//=- ARMScheduleA57.td - ARM Cortex-A57 Scheduling Defs -----*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for ARM Cortex-A57 to support // instruction scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // *** Common description and scheduling model parameters taken from AArch64 *** // The Cortex-A57 is a traditional superscalar microprocessor with a // conservative 3-wide in-order stage for decode and dispatch. Combined with the // much wider out-of-order issue stage, this produced a need to carefully // schedule micro-ops so that all three decoded each cycle are successfully // issued as the reservation station(s) simply don't stay occupied for long. // Therefore, IssueWidth is set to the narrower of the two at three, while still // modeling the machine as out-of-order. def IsCPSRDefinedPred : SchedPredicate<[{TII->isCPSRDefined(*MI)}]>; def IsCPSRDefinedAndPredicatedPred : SchedPredicate<[{TII->isCPSRDefined(*MI) && TII->isPredicated(*MI)}]>; // Cortex A57 rev. r1p0 or later (false = r0px) def IsR1P0AndLaterPred : SchedPredicate<[{false}]>; // If Addrmode3 contains register offset (not immediate) def IsLdrAm3RegOffPred : SchedPredicate<[{!TII->isAddrMode3OpImm(*MI, 1)}]>; // The same predicate with operand offset 2 and 3: def IsLdrAm3RegOffPredX2 : SchedPredicate<[{!TII->isAddrMode3OpImm(*MI, 2)}]>; def IsLdrAm3RegOffPredX3 : SchedPredicate<[{!TII->isAddrMode3OpImm(*MI, 3)}]>; // If Addrmode3 contains "minus register" def IsLdrAm3NegRegOffPred : SchedPredicate<[{TII->isAddrMode3OpMinusReg(*MI, 1)}]>; // The same predicate with operand offset 2 and 3: def IsLdrAm3NegRegOffPredX2 : SchedPredicate<[{TII->isAddrMode3OpMinusReg(*MI, 2)}]>; def IsLdrAm3NegRegOffPredX3 : SchedPredicate<[{TII->isAddrMode3OpMinusReg(*MI, 3)}]>; // Load, scaled register offset, not plus LSL2 def IsLdstsoScaledNotOptimalPredX0 : SchedPredicate<[{TII->isLdstScaledRegNotPlusLsl2(*MI, 0)}]>; def IsLdstsoScaledNotOptimalPred : SchedPredicate<[{TII->isLdstScaledRegNotPlusLsl2(*MI, 1)}]>; def IsLdstsoScaledNotOptimalPredX2 : SchedPredicate<[{TII->isLdstScaledRegNotPlusLsl2(*MI, 2)}]>; // Load, scaled register offset def IsLdstsoScaledPred : SchedPredicate<[{TII->isLdstScaledReg(*MI, 1)}]>; def IsLdstsoScaledPredX2 : SchedPredicate<[{TII->isLdstScaledReg(*MI, 2)}]>; def IsLdstsoMinusRegPredX0 : SchedPredicate<[{TII->isLdstSoMinusReg(*MI, 0)}]>; def IsLdstsoMinusRegPred : SchedPredicate<[{TII->isLdstSoMinusReg(*MI, 1)}]>; def IsLdstsoMinusRegPredX2 : SchedPredicate<[{TII->isLdstSoMinusReg(*MI, 2)}]>; // Load, scaled register offset def IsLdrAm2ScaledPred : SchedPredicate<[{TII->isAm2ScaledReg(*MI, 1)}]>; // LDM, base reg in list def IsLdmBaseRegInList : SchedPredicate<[{TII->isLDMBaseRegInList(*MI)}]>; class A57WriteLMOpsListType writes> { list Writes = writes; SchedMachineModel SchedModel = ?; } // *** Common description and scheduling model parameters taken from AArch64 *** // (AArch64SchedA57.td) def CortexA57Model : SchedMachineModel { let IssueWidth = 3; // 3-way decode and dispatch let MicroOpBufferSize = 128; // 128 micro-op re-order buffer let LoadLatency = 