecIdx].IsSwappable = 1; else if (isVecReg(MI.getOperand(0).getReg()) && isScalarVecReg(MI.getOperand(2).getReg())) { SwapVector[VecIdx].IsSwappable = 1; SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN; } break; } case PPC::VSPLTB: case PPC::VSPLTH: case PPC::VSPLTW: case PPC::XXSPLTW: // Splats are lane-sensitive, but we can use special handling // to adjust the source lane for the splat. SwapVector[VecIdx].IsSwappable = 1; SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT; break; // The presence of the following lane-sensitive operations in a // web will kill the optimization, at least for now. For these // we do nothing, causing the optimization to fail. // FIXME: Some of these could be permitted with special handling, // and will be phased in as time permits. // FIXME: There is no simple and maintainable way to express a set // of opcodes having a common attribute in TableGen. Should this // change, this is a prime candidate to use such a mechanism. case PPC::INLINEASM: case PPC::EXTRACT_SUBREG: case PPC::INSERT_SUBREG: case PPC::COPY_TO_REGCLASS: case PPC::LVEBX: case PPC::LVEHX: case PPC::LVEWX: case PPC::LVSL: case PPC::LVSR: case PPC::LVXL: case PPC::STVEBX: case PPC::STVEHX: case PPC::STVEWX: case PPC::STVXL: // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX, // by adding special handling for narrowing copies as well as // widening ones. However, I've experimented with this, and in // practice we currently do not appear to use STXSDX fed by // a narrowing copy from a full vector register. Since I can't // generate any useful test cases, I've left this alone for now. case PPC::STXSDX: case PPC::STXSSPX: case PPC::VCIPHER: case PPC::VCIPHERLAST: case PPC::VMRGHB: case PPC::VMRGHH: case PPC::VMRGHW: case PPC::VMRGLB: case PPC::VMRGLH: case PPC::VMRGLW: case PPC::VMULESB: case PPC::VMULESH: case PPC::VMULESW: case PPC::VMULEUB: case PPC::VMULEUH: case PPC::VMULEUW: case PPC::VMULOSB: case PPC::VMULOSH: case PPC::VMULOSW: case PPC::VMULOUB: case PPC::VMULOUH: case PPC::VMULOUW: case PPC::VNCIPHER: case PPC::VNCIPHERLAST: case PPC::VPERM: case PPC::VPERMXOR: case PPC::VPKPX: case PPC::VPKSHSS: case PPC::VPKSHUS: case PPC::VPKSDSS: case PPC::VPKSDUS: case PPC::VPKSWSS: case PPC::VPKSWUS: case PPC::VPKUDUM: case PPC::VPKUDUS: case PPC::VPKUHUM: case PPC::VPKUHUS: case PPC::VPKUWUM: case PPC::VPKUWUS: case PPC::VPMSUMB: case PPC::VPMSUMD: case PPC::VPMSUMH: case PPC::VPMSUMW: case PPC::VRLB: case PPC::VRLD: case PPC::VRLH: case PPC::VRLW: case PPC::VSBOX: case PPC::VSHASIGMAD: case PPC::VSHASIGMAW: case PPC::VSL: case PPC::VSLDOI: case PPC::VSLO: case PPC::VSR: case PPC::VSRO: case PPC::VSUM2SWS: case PPC::VSUM4SBS: case PPC::VSUM4SHS: case PPC::VSUM4UBS: case PPC::VSUMSWS: case PPC::VUPKHPX: case PPC::VUPKHSB: case PPC::VUPKHSH: case PPC::VUPKHSW: case PPC::VUPKLPX: case PPC::VUPKLSB: case PPC::VUPKLSH: case PPC::VUPKLSW: case PPC::XXMRGHW: case PPC::XXMRGLW: // XXSLDWI could be replaced by a general permute with one of three // permute control vectors (for shift values 1, 2, 3). However, // VPERM has a more restrictive register class. case PPC::XXSLDWI: case PPC::XSCVDPSPN: case PPC::XSCVSPDPN: break; } } } if (RelevantFunction) { LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n"); LLVM_DEBUG(dumpSwapVector()); } return RelevantFunction; } // Add an entry to the swap vector and swap map, and make a // singleton equivalence class for the entry. int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry& SwapEntry) { SwapEntry.VSEMI = MI; SwapEntry.VSEId = SwapVector.size(); SwapVector.push_back(SwapEntry); EC->insert(SwapEntry.VSEId); SwapMap[MI] = SwapEntry.VSEId; return SwapEntry.VSEId; } // This is used to find the "true" source register for an // XXPERMDI instruction, since MachineCSE does not handle the // "copy-like" operations (Copy and SubregToReg). Returns // the original SrcReg unless it is the target of a copy-like // operation, in which case we chain backwards through all // such operations to the ultimate source register. If a // physical register is encountered, we stop the search and // flag the swap entry indicated by VecIdx (the original // XXPERMDI) as mentioning a physical register. unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg, unsigned VecIdx) { MachineInstr *MI = MRI->getVRegDef(SrcReg); if (!MI->isCopyLike()) return SrcReg; unsigned CopySrcReg; if (MI->isCopy()) CopySrcReg = MI->getOperand(1).getReg(); else { assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike"); CopySrcReg = MI->getOperand(2).getReg(); } if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) { if (!isScalarVecReg(CopySrcReg)) SwapVector[VecIdx].MentionsPhysVR = 1; return CopySrcReg; } return lookThruCopyLike(CopySrcReg, VecIdx); } // Generate equivalence classes for related computations (webs) by // def-use relationships of virtual registers. Mention of a physical // register terminates the generation of equivalence classes as this // indicates a use of a parameter, definition of a return value, use // of a value returned from a call, or definition of a parameter to a // call. Computations with physical register mentions are flagged // as such so their containing webs will not be optimized. void PPCVSXSwapRemoval::formWebs() { LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n"); for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " "); LLVM_DEBUG(MI->dump()); // It's sufficient to walk vector uses and join them to their unique // definitions. In addition, check full vector register operands // for physical regs. We exclude partial-vector register operands // because we can handle them if copied to a full vector. for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!isVecReg(Reg) && !isScalarVecReg(Reg)) continue; if (!TargetRegisterInfo::isVirtualRegister(Reg)) { if (!(MI->isCopy() && isScalarVecReg(Reg))) SwapVector[EntryIdx].MentionsPhysVR = 1; continue; } if (!MO.isUse()) continue; MachineInstr* DefMI = MRI->getVRegDef(Reg); assert(SwapMap.find(DefMI) != SwapMap.end() && "Inconsistency: def of vector reg not found in swap map!"); int DefIdx = SwapMap[DefMI]; (void)EC->unionSets(SwapVector[DefIdx].VSEId, SwapVector[EntryIdx].VSEId); LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId, SwapVector[EntryIdx].VSEId)); LLVM_DEBUG(dbgs() << " Def: "); LLVM_DEBUG(DefMI->dump()); } } } // Walk the swap vector entries looking for conditions that prevent their // containing computations from being optimized. When such conditions are // found, mark the representative of the computation's equivalence class // as rejected. void PPCVSXSwapRemoval::recordUnoptimizableWebs() { LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n"); for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); // If representative is already rejected, don't waste further time. if (SwapVector[Repr].WebRejected) continue; // Reject webs containing mentions of physical or partial registers, or // containing operations that we don't know how to handle in a lane- // permuted region. if (SwapVector[EntryIdx].MentionsPhysVR || SwapVector[EntryIdx].MentionsPartialVR || !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) { SwapVector[Repr].WebRejected = 1; LLVM_DEBUG( dbgs() << format("Web %d rejected for physreg, partial reg, or not " "swap[pable]\n", Repr)); LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": "); LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump()); LLVM_DEBUG(dbgs() << "\n"); } // Reject webs than contain swapping loads that feed something other // than a swap instruction. else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; unsigned DefReg = MI->getOperand(0).getReg(); // We skip debug instructions in the analysis. (Note that debug // location information is still maintained by this optimization // because it remains on the LXVD2X and STXVD2X instructions after // the XXPERMDIs are removed.) for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { int UseIdx = SwapMap[&UseMI]; if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad || SwapVector[UseIdx].IsStore) { SwapVector[Repr].WebRejected = 1; LLVM_DEBUG(dbgs() << format( "Web %d rejected for load not feeding swap\n", Repr)); LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": "); LLVM_DEBUG(MI->dump()); LLVM_DEBUG(dbgs() << " use " << UseIdx << ": "); LLVM_DEBUG(UseMI.dump()); LLVM_DEBUG(dbgs() << "\n"); } } // Reject webs that contain swapping stores that are fed by something // other than a swap instruction. } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; unsigned UseReg = MI->getOperand(0).getReg(); MachineInstr *DefMI = MRI->getVRegDef(UseReg); unsigned DefReg = DefMI->getOperand(0).getReg(); int DefIdx = SwapMap[DefMI]; if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad || SwapVector[DefIdx].IsStore) { SwapVector[Repr].WebRejected = 1; LLVM_DEBUG(dbgs() << format( "Web %d rejected for store not fed by swap\n", Repr)); LLVM_DEBUG(dbgs() << " def " << DefIdx << ": "); LLVM_DEBUG(DefMI->dump()); LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": "); LLVM_DEBUG(MI->dump()); LLVM_DEBUG(dbgs() << "\n"); } // Ensure