//===-- AVRRelaxMemOperations.cpp - Relax out of range loads/stores -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass which relaxes out of range memory operations into // equivalent operations which handle bigger addresses. // //===----------------------------------------------------------------------===// #include "AVR.h" #include "AVRInstrInfo.h" #include "AVRTargetMachine.h" #include "MCTargetDesc/AVRMCTargetDesc.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" using namespace llvm; #define AVR_RELAX_MEM_OPS_NAME "AVR memory operation relaxation pass" namespace { class AVRRelaxMem : public MachineFunctionPass { public: static char ID; AVRRelaxMem() : MachineFunctionPass(ID) { initializeAVRRelaxMemPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return AVR_RELAX_MEM_OPS_NAME; } private: typedef MachineBasicBlock Block; typedef Block::iterator BlockIt; const TargetInstrInfo *TII; template bool relax(Block &MBB, BlockIt MBBI); bool runOnBasicBlock(Block &MBB); bool runOnInstruction(Block &MBB, BlockIt MBBI); MachineInstrBuilder buildMI(Block &MBB, BlockIt MBBI, unsigned Opcode) { return BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(Opcode)); } }; char AVRRelaxMem::ID = 0; bool AVRRelaxMem::runOnMachineFunction(MachineFunction &MF) { bool Modified = false; const AVRSubtarget &STI = MF.getSubtarget(); TII = STI.getInstrInfo(); for (Block &MBB : MF) { bool BlockModified = runOnBasicBlock(MBB); Modified |= BlockModified; } return Modified; } bool AVRRelaxMem::runOnBasicBlock(Block &MBB) { bool Modified = false; BlockIt MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { BlockIt NMBBI = std::next(MBBI); Modified |= runOnInstruction(MBB, MBBI); MBBI = NMBBI; } return Modified; } template <> bool AVRRelaxMem::relax(Block &MBB, BlockIt MBBI) { MachineInstr &MI = *MBBI; MachineOperand &Ptr = MI.getOperand(0); MachineOperand &Src = MI.getOperand(2); int64_t Imm = MI.getOperand(1).getImm(); // We can definitely optimise this better. if (Imm > 63) { // Push the previous state of the pointer register. // This instruction must preserve the value. buildMI(MBB, MBBI, AVR::PUSHWRr) .addReg(Ptr.getReg()); // Add the immediate to the pointer register. buildMI(MBB, MBBI, AVR::SBCIWRdK) .addReg(Ptr.getReg(), RegState::Define) .addReg(Ptr.getReg()) .addImm(-Imm); // Store the value in the source register to the address // pointed to by the pointer register. buildMI(MBB, MBBI, AVR::STWPtrRr) .addReg(Ptr.getReg()) .addReg(Src.getReg(), getKillRegState(Src.isKill())); // Pop the original state of the pointer register. buildMI(MBB, MBBI, AVR::POPWRd) .addReg(Ptr.getReg(), getKillRegState(Ptr.isKill())); MI.removeFromParent(); } return false; } bool AVRRelaxMem::runOnInstruction(Block &MBB, BlockIt MBBI) { MachineInstr &MI = *MBBI; int Opcode = MBBI->getOpcode(); #define RELAX(Op) \ case Op: \ return relax(MBB, MI) switch (Opcode) { RELAX(AVR::STDWPtrQRr); } #undef RELAX return false; } } // end of anonymous namespace INITIALIZE_PASS(AVRRelaxMem, "avr-relax-mem", AVR_RELAX_MEM_OPS_NAME, false, false) namespace llvm { FunctionPass *createAVRRelaxMemPass() { return new AVRRelaxMem(); } } // end of namespace llvm