//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Mips FPU instruction set. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Floating Point Instructions // ------------------------ // * 64bit fp: // - 32 64-bit registers (default mode) // - 16 even 32-bit registers (32-bit compatible mode) for // single and double access. // * 32bit fp: // - 16 even 32-bit registers - single and double (aliased) // - 32 32-bit registers (within single-only mode) //===----------------------------------------------------------------------===// // Floating Point Compare and Branch def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisVT<1, i32>, SDTCisVT<2, OtherVT>]>; def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>, SDTCisVT<2, i32>]>; def SDT_MipsCMovFP : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisVT<2, i32>, SDTCisSameAs<1, 3>]>; def SDT_MipsTruncIntFP : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>; def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, f64>, SDTCisVT<2, i32>]>; def SDT_MipsMTC1_D64 : SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisVT<1, i32>]>; def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>; def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>; def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>; def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond, [SDNPHasChain, SDNPOptInGlue]>; def MipsTruncIntFP : SDNode<"MipsISD::TruncIntFP", SDT_MipsTruncIntFP>; def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>; def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64", SDT_MipsExtractElementF64>; def MipsMTC1_D64 : SDNode<"MipsISD::MTC1_D64", SDT_MipsMTC1_D64>; // Operand for printing out a condition code. let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in def condcode : Operand; //===----------------------------------------------------------------------===// // Feature predicates. //===----------------------------------------------------------------------===// def IsFP64bit : Predicate<"Subtarget->isFP64bit()">, AssemblerPredicate<"FeatureFP64Bit">; def NotFP64bit : Predicate<"!Subtarget->isFP64bit()">, AssemblerPredicate<"!FeatureFP64Bit">; def IsSingleFloat : Predicate<"Subtarget->isSingleFloat()">, AssemblerPredicate<"FeatureSingleFloat">; def IsNotSingleFloat : Predicate<"!Subtarget->isSingleFloat()">, AssemblerPredicate<"!FeatureSingleFloat">; def IsNotSoftFloat : Predicate<"!Subtarget->useSoftFloat()">, AssemblerPredicate<"!FeatureSoftFloat">; //===----------------------------------------------------------------------===// // Mips FGR size adjectives. // They are mutually exclusive. //===----------------------------------------------------------------------===// class FGR_32 { list FGRPredicates = [NotFP64bit]; } class FGR_64 { list FGRPredicates = [IsFP64bit]; } class HARDFLOAT { list HardFloatPredicate = [IsNotSoftFloat]; } //===----------------------------------------------------------------------===// // FP immediate patterns. def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; def fpimm0neg : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; //===----------------------------------------------------------------------===// // Instruction Class Templates // // A set of multiclasses is used to address the register usage. // // S32 - single precision in 16 32bit even fp registers // single precision in 32 32bit fp registers in SingleOnly mode // S64 - single precision in 32 64bit fp registers (In64BitMode) // D32 - double precision in 16 32bit even fp registers // D64 - double precision in 32 64bit fp registers (In64BitMode) // // Only S32 and D32 are supported right now. //===----------------------------------------------------------------------===// class ADDS_FT : InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft), !strconcat(opstr, "\t$fd, $fs, $ft"), [(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR, opstr>, HARDFLOAT { let isCommutable = IsComm; } multiclass ADDS_M { def _D32 : MMRel, ADDS_FT, FGR_32; def _D64 : ADDS_FT, FGR_64 { string DecoderNamespace = "MipsFP64"; } } class ABSS_FT : InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"), [(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>, HARDFLOAT, NeverHasSideEffects; multiclass ABSS_M { def _D32 : MMRel, ABSS_FT, FGR_32; def _D64 : ABSS_FT, FGR_64 { string DecoderNamespace = "MipsFP64"; } } multiclass ROUND_M { def _D32 : MMRel, ABSS_FT, FGR_32; def _D64 : StdMMR6Rel, ABSS_FT, FGR_64 { let DecoderNamespace = "MipsFP64"; } } class MFC1_FT : InstSE<(outs DstRC:$rt), (ins SrcRC:$fs), !strconcat(opstr, "\t$rt, $fs"), [(set DstRC:$rt, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>, HARDFLOAT; class MTC1_FT : InstSE<(outs DstRC:$fs), (ins SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"), [(set DstRC:$fs, (OpNode SrcRC:$rt))], Itin, FrmFR, opstr>, HARDFLOAT; class MTC1_64_FT : InstSE<(outs DstRC:$fs), (ins DstRC:$fs_in, SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"), [], Itin, FrmFR, opstr>, HARDFLOAT { // $fs_in is part of a white lie to work around a widespread bug in the FPU // implementation. See expandBuildPairF64 for details. let Constraints = "$fs = $fs_in"; } class LW_FT : InstSE<(outs RC:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr>, HARDFLOAT { let DecoderMethod = "DecodeFMem"; let mayLoad = 1; } class SW_FT : InstSE<(outs), (ins RC:$rt, MO:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr>, HARDFLOAT { let DecoderMethod = "DecodeFMem"; let mayStore = 1; } class MADDS_FT : InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), !strconcat(opstr, "\t$fd, $fr, $fs, $ft"), [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))], Itin, FrmFR, opstr>, HARDFLOAT; class NMADDS_FT : InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), !strconcat(opstr, "\t$fd, $fr, $fs, $ft"), [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))], Itin, FrmFR, opstr>, HARDFLOAT; class LWXC1_FT : InstSE<(outs DRC:$fd), (ins PtrRC:$base, PtrRC:$index), !strconcat(opstr, "\t$fd, ${index}(${base})"), [(set DRC:$fd, (OpNode (add iPTR:$base, iPTR:$index)))], Itin, FrmFI, opstr>, HARDFLOAT { let AddedComplexity = 20; } class SWXC1_FT : InstSE<(outs), (ins DRC:$fs, PtrRC:$base, PtrRC:$index), !strconcat(opstr, "\t$fs, ${index}(${base})"), [(OpNode DRC:$fs, (add iPTR:$base, iPTR:$index))], Itin, FrmFI, opstr>, HARDFLOAT { let AddedComplexity = 20; } class BC1F_FT : InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset), !strconcat(opstr, "\t$fcc, $offset"), [(MipsFPBrcond Op, FCCRegsOpnd:$fcc, bb:$offset)], Itin, FrmFI, opstr>, HARDFLOAT { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; let Defs = [AT]; let hasFCCRegOperand = 1; } class BC1XL_FT : InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset), !strconcat(opstr, "\t$fcc, $offset"), [], Itin, FrmFI, opstr>, HARDFLOAT { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; let Defs = [AT]; let hasFCCRegOperand = 1; } class CEQS_FT : InstSE<(outs), (ins RC:$fs, RC:$ft, condcode:$cond), !strconcat("c.$cond.", typestr, "\t$fs, $ft"), [(OpNode RC:$fs, RC:$ft, imm:$cond)], Itin, FrmFR, !strconcat("c.$cond.", typestr)>, HARDFLOAT { let Defs = [FCC0]; let isCodeGenOnly = 1; let hasFCCRegOperand = 1; } // Note: MIPS-IV introduced $fcc1-$fcc7 and renamed FCSR31[23] $fcc0. Rather // duplicating the instruction definition for MIPS1 - MIPS3, we expand // c.cond.ft if necessary, and reject it after constructing the // instruction if the ISA doesn't support it. class C_COND_FT : InstSE<(outs FCCRegsOpnd:$fcc), (ins RC:$fs, RC:$ft), !strconcat("c.", CondStr, ".", Typestr, "\t$fcc, $fs, $ft"), [], itin, FrmFR>, HARDFLOAT { let isCompare = 1; let hasFCCRegOperand = 1; } multiclass C_COND_M fmt, InstrItinClass itin> { def C_F_#NAME : MMRel, C_COND_FT<"f", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.f."#NAME; let isCommutable = 1; } def C_UN_#NAME : MMRel, C_COND_FT<"un", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.un."#NAME; let isCommutable = 1; } def C_EQ_#NAME : MMRel, C_COND_FT<"eq", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.eq."#NAME; let isCommutable = 1; } def C_UEQ_#NAME : MMRel, C_COND_FT<"ueq", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.ueq."#NAME; let isCommutable = 1; } def C_OLT_#NAME : MMRel, C_COND_FT<"olt", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.olt."#NAME; } def C_ULT_#NAME : MMRel, C_COND_FT<"ult", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.ult."#NAME; } def C_OLE_#NAME : MMRel, C_COND_FT<"ole", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.ole."#NAME; } def C_ULE_#NAME : MMRel, C_COND_FT<"ule", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.ule."#NAME; } def C_SF_#NAME : MMRel, C_COND_FT<"sf", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.sf."#NAME; let isCommutable = 1; } def C_NGLE_#NAME : MMRel, C_COND_FT<"ngle", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.ngle."#NAME; } def C_SEQ_#NAME : MMRel, C_COND_FT<"seq", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.seq."#NAME; let isCommutable = 1; } def C_NGL_#NAME : MMRel, C_COND_FT<"ngl", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.ngl."#NAME; } def C_LT_#NAME : MMRel, C_COND_FT<"lt", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.lt."#NAME; } def C_NGE_#NAME : MMRel, C_COND_FT<"nge", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.nge."#NAME; } def C_LE_#NAME : MMRel, C_COND_FT<"le", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.le."#NAME; } def C_NGT_#NAME : MMRel, C_COND_FT<"ngt", TypeStr, RC, itin>, C_COND_FM { let BaseOpcode = "c.ngt."#NAME; } } let AdditionalPredicates = [NotInMicroMips] in { defm S : C_COND_M<"s", FGR32Opnd, 16, II_C_CC_S>, ISA_MIPS1_NOT_32R6_64R6; defm D32 : C_COND_M<"d", AFGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6, FGR_32; let DecoderNamespace = "MipsFP64" in defm D64 : C_COND_M<"d", FGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6, FGR_64; } //===----------------------------------------------------------------------===// // Floating Point Instructions //===----------------------------------------------------------------------===// def ROUND_W_S : MMRel, StdMMR6Rel, ABSS_FT<"round.w.s", FGR32Opnd, FGR32Opnd, II_ROUND>, ABSS_FM<0xc, 16>, ISA_MIPS2; defm ROUND_W : ROUND_M<"round.w.d", II_ROUND>, ABSS_FM<0xc, 17>, ISA_MIPS2; def TRUNC_W_S : MMRel, StdMMR6Rel, ABSS_FT<"trunc.w.s", FGR32Opnd, FGR32Opnd, II_TRUNC>, ABSS_FM<0xd, 16>, ISA_MIPS2; def CEIL_W_S : MMRel, StdMMR6Rel, ABSS_FT<"ceil.w.s", FGR32Opnd, FGR32Opnd, II_CEIL>, ABSS_FM<0xe, 16>, ISA_MIPS2; def FLOOR_W_S : MMRel, StdMMR6Rel, ABSS_FT<"floor.w.s", FGR32Opnd, FGR32Opnd, II_FLOOR>, ABSS_FM<0xf, 16>, ISA_MIPS2; def CVT_W_S : MMRel, ABSS_FT<"cvt.w.s", FGR32Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x24, 16>; defm TRUNC_W : ROUND_M<"trunc.w.d", II_TRUNC>, ABSS_FM<0xd, 17>, ISA_MIPS2; defm CEIL_W : ROUND_M<"ceil.w.d", II_CEIL>, ABSS_FM<0xe, 17>, ISA_MIPS2; defm FLOOR_W : ROUND_M<"floor.w.d", II_FLOOR>, ABSS_FM<0xf, 17>, ISA_MIPS2; defm CVT_W : ROUND_M<"cvt.w.d", II_CVT>, ABSS_FM<0x24, 17>; let AdditionalPredicates = [NotInMicroMips] in { def RECIP_S : MMRel, ABSS_FT<"recip.s", FGR32Opnd, FGR32Opnd, II_RECIP_S>, ABSS_FM<0b010101, 0x10>, INSN_MIPS4_32R2; def RECIP_D32 : MMRel, ABSS_FT<"recip.d", AFGR64Opnd, AFGR64Opnd, II_RECIP_D>, ABSS_FM<0b010101, 0x11>, INSN_MIPS4_32R2, FGR_32 { let BaseOpcode = "RECIP_D32"; } let DecoderNamespace = "MipsFP64" in def RECIP_D64 : MMRel, ABSS_FT<"recip.d", FGR64Opnd, FGR64Opnd, II_RECIP_D>, ABSS_FM<0b010101, 0x11>, INSN_MIPS4_32R2, FGR_64; def RSQRT_S : MMRel, ABSS_FT<"rsqrt.s", FGR32Opnd, FGR32Opnd, II_RSQRT_S>, ABSS_FM<0b010110, 