all uses of the register defined by DefMI feed store // instructions for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { int UseIdx = SwapMap[&UseMI]; if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) { SwapVector[Repr].WebRejected = 1; LLVM_DEBUG( dbgs() << format( "Web %d rejected for swap not feeding only stores\n", Repr)); LLVM_DEBUG(dbgs() << " def " << " : "); LLVM_DEBUG(DefMI->dump()); LLVM_DEBUG(dbgs() << " use " << UseIdx << ": "); LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump()); LLVM_DEBUG(dbgs() << "\n"); } } } } LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n"); LLVM_DEBUG(dumpSwapVector()); } // Walk the swap vector entries looking for swaps fed by permuting loads // and swaps that feed permuting stores. If the containing computation // has not been marked rejected, mark each such swap for removal. // (Removal is delayed in case optimization has disturbed the pattern, // such that multiple loads feed the same swap, etc.) void PPCVSXSwapRemoval::markSwapsForRemoval() { LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n"); for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); if (!SwapVector[Repr].WebRejected) { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; unsigned DefReg = MI->getOperand(0).getReg(); for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { int UseIdx = SwapMap[&UseMI]; SwapVector[UseIdx].WillRemove = 1; LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: "); LLVM_DEBUG(UseMI.dump()); } } } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); if (!SwapVector[Repr].WebRejected) { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; unsigned UseReg = MI->getOperand(0).getReg(); MachineInstr *DefMI = MRI->getVRegDef(UseReg); int DefIdx = SwapMap[DefMI]; SwapVector[DefIdx].WillRemove = 1; LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: "); LLVM_DEBUG(DefMI->dump()); } } else if (SwapVector[EntryIdx].IsSwappable && SwapVector[EntryIdx].SpecialHandling != 0) { int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); if (!SwapVector[Repr].WebRejected) handleSpecialSwappables(EntryIdx); } } } // Create an xxswapd instruction and insert it prior to the given point. // MI is used to determine basic block and debug loc information. // FIXME: When inserting a swap, we should check whether SrcReg is // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so, // then instead we should generate a copy from Reg to DstReg. void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, unsigned DstReg, unsigned SrcReg) { BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), TII->get(PPC::XXPERMDI), DstReg) .addReg(SrcReg) .addReg(SrcReg) .addImm(2); } // The identified swap entry requires special handling to allow its // containing computation to be optimized. Perform that handling // here. // FIXME: Additional opportunities will be phased in with subsequent // patches. void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) { switch (SwapVector[EntryIdx].SpecialHandling) { default: llvm_unreachable("Unexpected special handling type"); // For splats based on an index into a vector, add N/2 modulo N // to the index, where N is the number of vector elements. case SHValues::SH_SPLAT: { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; unsigned NElts; LLVM_DEBUG(dbgs() << "Changing splat: "); LLVM_DEBUG(MI->dump()); switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected splat opcode"); case PPC::VSPLTB: NElts = 16; break; case PPC::VSPLTH: NElts = 8; break; case PPC::VSPLTW: case PPC::XXSPLTW: NElts = 4; break; } unsigned EltNo; if (MI->getOpcode() == PPC::XXSPLTW) EltNo = MI->getOperand(2).getImm(); else EltNo = MI->getOperand(1).getImm(); EltNo = (EltNo + NElts / 2) % NElts; if (MI->getOpcode() == PPC::XXSPLTW) MI->getOperand(2).setImm(EltNo); else MI->getOperand(1).setImm(EltNo); LLVM_DEBUG(dbgs() << " Into: "); LLVM_DEBUG(MI->dump()); break; } // For an XXPERMDI that isn't handled otherwise, we need to // reverse the order of the operands. If the selector operand // has a value of 0 or 3, we need to change it to 3 or 0, // respectively. Otherwise we should leave it alone. (This // is equivalent to reversing the two bits of the selector // operand and complementing the result.) case SHValues::SH_XXPERMDI: { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; LLVM_DEBUG(dbgs() << "Changing XXPERMDI: "); LLVM_DEBUG(MI->dump()); unsigned Selector = MI->getOperand(3).getImm(); if (Selector == 0 || Selector == 3) Selector = 3 - Selector; MI->getOperand(3).setImm(Selector); unsigned Reg1 = MI->getOperand(1).getReg(); unsigned Reg2 = MI->getOperand(2).getReg(); MI->getOperand(1).setReg(Reg2); MI->getOperand(2).setReg(Reg1); // We also need to swap kill flag associated with the register. bool IsKill1 = MI->getOperand(1).isKill(); bool IsKill2 = MI->getOperand(2).isKill(); MI->getOperand(1).setIsKill(IsKill2); MI->getOperand(2).setIsKill(IsKill1); LLVM_DEBUG(dbgs() << " Into: "); LLVM_DEBUG(MI->dump()); break; } // For a copy from a scalar floating-point register to a vector // register, removing swaps will leave the copied value in the // wrong lane. Insert a swap following the copy to fix this. case SHValues::SH_COPYWIDEN: { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: "); LLVM_DEBUG(MI->dump()); unsigned DstReg = MI->getOperand(0).getReg(); const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); unsigned NewVReg = MRI->createVirtualRegister(DstRC); MI->getOperand(0).setReg(NewVReg); LLVM_DEBUG(dbgs() << " Into: "); LLVM_DEBUG(MI->dump()); auto InsertPoint = ++MachineBasicBlock::iterator(MI); // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG // is copying to a VRRC, we need to be careful to avoid a register // assignment problem. In this case we must copy from VRRC to VSRC // prior to the swap, and from VSRC to VRRC following the swap. // Coalescing will usually remove all this mess. if (DstRC == &PPC::VRRCRegClass) { unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass); unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass); BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), TII->get(PPC::COPY), VSRCTmp1) .addReg(NewVReg); LLVM_DEBUG(std::prev(InsertPoint)->dump()); insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1); LLVM_DEBUG(std::prev(InsertPoint)->dump()); BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), TII->get(PPC::COPY), DstReg) .addReg(VSRCTmp2); LLVM_DEBUG(std::prev(InsertPoint)->dump()); } else { insertSwap(MI, InsertPoint, DstReg, NewVReg); LLVM_DEBUG(std::prev(InsertPoint)->dump()); } break; } } } // Walk the swap vector and replace each entry marked for removal with // a copy operation. bool PPCVSXSwapRemoval::removeSwaps() { LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n"); bool Changed = false; for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { if (SwapVector[EntryIdx].WillRemove) { Changed = true; MachineInstr *MI = SwapVector[EntryIdx].VSEMI; MachineBasicBlock *MBB = MI->getParent(); BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .add(MI->getOperand(1)); LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ", SwapVector[EntryIdx].VSEId)); LLVM_DEBUG(MI->dump()); MI->eraseFromParent(); } } return Changed; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) // For debug purposes, dump the contents of the swap vector. LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() { for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { MachineInstr *MI = SwapVector[EntryIdx].VSEMI; int ID = SwapVector[EntryIdx].VSEId; dbgs() << format("%6d", ID); dbgs() << format("%6d", EC->getLeaderValue(ID)); dbgs() << format(" %bb.%3d", MI->getParent()->getNumber()); dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str()); if (SwapVector[EntryIdx].IsLoad) dbgs() << "load "; if (SwapVector[EntryIdx].IsStore) dbgs() << "store "; if (SwapVector[EntryIdx].IsSwap) dbgs() << "swap "; if (SwapVector[EntryIdx].MentionsPhysVR) dbgs() << "physreg "; if (SwapVector[EntryIdx].MentionsPartialVR) dbgs() << "partialreg "; if (SwapVector[EntryIdx].IsSwappable) { dbgs() << "swappable "; switch(SwapVector[EntryIdx].SpecialHandling) { default: dbgs() << "special:**unknown**"; break; case SH_NONE: break; case SH_EXTRACT: dbgs() << "special:extract "; break; case SH_INSERT: dbgs() << "special:insert "; break; case SH_NOSWAP_LD: dbgs() << "special:load "; break; case SH_NOSWAP_ST: dbgs() << "special:store "; break; case SH_SPLAT: dbgs() << "special:splat "; break; case SH_XXPERMDI: dbgs() << "special:xxpermdi "; break; case SH_COPYWIDEN: dbgs() << "special:copywiden "; break; } } if (SwapVector[EntryIdx].WebRejected) dbgs() << "rejected "; if (SwapVector[EntryIdx].WillRemove) dbgs() << "remove "; dbgs() << "\n"; // For no-asserts builds. (void)MI; (void)ID; } dbgs() << "\n"; } #endif } // end default namespace INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, "PowerPC VSX Swap Removal", false, false) INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE, "PowerPC VSX Swap Removal", false, false) char PPCVSXSwapRemoval::ID = 0; FunctionPass* llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }