//===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LanaiTargetLowering class. // //===----------------------------------------------------------------------===// #include "LanaiISelLowering.h" #include "Lanai.h" #include "LanaiCondCode.h" #include "LanaiMachineFunctionInfo.h" #include "LanaiSubtarget.h" #include "LanaiTargetObjectFile.h" #include "MCTargetDesc/LanaiBaseInfo.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #define DEBUG_TYPE "lanai-lower" using namespace llvm; // Limit on number of instructions the lowered multiplication may have before a // call to the library function should be generated instead. The threshold is // currently set to 14 as this was the smallest threshold that resulted in all // constant multiplications being lowered. A threshold of 5 covered all cases // except for one multiplication which required 14. mulsi3 requires 16 // instructions (including the prologue and epilogue but excluding instructions // at call site). Until we can inline mulsi3, generating at most 14 instructions // will be faster than invoking mulsi3. static cl::opt LanaiLowerConstantMulThreshold( "lanai-constant-mul-threshold", cl::Hidden, cl::desc("Maximum number of instruction to generate when lowering constant " "multiplication instead of calling library function [default=14]"), cl::init(14)); LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, const LanaiSubtarget &STI) : TargetLowering(TM) { // Set up the register classes. addRegisterClass(MVT::i32, &Lanai::GPRRegClass); // Compute derived properties from the register classes TRI = STI.getRegisterInfo(); computeRegisterProperties(TRI); setStackPointerRegisterToSaveRestore(Lanai::SP); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::SETCC, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::SDIV, MVT::i32, Expand); setOperationAction(ISD::UDIV, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::MUL, MVT::i32, Custom); setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::ROTR, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Legal); setOperationAction(ISD::CTLZ, MVT::i32, Legal); setOperationAction(ISD::CTTZ, MVT::i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); // Extended load operations for i1 types must be promoted for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); } setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::XOR); // Function alignments (log2) setMinFunctionAlignment(2); setPrefFunctionAlignment(2); setJumpIsExpensive(true); // TODO: Setting the minimum jump table entries needed before a // switch is transformed to a jump table to 100 to avoid creating jump tables // as this was causing bad performance compared to a large group of if // statements. Re-evaluate this on new benchmarks. setMinimumJumpTableEntries(100); // Use fast calling convention for library functions. for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { setLibcallCallingConv(static_cast(I), CallingConv::Fast); } MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores MaxStoresPerMemsetOptSize = 8; MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores MaxStoresPerMemcpyOptSize = 8; MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores MaxStoresPerMemmoveOptSize = 8; // Booleans always contain 0 or 1. setBooleanContents(ZeroOrOneBooleanContent); } SDValue LanaiTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::MUL: return LowerMUL(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); default: llvm_unreachable("unimplemented operand"); } } //===----------------------------------------------------------------------===// // Lanai Inline Assembly Support //===----------------------------------------------------------------------===// unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT /*VT*/, SelectionDAG & /*DAG*/) const { // Only unallocatable registers should be matched here. unsigned Reg = StringSwitch(RegName) .Case("pc", Lanai::PC) .Case("sp", Lanai::SP) .Case("fp", Lanai::FP) .Case("rr1", Lanai::RR1) .Case("r10", Lanai::R10) .Case("rr2", Lanai::RR2) .Case("r11", Lanai::R11) .Case("rca", Lanai::RCA) .Default(0); if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } std::pair LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) // GCC Constraint Letters switch (Constraint[0]) { case 'r': // GENERAL_REGS return std::make_pair(0U, &Lanai::GPRRegClass); default: break; } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } // Examine constraint type and operand type and determine a weight value. // This object must already have been set up with the operand type // and the current alternative constraint selected. TargetLowering::ConstraintWeight LanaiTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &Info, const char *Constraint) const { ConstraintWeight Weight = CW_Invalid; Value *CallOperandVal = Info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (CallOperandVal == nullptr) return CW_Default; // Look at the constraint type. switch (*Constraint) { case 'I': // signed 16 bit immediate case 'J': // integer zero case 'K': // unsigned 16 bit immediate case 'L': // immediate in the range 0 to 31 case 'M': // signed 32 bit immediate where lower 16 bits are 0 case 'N': // signed 26 bit immediate case 'O': // integer zero if (isa(CallOperandVal)) Weight = CW_Constant; break; default: Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); break; } return Weight; } // LowerAsmOperandForConstraint - Lower the specified operand into the Ops // vector. If it is invalid, don't add anything to Ops. void LanaiTargetLowering::LowerAsmOperandForConstraint( SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { SDValue Result(nullptr, 0); // Only support length 1 constraints for now. if (Constraint.length() > 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { case 'I': // Signed 16 bit constant // If this fails, the parent routine will give an error if (ConstantSDNode *C = dyn_cast(Op)) { if (isInt<16>(C->getSExtValue())) { Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), Op.getValueType()); break; } } return; case 'J': // integer zero case 'O': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() == 0) { Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); break; } } return; case 'K': // unsigned 16 bit immediate if (ConstantSDNode *C = dyn_cast(Op)) { if (isUInt<16>(C->getZExtValue())) { Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), Op.getValueType()); break; } } return; case 'L': // immediate in the range 0 to 31 if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 31) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), Op.getValueType()); break; } } return; case 'M': // signed 32 bit immediate where lower 16 bits are 0 if (ConstantSDNode *C = dyn_cast(Op)) { int64_t Val = C->getSExtValue(); if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); break; } } return; case 'N': // signed 26 bit immediate if (ConstantSDNode *C = dyn_cast(Op)) { int64_t Val = C->getSExtValue(); if ((Val >= -33554432) && (Val <= 33554431)) { Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); break; } } return; default: break; // This will fall through to the generic implementation } if (Result.getNode()) { Ops.push_back(Result); return; } TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "LanaiGenCallingConv.inc" static unsigned NumFixedArgs; static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { // Handle fixed arguments with default CC. // Note: Both the default and fast CC handle VarArg the same and hence the // calling convention of the function is not considered here. if (ValNo < NumFixedArgs) { return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } // Promote i8/i16 args to i32 if (LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } // VarArgs get passed on stack unsigned Offset = State.AllocateStack(4, 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } SDValue LanaiTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { switch (CallConv) { case CallingConv::C: case CallingConv::Fast: return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); default: report_fatal_error("Unsupported calling convention"); } } SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; // Lanai target does not yet support tail call optimization. IsTailCall = false; switch (CallConv) { case CallingConv::Fast: case CallingConv::C: return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, OutVals, Ins, DL, DAG, InVals); default: report_fatal_error("Unsupported calling convention"); } } // LowerCCCArguments - transform physical registers into virtual registers and // generate load operations for arguments places on the stack. SDValue LanaiTargetLowering::LowerCCCArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); if (CallConv == CallingConv::Fast) { CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); } else { CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); } for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT().SimpleTy) { case MVT::i32: { unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); // If this is an 8/16-bit value, it is really passed promoted to 32 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); InVals.push_back(ArgValue); break; } default: LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " << RegVT.getEVTString() << "\n"); llvm_unreachable("unhandled argument type"); } } else { // Sanity check assert(VA.isMemLoc()); // Load the argument to a virtual register unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; // Check that the argument fits in stack slot if (ObjSize > 4) { errs() << "LowerFormalArguments Unhandled argument type: " << EVT(VA.getLocVT()).getEVTString() << "\n"; } // Create the frame index object for this incoming parameter... int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); InVals.push_back(DAG.getLoad( VA.getLocVT(), DL, Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); } } // The Lanai ABI for returning structs by value requires that we copy // the sret argument into rv for the return. Save the argument into // a virtual register so that we can access it from the return points. if (MF.getFunction().hasStructRetAttr()) { unsigned Reg = LanaiMFI->getSRetReturnReg(); if (!Reg) { Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); LanaiMFI->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); } if (IsVarArg) { // Record the frame index of the first variable argument // which is a value necessary to VASTART. int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true); LanaiMFI->setVarArgsFrameIndex(FI); } return Chain; } SDValue LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to a location SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analize return values. CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); SDValue Flag; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); // Guarantee that all emitted copies are stuck together with flags. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // The Lanai ABI for returning structs by value requires that we copy // the sret argument into rv for the return. We saved the argument into // a virtual register in the entry block, so now we copy the value out // and into rv. if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { MachineFunction &MF = DAG.getMachineFunction(); LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo(); unsigned Reg = LanaiMFI->getSRetReturnReg(); assert(Reg && "SRetReturnReg should have been set in LowerFormalArguments()."); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag); Flag = Chain.getValue(1); RetOps.push_back( DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); } RetOps[0] = Chain; // Update chain unsigned Opc = LanaiISD::RET_FLAG; if (Flag.getNode()) RetOps.push_back(Flag); // Return Void return DAG.getNode(Opc, DL, MVT::Other, ArrayRef(&RetOps[0], RetOps.size())); } // LowerCCCCallTo - functions arguments are copied from virtual regs to // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. SDValue LanaiTargetLowering::LowerCCCCallTo( SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, bool /*IsTailCall*/, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); GlobalAddressSDNode *G = dyn_cast(Callee); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); NumFixedArgs = 0; if (IsVarArg && G) { const Function *CalleeFn = dyn_cast(G->getGlobal()); if (CalleeFn) NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); } if (NumFixedArgs) CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); else { if (CallConv == CallingConv::Fast) CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); else CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // Create local copies for byval args. SmallVector ByValArgs; for (unsigned I = 0, E = Outs.size(); I != E; ++I) { ISD::ArgFlagsTy Flags = Outs[I].Flags; if (!Flags.isByVal()) continue; SDValue Arg = OutVals[I]; unsigned Size = Flags.getByValSize(); unsigned Align = Flags.getByValAlign(); int FI = MFI.CreateStackObject(Size, Align, false); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, /*IsVolatile=*/false, /*AlwaysInline=*/false, /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo()); ByValArgs.push_back(FIPtr); } Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); SmallVector, 4> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { CCValAssign &VA = ArgLocs[I]; SDValue Arg = OutVals[I]; ISD::ArgFlagsTy Flags = Outs[I].Flags; // Promote the value if needed. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } // Use local copy if it is a byval arg. if (Flags.isByVal()) Arg = ByValArgs[J++]; // Arguments that can be passed on register must be kept at RegsToPass // vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); if (StackPtr.getNode() == nullptr) StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, getPointerTy(DAG.getDataLayout())); SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); MemOpChains.push_back( DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); } } // Transform all store nodes into one single node because all store nodes are // independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, ArrayRef(&MemOpChains[0], MemOpChains.size())); SDValue InFlag; // Build a sequence of copy-to-reg nodes chained together with token chain and // flag operands which copy the outgoing args into registers. The InFlag in // necessary since all emitted instructions must be stuck together. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, RegsToPass[I].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. uint8_t OpFlag = LanaiII::MO_NO_FLAG; if (G) { Callee = DAG.getTargetGlobalAddress( G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); } else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol( E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add a register mask operand representing the call-preserved registers. // TODO: Should return-twice functions be handled? const uint32_t *Mask = TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) Ops.push_back(DAG.getRegister(RegsToPass[I].first, RegsToPass[I].second.getValueType())); if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, ArrayRef(&Ops[0], Ops.size())); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END( Chain, DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, DL); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, InVals); } // LowerCallResult - Lower the result values of a call into the // appropriate copies out of appropriate physical registers. SDValue LanaiTargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); // Copy all of the result registers out of their specified physreg. for (unsigned I = 0; I != RVLocs.size(); ++I) { Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), RVLocs[I].getValVT(), InFlag) .getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; } //===----------------------------------------------------------------------===// // Custom Lowerings //===----------------------------------------------------------------------===// static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, SDValue &RHS, SelectionDAG &DAG) { ISD::CondCode SetCCOpcode = cast(CC)->get(); // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) // and Lanai only supports integer comparisons, so only provide definitions // for them. switch (SetCCOpcode) { case ISD::SETEQ: return LPCC::ICC_EQ; case ISD::SETGT: if (ConstantSDNode *RHSC = dyn_cast(RHS)) if (RHSC->getZExtValue() == 0xFFFFFFFF) { // X > -1 -> X >= 0 -> is_plus(X) RHS = DAG.getConstant(0, DL, RHS.getValueType()); return LPCC::ICC_PL; } return LPCC::ICC_GT; case ISD::SETUGT: return LPCC::ICC_UGT; case ISD::SETLT: if (ConstantSDNode *RHSC = dyn_cast(RHS)) if (RHSC->getZExtValue() == 0) // X < 0 -> is_minus(X) return LPCC::ICC_MI; return LPCC::ICC_LT; case ISD::SETULT: return LPCC::ICC_ULT; case ISD::SETLE: if (ConstantSDNode *RHSC = dyn_cast(RHS)) if (RHSC->getZExtValue() == 0xFFFFFFFF) { // X <= -1 -> X < 0 -> is_minus(X) RHS = DAG.getConstant(0, DL, RHS.getValueType()); return LPCC::ICC_MI; } return LPCC::ICC_LE; case ISD::SETULE: return LPCC::ICC_ULE; case ISD::SETGE: if (ConstantSDNode *RHSC = dyn_cast(RHS)) if (RHSC->getZExtValue() == 0) // X >= 0 -> is_plus(X) return LPCC::ICC_PL; return LPCC::ICC_GE; case ISD::SETUGE: return LPCC::ICC_UGE; case ISD::SETNE: return LPCC::ICC_NE; case ISD::SETONE: case ISD::SETUNE: case ISD::SETOGE: case ISD::SETOLE: case ISD::SETOLT: case ISD::SETOGT: case ISD::SETOEQ: case ISD::SETUEQ: case ISD::SETO: case ISD::SETUO: llvm_unreachable("Unsupported comparison."); default: llvm_unreachable("Unknown integer condition code!"); } } SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Cond = Op.getOperand(1); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc DL(Op); LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); SDValue Flag = DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, TargetCC, Flag); } SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op->getValueType(0); if (VT != MVT::i32) return SDValue(); ConstantSDNode *C = dyn_cast(Op->getOperand(1)); if (!C) return SDValue(); int64_t MulAmt = C->getSExtValue(); int32_t HighestOne = -1; uint32_t NonzeroEntries = 0; int SignedDigit[32] = {0}; // Convert to non-adjacent form (NAF) signed-digit representation. // NAF is a signed-digit form where no adjacent digits are non-zero. It is the // minimal Hamming weight representation of a number (on average 1/3 of the // digits will be non-zero vs 1/2 for regular binary representation). And as // the non-zero digits will be the only digits contributing to the instruction // count, this is desirable. The next loop converts it to NAF (following the // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by // choosing the non-zero coefficients such that the resulting quotient is // divisible by 2 which will cause the next coefficient to be zero. int64_t E = std::abs(MulAmt); int S = (MulAmt < 0 ? -1 : 1); int I = 0; while (E > 0) { int ZI = 0; if (E % 2 == 1) { ZI = 2 - (E % 4); if (ZI != 0) ++NonzeroEntries; } SignedDigit[I] = S * ZI; if (SignedDigit[I] == 1) HighestOne = I; E = (E - ZI) / 2; ++I; } // Compute number of instructions required. Due to differences in lowering // between the different processors this count is not exact. // Start by assuming a shift and a add/sub for every non-zero entry (hence // every non-zero entry requires 1 shift and 1 add/sub except for the first // entry). int32_t InstrRequired = 2 * NonzeroEntries - 1; // Correct possible over-adding due to shift by 0 (which is not emitted). if (std::abs(MulAmt) % 2 == 1) --InstrRequired; // Return if the form generated would exceed the instruction threshold. if (InstrRequired > LanaiLowerConstantMulThreshold) return SDValue(); SDValue Res; SDLoc DL(Op); SDValue V = Op->getOperand(0); // Initialize the running sum. Set the running sum to the maximal shifted // positive value (i.e., largest i such that zi == 1 and MulAmt has V<(); SDLoc DL(Op); SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy(DAG.getDataLayout())); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDLoc DL(Op); unsigned SPReg = getStackPointerRegisterToSaveRestore(); // Get a reference to the stack pointer. SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); // Subtract the dynamic size from the actual stack size to // obtain the new stack size. SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); // For Lanai, the outgoing memory arguments area should be on top of the // alloca area on the stack i.e., the outgoing memory arguments should be // at a lower address than the alloca area. Move the alloca area down the // stack by adding back the space reserved for outgoing arguments to SP // here. // // We do not know what the size of the outgoing args is at this point. // So, we add a pseudo instruction ADJDYNALLOC that will adjust the // stack pointer. We replace this instruction with on that has the correct, // known offset in emitPrologue(). SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); // The Sub result contains the new stack start address, so it // must be placed in the stack pointer register. SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); SDValue Ops[2] = {ArgAdjust, CopyChain}; return