//===- LanaiInstrFormats.td - Lanai Instruction Formats ----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// class InstLanai pattern> : Instruction { field bits<32> Inst; field bits<32> SoftFail = 0; let Size = 4; let Namespace = "Lanai"; let DecoderNamespace = "Lanai"; bits<4> Opcode; let Inst{31 - 28} = Opcode; dag OutOperandList = outs; dag InOperandList = ins; let AsmString = asmstr; let Pattern = pattern; } //------------------------------------------------------------------------------ // Register Immediate (RI) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |0.A.A.A| . . . . | . . . . |F.H| . . . . . . . . . . . . . . . | // ----------------------------------------------------------------- // opcode Rd Rs1 constant (16) // // Action: // Rd <- Rs1 op constant // // Except for shift instructions, `H' determines whether the constant // is in the high (1) or low (0) word. The other halfword is 0x0000, // except for the `AND' instruction (`AAA' = 100), for which the other // halfword is 0xFFFF, and shifts (`AAA' = 111), for which the constant is // sign extended. // // `F' determines whether the instruction modifies (1) or does not // modify (0) the program flags. // // `AAA' specifies the operation: `add' (000), `addc' (001), `sub' // (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or `shift' // (111). For the shift, `H' specifies a logical (0) or arithmetic (1) // shift. The amount and direction of the shift are determined by the // sign extended constant interpreted as a two's complement number. The // shift operation is defined only for the range of: // 31 ... 0 -1 ... -31 // \ / \ / // left right // shift shift // // If and only if the `F' bit is 1, RI instructions modify the // condition bits, `Z' (Zero), `N' (Negative), `V' (oVerflow), and `C' // (Carry), according to the result. If the flags are updated, they are // updated as follows: // `Z' // is set if the result is zero and cleared otherwise. // // `N' // is set to the most significant bit of the result. // // `V' // For arithmetic instructions (`add', `addc', `sub', `subb') `V' is // set if the sign (most significant) bits of the input operands are // the same but different from the sign bit of the result and cleared // otherwise. For other RI instructions, `V' is cleared. // // `C' // For arithmetic instructions, `C' is set/cleared if there is/is_not // a carry generated out of the most significant when performing the // twos-complement addition (`sub(a,b) == a + ~b + 1', `subb(a,b) == // a + ~b + `C''). For left shifts, `C' is set to the least // significant bit discarded by the shift operation. For all other // operations, `C' is cleared. // // A Jump is accomplished by `Rd' being `pc', and it has one shadow. // // The all-0s word is the instruction `R0 <- R0 + 0', which is a no-op. class InstRI op, dag outs, dag ins, string asmstr, list pattern> : InstLanai, Sched<[WriteALU]> { let Itinerary = IIC_ALU; bits<5> Rd; bits<5> Rs1; bit F; bit H; bits<16> imm16; let Opcode{3} = 0; let Opcode{2 - 0} = op; let Inst{27 - 23} = Rd; let Inst{22 - 18} = Rs1; let Inst{17} = F; let Inst{16} = H; let Inst{15 - 0} = imm16; } //------------------------------------------------------------------------------ // Register Register (RR) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.1.0.0| . . . . | . . . . |F.I| . . . . |B.B.B|J.J.J.J.J|D.D.D| // ----------------------------------------------------------------- // opcode Rd Rs1 Rs2 \ operation / // // Action: // `Rd <- Rs1 op Rs2' iff condition DDDI is true. // // `DDDI' is as described for the BR instruction. // // `F' determines whether the instruction modifies (1) or does not // modify (0) the program flags. // // `BBB' determines the operation: `add' (000), `addc' (001), `sub' // (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or "special" // (111). The `JJJJJ' field is irrelevant except for special. // // `JJJJJ' determines which special operation is performed. `10---' // is a logical shift, and `11---' is an arithmetic shift, and ‘00000` is // the SELECT operation. The amount and direction of the shift are // determined by the contents of `Rs2' interpreted as a two's complement // number (in the same way as shifts