0x10>, INSN_MIPS4_32R2; def RSQRT_D32 : MMRel, ABSS_FT<"rsqrt.d", AFGR64Opnd, AFGR64Opnd, II_RSQRT_D>, ABSS_FM<0b010110, 0x11>, INSN_MIPS4_32R2, FGR_32 { let BaseOpcode = "RSQRT_D32"; } let DecoderNamespace = "MipsFP64" in def RSQRT_D64 : MMRel, ABSS_FT<"rsqrt.d", FGR64Opnd, FGR64Opnd, II_RSQRT_D>, ABSS_FM<0b010110, 0x11>, INSN_MIPS4_32R2, FGR_64; } let DecoderNamespace = "MipsFP64" in { let AdditionalPredicates = [NotInMicroMips] in { def ROUND_L_S : ABSS_FT<"round.l.s", FGR64Opnd, FGR32Opnd, II_ROUND>, ABSS_FM<0x8, 16>, FGR_64; def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64Opnd, FGR64Opnd, II_ROUND>, ABSS_FM<0x8, 17>, FGR_64; def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64Opnd, FGR32Opnd, II_TRUNC>, ABSS_FM<0x9, 16>, FGR_64; def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64Opnd, FGR64Opnd, II_TRUNC>, ABSS_FM<0x9, 17>, FGR_64; def CEIL_L_S : ABSS_FT<"ceil.l.s", FGR64Opnd, FGR32Opnd, II_CEIL>, ABSS_FM<0xa, 16>, FGR_64; def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64Opnd, FGR64Opnd, II_CEIL>, ABSS_FM<0xa, 17>, FGR_64; def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64Opnd, FGR32Opnd, II_FLOOR>, ABSS_FM<0xb, 16>, FGR_64; def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64Opnd, FGR64Opnd, II_FLOOR>, ABSS_FM<0xb, 17>, FGR_64; } } def CVT_S_W : MMRel, ABSS_FT<"cvt.s.w", FGR32Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x20, 20>; let AdditionalPredicates = [NotInMicroMips] in{ def CVT_L_S : MMRel, ABSS_FT<"cvt.l.s", FGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x25, 16>, INSN_MIPS3_32R2; def CVT_L_D64: MMRel, ABSS_FT<"cvt.l.d", FGR64Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x25, 17>, INSN_MIPS3_32R2; } def CVT_S_D32 : MMRel, ABSS_FT<"cvt.s.d", FGR32Opnd, AFGR64Opnd, II_CVT>, ABSS_FM<0x20, 17>, FGR_32; def CVT_D32_W : MMRel, ABSS_FT<"cvt.d.w", AFGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 20>, FGR_32; def CVT_D32_S : MMRel, ABSS_FT<"cvt.d.s", AFGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 16>, FGR_32; let DecoderNamespace = "MipsFP64" in { def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x20, 17>, FGR_64; let AdditionalPredicates = [NotInMicroMips] in{ def CVT_S_L : ABSS_FT<"cvt.s.l", FGR32Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x20, 21>, FGR_64; } def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 20>, FGR_64; def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 16>, FGR_64; def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x21, 21>, FGR_64; } let isPseudo = 1, isCodeGenOnly = 1 in { def PseudoCVT_S_W : ABSS_FT<"", FGR32Opnd, GPR32Opnd, II_CVT>; def PseudoCVT_D32_W : ABSS_FT<"", AFGR64Opnd, GPR32Opnd, II_CVT>; def PseudoCVT_S_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>; def PseudoCVT_D64_W : ABSS_FT<"", FGR64Opnd, GPR32Opnd, II_CVT>; def PseudoCVT_D64_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>; } let AdditionalPredicates = [NotInMicroMips] in { def FABS_S : MMRel, ABSS_FT<"abs.s", FGR32Opnd, FGR32Opnd, II_ABS, fabs>, ABSS_FM<0x5, 16>; defm FABS : ABSS_M<"abs.d", II_ABS, fabs>, ABSS_FM<0x5, 17>; } def FNEG_S : MMRel, ABSS_FT<"neg.s", FGR32Opnd, FGR32Opnd, II_NEG, fneg>, ABSS_FM<0x7, 16>; defm FNEG : ABSS_M<"neg.d", II_NEG, fneg>, ABSS_FM<0x7, 17>; def FSQRT_S : MMRel, StdMMR6Rel, ABSS_FT<"sqrt.s", FGR32Opnd, FGR32Opnd, II_SQRT_S, fsqrt>, ABSS_FM<0x4, 16>, ISA_MIPS2; defm FSQRT : ABSS_M<"sqrt.d", II_SQRT_D, fsqrt>, ABSS_FM<0x4, 17>, ISA_MIPS2; // The odd-numbered registers are only referenced when doing loads, // stores, and moves between floating-point and integer registers. // When defining instructions, we reference all 32-bit registers, // regardless of register aliasing. /// Move Control Registers From/To CPU Registers let AdditionalPredicates = [NotInMicroMips] in { def CFC1 : MMRel, MFC1_FT<"cfc1", GPR32Opnd, CCROpnd, II_CFC1>, MFC1_FM<2>; def CTC1 : MMRel, MTC1_FT<"ctc1", CCROpnd, GPR32Opnd, II_CTC1>, MFC1_FM<6>; } def MFC1 : MMRel, MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd, II_MFC1, bitconvert>, MFC1_FM<0>; def MFC1_D64 : MFC1_FT<"mfc1", GPR32Opnd, FGR64Opnd, II_MFC1>, MFC1_FM<0>, FGR_64 { let DecoderNamespace = "MipsFP64"; } def MTC1 : MMRel, MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd, II_MTC1, bitconvert>, MFC1_FM<4>; def MTC1_D64 : MTC1_FT<"mtc1", FGR64Opnd, GPR32Opnd, II_MTC1>, MFC1_FM<4>, FGR_64 { let DecoderNamespace = "MipsFP64"; } let AdditionalPredicates = [NotInMicroMips] in { def MFHC1_D32 : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, AFGR64Opnd, II_MFHC1>, MFC1_FM<3>, ISA_MIPS32R2, FGR_32; def MFHC1_D64 : MFC1_FT<"mfhc1", GPR32Opnd, FGR64Opnd, II_MFHC1>, MFC1_FM<3>, ISA_MIPS32R2, FGR_64 { let DecoderNamespace = "MipsFP64"; } } let AdditionalPredicates = [NotInMicroMips] in { def MTHC1_D32 : MMRel, StdMMR6Rel, MTC1_64_FT<"mthc1", AFGR64Opnd, GPR32Opnd, II_MTHC1>, MFC1_FM<7>, ISA_MIPS32R2, FGR_32; def MTHC1_D64 : MTC1_64_FT<"mthc1", FGR64Opnd, GPR32Opnd, II_MTHC1>, MFC1_FM<7>, ISA_MIPS32R2, FGR_64 { let DecoderNamespace = "MipsFP64"; } } let AdditionalPredicates = [NotInMicroMips] in { def DMTC1 : MTC1_FT<"dmtc1", FGR64Opnd, GPR64Opnd, II_DMTC1, bitconvert>, MFC1_FM<5>, ISA_MIPS3; def DMFC1 : MFC1_FT<"dmfc1", GPR64Opnd, FGR64Opnd, II_DMFC1, bitconvert>, MFC1_FM<1>, ISA_MIPS3; } def FMOV_S : MMRel, ABSS_FT<"mov.s", FGR32Opnd, FGR32Opnd, II_MOV_S>, ABSS_FM<0x6, 16>; def FMOV_D32 : MMRel, ABSS_FT<"mov.d", AFGR64Opnd, AFGR64Opnd, II_MOV_D>, ABSS_FM<0x6, 17>, FGR_32; def FMOV_D64 : ABSS_FT<"mov.d", FGR64Opnd, FGR64Opnd, II_MOV_D>, ABSS_FM<0x6, 17>, FGR_64 { let DecoderNamespace = "MipsFP64"; } /// Floating Point Memory Instructions let AdditionalPredicates = [NotInMicroMips] in { def LWC1 : MMRel, LW_FT<"lwc1", FGR32Opnd, mem_simm16, II_LWC1, load>, LW_FM<0x31>; def SWC1 : MMRel, SW_FT<"swc1", FGR32Opnd, mem_simm16, II_SWC1, store>, LW_FM<0x39>; } let DecoderNamespace = "MipsFP64", AdditionalPredicates = [NotInMicroMips] in { def LDC164 : StdMMR6Rel, LW_FT<"ldc1", FGR64Opnd, mem_simm16, II_LDC1, load>, LW_FM<0x35>, ISA_MIPS2, FGR_64 { let BaseOpcode = "LDC164"; } def SDC164 : StdMMR6Rel, SW_FT<"sdc1", FGR64Opnd, mem_simm16, II_SDC1, store>, LW_FM<0x3d>, ISA_MIPS2, FGR_64; } let AdditionalPredicates = [NotInMicroMips] in { def LDC1 : MMRel, StdMMR6Rel, LW_FT<"ldc1", AFGR64Opnd, mem_simm16, II_LDC1, load>, LW_FM<0x35>, ISA_MIPS2, FGR_32 { let BaseOpcode = "LDC132"; } def SDC1 : MMRel, SW_FT<"sdc1", AFGR64Opnd, mem_simm16, II_SDC1, store>, LW_FM<0x3d>, ISA_MIPS2, FGR_32; } // Indexed loads and stores. // Base register + offset register addressing mode (indicated by "x" in the // instruction mnemonic) is disallowed under NaCl. let AdditionalPredicates = [IsNotNaCl] in { def LWXC1 : MMRel, LWXC1_FT<"lwxc1", FGR32Opnd, II_LWXC1, load>, LWXC1_FM<0>, INSN_MIPS4_32R2_NOT_32R6_64R6; def SWXC1 : MMRel, SWXC1_FT<"swxc1", FGR32Opnd, II_SWXC1, store>, SWXC1_FM<8>, INSN_MIPS4_32R2_NOT_32R6_64R6; } let AdditionalPredicates = [NotInMicroMips, IsNotNaCl] in { def LDXC1 : LWXC1_FT<"ldxc1", AFGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; def SDXC1 : SWXC1_FT<"sdxc1", AFGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; } let DecoderNamespace="MipsFP64" in { def LDXC164 : LWXC1_FT<"ldxc1", FGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; def SDXC164 : SWXC1_FT<"sdxc1", FGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; } // Load/store doubleword indexed unaligned. // FIXME: This instruction should not be defined for FGR_32. let AdditionalPredicates = [IsNotNaCl] in { def LUXC1 : MMRel, LWXC1_FT<"luxc1", AFGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32; def SUXC1 : MMRel, SWXC1_FT<"suxc1", AFGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32; } let DecoderNamespace="MipsFP64" in { def LUXC164 : LWXC1_FT<"luxc1", FGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64; def SUXC164 : SWXC1_FT<"suxc1", FGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64; } /// Floating-point Aritmetic def FADD_S : MMRel, ADDS_FT<"add.s", FGR32Opnd, II_ADD_S, 1, fadd>, ADDS_FM<0x00, 16>; defm FADD : ADDS_M<"add.d", II_ADD_D, 1, fadd>, ADDS_FM<0x00, 17>; def FDIV_S : MMRel, ADDS_FT<"div.s", FGR32Opnd, II_DIV_S, 0, fdiv>, ADDS_FM<0x03, 16>; defm FDIV : ADDS_M<"div.d", II_DIV_D, 0, fdiv>, ADDS_FM<0x03, 17>; def FMUL_S : MMRel, ADDS_FT<"mul.s", FGR32Opnd, II_MUL_S, 1, fmul>, ADDS_FM<0x02, 16>; defm FMUL : ADDS_M<"mul.d", II_MUL_D, 1, fmul>, ADDS_FM<0x02, 17>; def FSUB_S : MMRel, ADDS_FT<"sub.s", FGR32Opnd, II_SUB_S, 0, fsub>, ADDS_FM<0x01, 16>; defm FSUB : ADDS_M<"sub.d", II_SUB_D, 0, fsub>, ADDS_FM<0x01, 17>; def MADD_S : MMRel, MADDS_FT<"madd.s", FGR32Opnd, II_MADD_S, fadd>, MADDS_FM<4, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6, MADD4; def MSUB_S : MMRel, MADDS_FT<"msub.s", FGR32Opnd, II_MSUB_S, fsub>, MADDS_FM<5, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6, MADD4; let AdditionalPredicates = [NoNaNsFPMath, HasMadd4] in { def NMADD_S : MMRel, NMADDS_FT<"nmadd.s", FGR32Opnd, II_NMADD_S, fadd>, MADDS_FM<6, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6; def NMSUB_S : MMRel, NMADDS_FT<"nmsub.s", FGR32Opnd, II_NMSUB_S, fsub>, MADDS_FM<7, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6; } def MADD_D32 : MMRel, MADDS_FT<"madd.d", AFGR64Opnd, II_MADD_D, fadd>, MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32, MADD4; def MSUB_D32 : MMRel, MADDS_FT<"msub.d", AFGR64Opnd, II_MSUB_D, fsub>, MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32, MADD4; let AdditionalPredicates = [NoNaNsFPMath, HasMadd4] in { def NMADD_D32 : MMRel, NMADDS_FT<"nmadd.d", AFGR64Opnd, II_NMADD_D, fadd>, MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; def NMSUB_D32 : MMRel, NMADDS_FT<"nmsub.d", AFGR64Opnd, II_NMSUB_D, fsub>, MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; } let DecoderNamespace = "MipsFP64" in { def MADD_D64 : MADDS_FT<"madd.d", FGR64Opnd, II_MADD_D, fadd>, MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64, MADD4; def MSUB_D64 : MADDS_FT<"msub.d", FGR64Opnd, II_MSUB_D, fsub>, MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64, MADD4; } let AdditionalPredicates = [NoNaNsFPMath, HasMadd4], DecoderNamespace = "MipsFP64" in { def NMADD_D64 : NMADDS_FT<"nmadd.d", FGR64Opnd, II_NMADD_D, fadd>, MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; def NMSUB_D64 : NMADDS_FT<"nmsub.d", FGR64Opnd, II_NMSUB_D, fsub>, MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; } //===----------------------------------------------------------------------===// // Floating Point Branch Codes //===----------------------------------------------------------------------===// // Mips branch codes. These correspond to condcode in MipsInstrInfo.h. // They must be kept in synch. def MIPS_BRANCH_F : PatLeaf<(i32 0)>; def MIPS_BRANCH_T : PatLeaf<(i32 1)>; let AdditionalPredicates = [NotInMicroMips] in { def BC1F : MMRel, BC1F_FT<"bc1f", brtarget, II_BC1F, MIPS_BRANCH_F>, BC1F_FM<0, 0>, ISA_MIPS1_NOT_32R6_64R6; def BC1FL : MMRel, BC1XL_FT<"bc1fl", brtarget, II_BC1FL>, BC1F_FM<1, 0>, ISA_MIPS2_NOT_32R6_64R6; def BC1T : MMRel, BC1F_FT<"bc1t", brtarget, II_BC1T, MIPS_BRANCH_T>, BC1F_FM<0, 1>, ISA_MIPS1_NOT_32R6_64R6; def BC1TL : MMRel, BC1XL_FT<"bc1tl", brtarget, II_BC1TL>, BC1F_FM<1, 1>, ISA_MIPS2_NOT_32R6_64R6; /// Floating Point Compare def FCMP_S32 : MMRel, CEQS_FT<"s", FGR32, II_C_CC_S, MipsFPCmp>, CEQS_FM<16>, ISA_MIPS1_NOT_32R6_64R6 { // FIXME: This is a required to work around the fact that these instructions // only use $fcc0. Ideally, MipsFPCmp nodes could be removed and the // fcc register set is used directly. bits<3> fcc = 0; } def FCMP_D32 : MMRel, CEQS_FT<"d", AFGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>, ISA_MIPS1_NOT_32R6_64R6, FGR_32 { // FIXME: This is a required to work around the fact that these instructions // only use $fcc0. Ideally, MipsFPCmp nodes could be removed and the // fcc register set is used directly. bits<3> fcc = 0; } } let DecoderNamespace = "MipsFP64" in def FCMP_D64 : CEQS_FT<"d", FGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>, ISA_MIPS1_NOT_32R6_64R6, FGR_64 { // FIXME: This is a required to work around the fact that thiese instructions // only use $fcc0. Ideally, MipsFPCmp nodes could be removed and the // fcc register set is used directly. bits<3> fcc = 0; } //===----------------------------------------------------------------------===// // Floating Point Pseudo-Instructions //===----------------------------------------------------------------------===// // This pseudo instr gets expanded into 2 mtc1 instrs after register // allocation. class BuildPairF64Base : PseudoSE<(outs RO:$dst), (ins GPR32Opnd:$lo, GPR32Opnd:$hi), [(set RO:$dst, (MipsBuildPairF64 GPR32Opnd:$lo, GPR32Opnd:$hi))], II_MTC1>; def BuildPairF64 : BuildPairF64Base, FGR_32, HARDFLOAT; def BuildPairF64_64 : BuildPairF64Base, FGR_64, HARDFLOAT; // This pseudo instr gets expanded into 2 mfc1 instrs after register // allocation. // if n is 0, lower part of src is extracted. // if n is 1, higher part of src is extracted. // This node has associated scheduling information as the pre RA scheduler // asserts otherwise. class ExtractElementF64Base : PseudoSE<(outs GPR32Opnd:$dst), (ins RO:$src, i32imm:$n), [(set GPR32Opnd:$dst, (MipsExtractElementF64 RO:$src, imm:$n))], II_MFC1>; def ExtractElementF64 : ExtractElementF64Base, FGR_32, HARDFLOAT; def ExtractElementF64_64 : ExtractElementF64Base, FGR_64, HARDFLOAT; def PseudoTRUNC_W_S : MipsAsmPseudoInst<(outs FGR32Opnd:$fd), (ins FGR32Opnd:$fs, GPR32Opnd:$rs), "trunc.w.s\t$fd, $fs, $rs">; def PseudoTRUNC_W_D32 : MipsAsmPseudoInst<(outs FGR32Opnd:$fd), (ins AFGR64Opnd:$fs, GPR32Opnd:$rs), "trunc.w.d\t$fd, $fs, $rs">, FGR_32, HARDFLOAT; def PseudoTRUNC_W_D : MipsAsmPseudoInst<(outs FGR32Opnd:$fd), (ins FGR64Opnd:$fs, GPR32Opnd:$rs), "trunc.w.d\t$fd, $fs, $rs">, FGR_64, HARDFLOAT; def LoadImmSingleGPR : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins imm64:$fpimm), "li.s\t$rd, $fpimm">; def LoadImmSingleFGR : MipsAsmPseudoInst<(outs StrictlyFGR32Opnd:$rd), (ins imm64:$fpimm), "li.s\t$rd, $fpimm">, HARDFLOAT; def LoadImmDoubleGPR : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins imm64:$fpimm), "li.d\t$rd, $fpimm">; def LoadImmDoubleFGR_32 : MipsAsmPseudoInst<(outs StrictlyAFGR64Opnd:$rd), (ins imm64:$fpimm), "li.d\t$rd, $fpimm">, FGR_32, HARDFLOAT; def LoadImmDoubleFGR : MipsAsmPseudoInst<(outs StrictlyFGR64Opnd:$rd), (ins imm64:$fpimm), "li.d\t$rd, $fpimm">, FGR_64, HARDFLOAT; //===----------------------------------------------------------------------===// // InstAliases. //===----------------------------------------------------------------------===// def : MipsInstAlias <"s.s $fd, $addr", (SWC1 FGR32Opnd:$fd, mem_simm16:$addr), 0>, ISA_MIPS2, HARDFLOAT; def : MipsInstAlias <"s.d $fd, $addr", (SDC1 AFGR64Opnd:$fd, mem_simm16:$addr), 0>, FGR_32, ISA_MIPS2, HARDFLOAT; def : MipsInstAlias <"s.d $fd, $addr", (SDC164 FGR64Opnd:$fd, mem_simm16:$addr), 0>, FGR_64, ISA_MIPS2, HARDFLOAT; def : MipsInstAlias <"l.s $fd, $addr", (LWC1 FGR32Opnd:$fd, mem_simm16:$addr), 0>, ISA_MIPS2, HARDFLOAT; def : MipsInstAlias <"l.d $fd, $addr", (LDC1 AFGR64Opnd:$fd, mem_simm16:$addr), 0>, FGR_32, ISA_MIPS2, HARDFLOAT; def : MipsInstAlias <"l.d $fd, $addr", (LDC164 FGR64Opnd:$fd, mem_simm16:$addr), 0>, FGR_64, ISA_MIPS2, HARDFLOAT; multiclass C_COND_ALIASES { def : MipsInstAlias("C_F_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_UN_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_EQ_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_UEQ_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_OLT_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_ULT_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_OLE_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_ULE_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_SF_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_NGLE_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_SEQ_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_NGL_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_LT_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_NGE_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_LE_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; def : MipsInstAlias("C_NGT_"#NAME) FCC0, RC:$fs, RC:$ft), 1>; } multiclass BC1_ALIASES { def : MipsInstAlias; def : MipsInstAlias; } let AdditionalPredicates = [NotInMicroMips] in { defm S : C_COND_ALIASES<"s", FGR32Opnd>, HARDFLOAT, ISA_MIPS1_NOT_32R6_64R6; defm D32 : C_COND_ALIASES<"d", AFGR64Opnd>, HARDFLOAT, ISA_MIPS1_NOT_32R6_64R6, FGR_32; defm D64 : C_COND_ALIASES<"d", FGR64Opnd>, HARDFLOAT, ISA_MIPS1_NOT_32R6_64R6, FGR_64; defm : BC1_ALIASES, ISA_MIPS1_NOT_32R6_64R6, HARDFLOAT; defm : BC1_ALIASES, ISA_MIPS2_NOT_32R6_64R6, HARDFLOAT; } //===----------------------------------------------------------------------===// // Floating Point Patterns //===----------------------------------------------------------------------===// def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>; def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>; def : MipsPat<(f32 (sint_to_fp GPR32Opnd:$src)), (PseudoCVT_S_W GPR32Opnd:$src)>; def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src), (TRUNC_W_S FGR32Opnd:$src)>; def : MipsPat<(MipsMTC1_D64 GPR32Opnd:$src), (MTC1_D64 GPR32Opnd:$src)>, FGR_64; def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)), (PseudoCVT_D32_W GPR32Opnd:$src)>, FGR_32; def : MipsPat<(MipsTruncIntFP AFGR64Opnd:$src), (TRUNC_W_D32 AFGR64Opnd:$src)>, FGR_32; def : MipsPat<(f32 (fpround AFGR64Opnd:$src)), (CVT_S_D32 AFGR64Opnd:$src)>, FGR_32; def : MipsPat<(f64 (fpextend FGR32Opnd:$src)), (CVT_D32_S FGR32Opnd:$src)>, FGR_32; def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>, FGR_64; def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>, FGR_64; def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)), (PseudoCVT_D64_W GPR32Opnd:$src)>, FGR_64; def : MipsPat<(f32 (sint_to_fp GPR64Opnd:$src)), (EXTRACT_SUBREG (PseudoCVT_S_L GPR64Opnd:$src), sub_lo)>, FGR_64; def : MipsPat<(f64 (sint_to_fp GPR64Opnd:$src)), (PseudoCVT_D64_L GPR64Opnd:$src)>, FGR_64; def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src), (TRUNC_W_D64 FGR64Opnd:$src)>, FGR_64; def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src), (TRUNC_L_S FGR32Opnd:$src)>, FGR_64; def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src), (TRUNC_L_D64 FGR64Opnd:$src)>, FGR_64; def : MipsPat<(f32 (fpround FGR64Opnd:$src)), (CVT_S_D64 FGR64Opnd:$src)>, FGR_64; def : MipsPat<(f64 (fpextend FGR32Opnd:$src)), (CVT_D64_S FGR32Opnd:$src)>, FGR_64; // To generate NMADD and NMSUB instructions when fneg node is present multiclass NMADD_NMSUB { def : MipsPat<(fneg (fadd (fmul RC:$fs, RC:$ft), RC:$fr)), (Nmadd RC:$fr, RC:$fs, RC:$ft)>; def : MipsPat<(fneg (fsub (fmul RC:$fs, RC:$ft), RC:$fr)), (Nmsub RC:$fr, RC:$fs, RC:$ft)>; } let AdditionalPredicates = [NoNaNsFPMath, HasMadd4, NotInMicroMips] in { defm : NMADD_NMSUB, INSN_MIPS4_32R2_NOT_32R6_64R6; defm : NMADD_NMSUB, FGR_32, INSN_MIPS4_32R2_NOT_32R6_64R6; defm : NMADD_NMSUB, FGR_64, INSN_MIPS4_32R2_NOT_32R6_64R6; } // Patterns for loads/stores with a reg+imm operand. let AdditionalPredicates = [NotInMicroMips] in { let AddedComplexity = 40 in { def : LoadRegImmPat; def : StoreRegImmPat; def : LoadRegImmPat, FGR_64; def : StoreRegImmPat, FGR_64; def : LoadRegImmPat, FGR_32; def : StoreRegImmPat, FGR_32; } }