DAG.getMergeValues(Ops, DL); } SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); const unsigned Offset = -4; SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, DAG.getIntPtrConstant(Offset, DL)); return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); } // Return the link register, which contains the return address. // Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); } SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); while (Depth--) { const unsigned Offset = -8; SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, DAG.getIntPtrConstant(Offset, DL)); FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); } return FrameAddr; } const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { case LanaiISD::ADJDYNALLOC: return "LanaiISD::ADJDYNALLOC"; case LanaiISD::RET_FLAG: return "LanaiISD::RET_FLAG"; case LanaiISD::CALL: return "LanaiISD::CALL"; case LanaiISD::SELECT_CC: return "LanaiISD::SELECT_CC"; case LanaiISD::SETCC: return "LanaiISD::SETCC"; case LanaiISD::SUBBF: return "LanaiISD::SUBBF"; case LanaiISD::SET_FLAG: return "LanaiISD::SET_FLAG"; case LanaiISD::BR_CC: return "LanaiISD::BR_CC"; case LanaiISD::Wrapper: return "LanaiISD::Wrapper"; case LanaiISD::HI: return "LanaiISD::HI"; case LanaiISD::LO: return "LanaiISD::LO"; case LanaiISD::SMALL: return "LanaiISD::SMALL"; default: return nullptr; } } SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); ConstantPoolSDNode *N = cast(Op); const Constant *C = N->getConstVal(); const LanaiTargetObjectFile *TLOF = static_cast( getTargetMachine().getObjFileLowering()); // If the code model is small or constant will be placed in the small section, // then assume address will fit in 21-bits. if (getTargetMachine().getCodeModel() == CodeModel::Small || TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { SDValue Small = DAG.getTargetConstantPool( C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG); return DAG.getNode(ISD::OR, DL, MVT::i32, DAG.getRegister(Lanai::R0, MVT::i32), DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); } else { uint8_t OpFlagHi = LanaiII::MO_ABS_HI; uint8_t OpFlagLo = LanaiII::MO_ABS_LO; SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), N->getOffset(), OpFlagHi); SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), N->getOffset(), OpFlagLo); Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); return Result; } } SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const GlobalValue *GV = cast(Op)->getGlobal(); int64_t Offset = cast(Op)->getOffset(); const LanaiTargetObjectFile *TLOF = static_cast( getTargetMachine().getObjFileLowering()); // If the code model is small or global variable will be placed in the small // section, then assume address will fit in 21-bits. const GlobalObject *GO = GV->getBaseObject(); if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { SDValue Small = DAG.getTargetGlobalAddress( GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); return DAG.getNode(ISD::OR, DL, MVT::i32, DAG.getRegister(Lanai::R0, MVT::i32), DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); } else { uint8_t OpFlagHi = LanaiII::MO_ABS_HI; uint8_t OpFlagLo = LanaiII::MO_ABS_LO; // Create the TargetGlobalAddress node, folding in the constant offset. SDValue Hi = DAG.getTargetGlobalAddress( GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); SDValue Lo = DAG.getTargetGlobalAddress( GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); } } SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const BlockAddress *BA = cast(Op)->getBlockAddress(); uint8_t OpFlagHi = LanaiII::MO_ABS_HI; uint8_t OpFlagLo = LanaiII::MO_ABS_LO; SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); return Result; } SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); JumpTableSDNode *JT = cast(Op); // If the code model is small assume address will fit in 21-bits. if (getTargetMachine().getCodeModel() == CodeModel::Small) { SDValue Small = DAG.getTargetJumpTable( JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); return DAG.getNode(ISD::OR, DL, MVT::i32, DAG.getRegister(Lanai::R0, MVT::i32), DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); } else { uint8_t OpFlagHi = LanaiII::MO_ABS_HI; uint8_t OpFlagLo = LanaiII::MO_ABS_LO; SDValue Hi = DAG.getTargetJumpTable( JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); SDValue Lo = DAG.getTargetJumpTable( JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); return Result; } } SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) // HiBitsForHi = ShOpHi << ShAmt // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) // return (Hi << 32) | Lo; SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We // wanted 0, so CSEL it directly. SDValue Zero = DAG.getConstant(0, dl, MVT::i32); SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32)); SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); SDValue HiForNormalShift = DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); SDValue Hi = DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); // Lanai shifts of larger than register sizes are wrapped rather than // clamped, so we can't just emit "lo << b" if b is too big. SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Lo = DAG.getSelect( dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); SDValue Ops[2] = {Lo, Hi}; return DAG.getMergeValues(Ops, dl); } SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); // Performs the following for a >> b: // unsigned r_high = a_high >> b; // r_high = (32 - b <= 0) ? 0 : r_high; // // unsigned r_low = a_low >> b; // r_low = (32 - b <= 0) ? r_high : r_low; // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); // return (unsigned long long)r_high << 32 | r_low; // Note: This takes advantage of Lanai's shift behavior to avoid needing to // mask the shift amount. SDValue Zero = DAG.getConstant(0, dl, MVT::i32); SDValue NegatedPlus32 = DAG.getNode( ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); SDValue CarryBits = DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); SDValue Ops[2] = {Lo, Hi}; return DAG.getMergeValues(Ops, dl); } // Helper function that checks if N is a null or all ones constant. static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); } // Return true if N is conditionally 0 or all ones. // Detects these expressions where cc is an i1 value: // // (select cc 0, y) [AllOnes=0] // (select cc y, 0) [AllOnes=0] // (zext cc) [AllOnes=0] // (sext cc) [AllOnes=0/1] // (select cc -1, y) [AllOnes=1] // (select cc y, -1) [AllOnes=1] // // * AllOnes determines whether to check for an all zero (AllOnes false) or an // all ones operand (AllOnes true). // * Invert is set when N is the all zero/ones constant when CC is false. // * OtherOp is set to the alternative value of N. // // For example, for (select cc X, Y) and AllOnes = 0 if: // * X = 0, Invert = False and OtherOp = Y // * Y = 0, Invert = True and OtherOp = X static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, bool &Invert, SDValue &OtherOp, SelectionDAG &DAG) { switch (N->getOpcode()) { default: return false; case ISD::SELECT: { CC = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); if (isZeroOrAllOnes(N1, AllOnes)) { Invert = false; OtherOp = N2; return true; } if (isZeroOrAllOnes(N2, AllOnes)) { Invert = true; OtherOp = N1; return true; } return false; } case ISD::ZERO_EXTEND: { // (zext cc) can never be the all ones value. if (AllOnes) return false; CC = N->getOperand(0); if (CC.getValueType() != MVT::i1) return false; SDLoc dl(N); EVT VT = N->getValueType(0); OtherOp = DAG.getConstant(1, dl, VT); Invert = true; return true; } case ISD::SIGN_EXTEND: { CC = N->getOperand(0); if (CC.getValueType() != MVT::i1) return false; SDLoc dl(N); EVT VT = N->getValueType(0); Invert = !AllOnes; if (AllOnes) // When looking for an AllOnes constant, N is an sext, and the 'other' // value is 0. OtherOp = DAG.getConstant(0, dl, VT); else OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT); return true; } } } // Combine a constant select operand into its use: // // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) // // The transform is rejected if the select doesn't have a constant operand that // is null, or all ones when AllOnes is set. // // Also recognize sext/zext from i1: // // (add (zext cc), x) -> (select cc (add x, 1), x) // (add (sext cc), x) -> (select cc (add x, -1), x) // // These transformations eventually create predicated instructions. static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, TargetLowering::DAGCombinerInfo &DCI, bool AllOnes) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue NonConstantVal; SDValue CCOp; bool SwapSelectOps; if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, NonConstantVal, DAG)) return SDValue(); // Slct is now know to be the desired identity constant when CC is true. SDValue TrueVal = OtherOp; SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); // Unless SwapSelectOps says CC should be false. if (SwapSelectOps) std::swap(TrueVal, FalseVal); return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); } // Attempt combineSelectAndUse on each operand of a commutative operator N. static SDValue combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, bool AllOnes) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0.getNode()->hasOneUse()) if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) return Result; if (N1.getNode()->hasOneUse()) if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) return Result; return SDValue(); } // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. static SDValue PerformSUBCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) if (N1.getNode()->hasOneUse()) if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) return Result; return SDValue(); } SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: break; case ISD::ADD: case ISD::OR: case ISD::XOR: return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); case ISD::AND: return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); case ISD::SUB: return PerformSUBCombine(N, DCI); } return SDValue(); } void LanaiTargetLowering::computeKnownBitsForTargetNode( const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = Known.getBitWidth(); switch (Op.getOpcode()) { default: break; case LanaiISD::SETCC: Known = KnownBits(BitWidth); Known.Zero.setBits(1, BitWidth); break; case LanaiISD::SELECT_CC: KnownBits Known2; DAG.computeKnownBits(Op->getOperand(0), Known, Depth + 1); DAG.computeKnownBits(Op->getOperand(1), Known2, Depth + 1); Known.Zero &= Known2.Zero; Known.One &= Known2.One; break; } }