in the Register-Immediate // instructions in *Note RI::). For the SELECT operation, Rd gets Rs1 if // condition DDDI is true, Rs2 otherwise. All other `JJJJJ' combinations // are reserved for instructions that may be defined in the future. // // If the `F' bit is 1, RR instructions modify the condition bits, `Z' // (Zero), `N' (Negative), `V' (oVerflow), and `C' (Carry), according to // the result. All RR instructions modify the `Z', `N', and `V' flags. // Except for arithmetic instructions (`add', `addc', `sub', `subb'), `V' // is cleared. Only arithmetic instructions and shifts modify `C'. Right // shifts clear C. // // DDDI is as described in the table for the BR instruction and only used for // the select instruction. // // A Jump is accomplished by `Rd' being `pc', and it has one shadow. class InstRR op, dag outs, dag ins, string asmstr, list pattern> : InstLanai, Sched<[WriteALU]> { let Itinerary = IIC_ALU; bits<5> Rd; bits<5> Rs1; bits<5> Rs2; bit F; bits<4> DDDI; bits<5> JJJJJ; let Opcode = 0b1100; let Inst{27 - 23} = Rd; let Inst{22 - 18} = Rs1; let Inst{17} = F; let Inst{16} = DDDI{0}; let Inst{15 - 11} = Rs2; let Inst{10 - 8} = op; let Inst{7 - 3} = JJJJJ; let Inst{2 - 0} = DDDI{3 - 1}; } //------------------------------------------------------------------------------ // Register Memory (RM) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.0.0.S| . . . . | . . . . |P.Q| . . . . . . . . . . . . . . . | // ----------------------------------------------------------------- // opcode Rd Rs1 constant (16) // // Action: // Rd <- Memory(ea) (Load) see below for the // Memory(ea) <- Rd (Store) definition of ea. // // `S' determines whether the instruction is a Load (0) or a Store (1). // Loads appear in Rd one cycle after this instruction executes. If the // following instruction reads Rd, that instruction will be delayed by 1 // clock cycle. // // PQ operation // -- ------------------------------------------ // 00 ea = Rs1 // 01 ea = Rs1, Rs1 <- Rs1 + constant // 10 ea = Rs1 + constant // 11 ea = Rs1 + constant, Rs1 <- Rs1 + constant // // The constant is sign-extended for this instruction. // // A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots. class InstRM pattern> : InstLanai { bits<5> Rd; bits<5> Rs1; bit P; bit Q; bits<16> imm16; // Dummy variables to allow multiclass definition of RM and RRM bits<2> YL; bit E; let Opcode{3 - 1} = 0b100; let Opcode{0} = S; let Inst{27 - 23} = Rd; let Inst{22 - 18} = Rs1; let Inst{17} = P; let Inst{16} = Q; let Inst{15 - 0} = imm16; let PostEncoderMethod = "adjustPqBitsRmAndRrm"; } //------------------------------------------------------------------------------ // Register Register Memory (RRM) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.0.1.S| . . . . | . . . . |P.Q| . . . . |B.B.B|J.J.J.J.J|Y.L.E| // ----------------------------------------------------------------- // opcode Rd Rs1 Rs2 \ operation / // // Action: // Rd <- Memory(ea) (Load) see below for the // Memory(ea) <- Rd (Store) definition of ea. // // The RRM instruction is identical to the RM (*note RM::.) instruction // except that: // // 1. `Rs1 + constant' is replaced with `Rs1 op Rs2', where `op' is // determined in the same way as in the RR instruction (*note RR::.) // and // // 2. part-word memory accesses are allowed as specified below. // // If `BBB' != 111 (i.e.: For all but shift operations): // If `YLE' = 01- => fuLl-word memory access // If `YLE' = 00- => half-word memory access // If `YLE' = 10- => bYte memory access // If `YLE' = --1 => loads are zEro extended // If `YLE' = --0 => loads are sign extended // // If `BBB' = 111 (For shift operations): // fullword memory access are performed. // // All part-word loads write the least significant part of the // destination register with the higher-order bits zero- or sign-extended. // All part-word stores store the least significant part-word of the // source register in the destination memory location. // // A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots. class InstRRM pattern> : InstLanai { bits<5> Rd; bits<5> Rs1; bits<5> Rs2; bit P; bit Q; bits<3> BBB; bits<5> JJJJJ; bits<2> YL; bit E; let Opcode{3 - 1} = 0b101; let Opcode{0} = S; let Inst{27 - 23} = Rd; let Inst{22 - 18} = Rs1; let Inst{17} = P; let Inst{16} = Q; let Inst{15 - 11} = Rs2; let Inst{10 - 8} = BBB; let Inst{7 - 3} = JJJJJ; let Inst{2 - 1} = YL; let Inst{0} = E; let PostEncoderMethod = "adjustPqBitsRmAndRrm"; } //------------------------------------------------------------------------------ // Conditional Branch (BR) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.1.1.0|D.D.D| . . . . . . . . . . . . . . . . . . . . . . |0.I| // ----------------------------------------------------------------- // opcode condition constant (23) // // Action: // if (condition) { `pc' <- 4*(zero-extended constant) } // // The BR instruction is an absolute branch. // The constant is scaled as shown by its position in the instruction word such // that it specifies word-aligned addresses in the range [0,2^25-4] // // The `DDDI' field selects the condition that causes the branch to be taken. // (the `I' (Invert sense) bit inverts the sense of the condition): // // DDDI logical function [code, used for...] // ---- -------------------------------------- ------------------------ // 0000 1 [T, true] // 0001 0 [F, false] // 0010 C AND Z' [HI, high] // 0011 C' OR Z [LS, low or same] // 0100 C' [CC, carry cleared] // 0101 C [CS, carry set] // 0110 Z' [NE, not equal] // 0111 Z [EQ, equal] // 1000 V' [VC, oVerflow cleared] // 1001 V [VS, oVerflow set] // 1010 N' [PL, plus] // 1011 N [MI, minus] // 1100 (N AND V) OR (N' AND V') [GE, greater than or equal] // 1101 (N AND V') OR (N' AND V) [LT, less than] // 1110 (N AND V AND Z') OR (N' AND V' AND Z') [GT, greater than] // 1111 (Z) OR (N AND V') OR (N' AND V) [LE, less than or equal] // // If the branch is not taken, the BR instruction is a no-op. If the branch is // taken, the processor starts executing instructions at the branch target // address *after* the processor has executed one more instruction. That is, // the branch has one “branch delay slot”. Be very careful if you find yourself // wanting to put a branch in a branch delays slot! class InstBR pattern> : InstLanai { let Itinerary = IIC_ALU; bits<25> addr; bits<4> DDDI; let Opcode = 0b1110; let Inst{27 - 25} = DDDI{3 - 1}; let Inst{24 - 0} = addr; // These instructions overwrite the last two address bits (which are assumed // and ensured to be 0). let Inst{1} = 0; let Inst{0} = DDDI{0}; } //------------------------------------------------------------------------------ // Conditional Branch Relative (BRR) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.1.1.0|D.D.D|1|-| . . . . |-.-| . . . . . . . . . . . . . |1.I| // ----------------------------------------------------------------- // opcode condition Rs1 constant (14) // Action: // if (condition) { ‘pc’ <- Rs1 + 4*sign-extended constant) } // // BRR behaves like BR, except the branch target address is a 16-bit PC relative // offset. class InstBRR pattern> : InstLanai { bits<4> DDDI; bits<5> Rs1; bits<16> imm16; let Opcode = 0b1110; let Inst{27 - 25} = DDDI{3 - 1}; let Inst{24} = 1; let Inst{22 - 18} = Rs1; let Inst{17 - 16} = 0; let Inst{15 - 0} = imm16; // Overwrite last two bits which have to be zero let Inst{1} = 1; let Inst{0} = DDDI{0}; // Set don't cares to zero let Inst{23} = 0; } //------------------------------------------------------------------------------ // Conditional Set (SCC) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.1.1.0|D.D.D|0.-| . . . . |-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.I| // ----------------------------------------------------------------- // opcode condition Rs1 // // Action: // Rs1 <- logical function result // // SCC sets dst_reg to the boolean result of computing the logical function // specified by DDDI, as described in the table for the BR instruction. class InstSCC pattern> : InstLanai { let Itinerary = IIC_ALU; bits<5> Rs1; // dst_reg in documentation bits<4> DDDI; let Opcode = 0b1110; let Inst{27 - 25} = DDDI{3 - 1}; let Inst{24} = 0; let Inst{22 - 18} = Rs1; let Inst{1} = 1; let Inst{0} = DDDI{0}; // Set don't cares to zero let Inst{23} = 0; let Inst{17 - 2} = 0; } //------------------------------------------------------------------------------ // Special Load/Store (SLS) //------------------------------------------------------------------------------ // // Encoding: // ----------------------------------------------------------------- // |1.1.1.1| . . . . | . . . . |0.S| . . . . . . . . . . . . . . . | // ----------------------------------------------------------------- // opcode Rd addr 5msb's address 16 lsb's // // Action: // If S = 0 (LOAD): Rd <- Memory(address); // If S = 1 (STORE): Memory(address) <- Rd // // The timing is the same as for RM (*note RM::.) and RRM (*note // RRM::.) instructions. The two low-order bits of the 21-bit address are // ignored. The address is zero extended. Fullword memory accesses are // performed. class InstSLS pattern> : InstLanai { bits<5> Rd; bits<5> msb; bits<16> lsb; let Opcode = 0b1111; let Inst{27 - 23} = Rd; let Inst{22 - 18} = msb; let Inst{17} = 0; let Inst{16} = S; let Inst{15 - 0} = lsb; } //------------------------------------------------------------------------------ // Special Load Immediate (SLI) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.1.1.1| . . . . | . . . . |1.0| . . . . . . . . . . . . . . . | // ----------------------------------------------------------------- // opcode Rd const 5msb's constant 16 lsb's // // Action: // Rd <- constant // // The 21-bit constant is zero-extended. The timing is the same as the // RM instruction (*note RM::.). class InstSLI pattern> : InstLanai { bits<5> Rd; bits<5> msb; bits<16> lsb; let Opcode = 0b1111; let Inst{27 - 23} = Rd; let Inst{22 - 18} = msb; let Inst{17} = 1; let Inst{16} = 0; let Inst{15 - 0} = lsb; } //------------------------------------------------------------------------------ // Special Part-Word Load/Store (SPLS) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.1.1.1| . . . . | . . . . |1.1.0.Y.S.E.P.Q| . . . . . . . . . | // ----------------------------------------------------------------- // opcode Rd Rs1 constant (10) // // Action: // If `YS' = 11 (bYte Store): // Memory(ea) <- (least significant byte of Rr) // If `YS' = 01 (halfword Store): // Memory(ea) <- (least significant half-word of Rr) // If `YS' = 10 (bYte load): Rr <- Memory(ea) // If `YS' = 00 (halfword load): Rr <- Memory(ea) // [Note: here ea is determined as in the RM instruction. ] // If `SE' = 01 then the value is zEro extended // before being loaded into Rd. // If `SE' = 00 then the value is sign extended // before being loaded into Rd. // // `P' and `Q' are used to determine `ea' as in the RM instruction. The // constant is sign extended. The timing is the same as the RM and RRM // instructions. *Note RM:: and *Note RRM::. // // All part-word loads write the part-word into the least significant // part of the destination register, with the higher-order bits zero- or // sign-extended. All part-word stores store the least significant // part-word of the source register into the destination memory location. class InstSPLS pattern> : InstLanai { bits<5> Rd; bits<5> Rs1; bits<5> msb; bit Y; bit S; bit E; bit P; bit Q; bits<10> imm10; let Opcode = 0b1111; let Inst{27 - 23} = Rd; let Inst{22 - 18} = Rs1; let Inst{17 - 15} = 0b110; let Inst{14} = Y; let Inst{13} = S; let Inst{12} = E; let Inst{11} = P; let Inst{10} = Q; let Inst{9 - 0} = imm10; let PostEncoderMethod = "adjustPqBitsSpls"; } //------------------------------------------------------------------------------ // Special instructions (popc, leadz, trailz) //------------------------------------------------------------------------------ // Encoding: // ----------------------------------------------------------------- // |1.1.0.1| Rd | Rs1 |F.-| . . . . | . . | . . . . | OP | // ----------------------------------------------------------------- // opcode Rd Rs1 // Action: // Rd <- Perform action encoded in OP on Rs1 // OP is one of: // 0b001 POPC Population count; // 0b010 LEADZ Count number of leading zeros; // 0b011 TRAILZ Count number of trailing zeros; class InstSpecial op, dag outs, dag ins, string asmstr, list pattern> : InstLanai, Sched<[WriteALU]> { let Itinerary = IIC_ALU; bit F; bits<5> Rd; bits<5> Rs1; let Opcode = 0b1101; let Inst{27 - 23} = Rd; let Inst{22 - 18} = Rs1; let Inst{17} = F; let Inst{16 - 3} = 0; let Inst{2 - 0} = op; } // Pseudo instructions class Pseudo pattern> : InstLanai { let Inst{15 - 0} = 0; let isPseudo = 1; }