4; // Optimistic load latency let MispredictPenalty = 16; // Fetch + Decode/Rename/Dispatch + Branch // Enable partial & runtime unrolling. let LoopMicroOpBufferSize = 16; let CompleteModel = 1; } //===----------------------------------------------------------------------===// // Define each kind of processor resource and number available on Cortex-A57. // Cortex A-57 has 8 pipelines that each has its own 8-entry queue where // micro-ops wait for their operands and then issue out-of-order. def A57UnitB : ProcResource<1>; // Type B micro-ops def A57UnitI : ProcResource<2>; // Type I micro-ops def A57UnitM : ProcResource<1>; // Type M micro-ops def A57UnitL : ProcResource<1>; // Type L micro-ops def A57UnitS : ProcResource<1>; // Type S micro-ops def A57UnitX : ProcResource<1>; // Type X micro-ops (F1) def A57UnitW : ProcResource<1>; // Type W micro-ops (F0) let SchedModel = CortexA57Model in { def A57UnitV : ProcResGroup<[A57UnitX, A57UnitW]>; // Type V micro-ops } let SchedModel = CortexA57Model in { //===----------------------------------------------------------------------===// // Define customized scheduler read/write types specific to the Cortex-A57. include "ARMScheduleA57WriteRes.td" // To have "CompleteModel = 1", support of pseudos and special instructions def : InstRW<[WriteNoop], (instregex "(t)?BKPT$", "(t2)?CDP(2)?$", "(t2)?CLREX$", "CONSTPOOL_ENTRY$", "COPY_STRUCT_BYVAL_I32$", "(t2)?CPS[123]p$", "(t2)?DBG$", "(t2)?DMB$", "(t2)?DSB$", "ERET$", "(t2|t)?HINT$", "(t)?HLT$", "(t2)?HVC$", "(t2)?ISB$", "ITasm$", "(t2)?RFE(DA|DB|IA|IB)", "(t)?SETEND", "(t2)?SETPAN", "(t2)?SMC", "SPACE", "(t2)?SRS(DA|DB|IA|IB)", "SWP(B)?", "t?TRAP", "UDF$", "t2DCPS", "t2SG", "t2TT", "tCPS", "CMP_SWAP", "t?SVC", "t2IT", "CompilerBarrier")>; def : InstRW<[WriteNoop], (instregex "VMRS", "VMSR", "FMSTAT")>; // Specific memory instrs def : InstRW<[WriteNoop, WriteNoop], (instregex "(t2)?LDA", "(t2)?LDC", "(t2)?STC", "(t2)?STL", "(t2)?LDREX", "(t2)?STREX", "MEMCPY")>; // coprocessor moves def : InstRW<[WriteNoop, WriteNoop], (instregex "(t2)?MCR(2|R|R2)?$", "(t2)?MRC(2)?$", "(t2)?MRRC(2)?$", "(t2)?MRS(banked|sys|_AR|_M|sys_AR)?$", "(t2)?MSR(banked|i|_AR|_M)?$")>; // Deprecated instructions def : InstRW<[WriteNoop], (instregex "FLDM", "FSTM")>; // Pseudos def : InstRW<[WriteNoop], (instregex "(t2)?ABS$", "(t)?ADJCALLSTACKDOWN$", "(t)?ADJCALLSTACKUP$", "(t2|t)?Int_eh_sjlj", "tLDRpci_pic", "t2SUBS_PC_LR", "JUMPTABLE", "tInt_WIN_eh_sjlj_longjmp", "VLD(1|2)LN(d|q)(WB_fixed_|WB_register_)?Asm", "VLD(3|4)(DUP|LN)?(d|q)(WB_fixed_|WB_register_)?Asm", "VST(1|2)LN(d|q)(WB_fixed_|WB_register_)?Asm", "VST(3|4)(DUP|LN)?(d|q)(WB_fixed_|WB_register_)?Asm", "WIN__CHKSTK", "WIN__DBZCHK")>; // Miscellaneous // ----------------------------------------------------------------------------- def : InstRW<[A57Write_1cyc_1I], (instrs COPY)>; // --- 3.2 Branch Instructions --- // B, BX, BL, BLX (imm, reg != LR, reg == LR), CBZ, CBNZ def : InstRW<[A57Write_1cyc_1B], (instregex "(t2|t)?B$", "t?BX", "(t2|t)?Bcc$", "t?TAILJMP(d|r)", "TCRETURN(d|r)i", "tBfar", "tCBN?Z")>; def : InstRW<[A57Write_1cyc_1B_1I], (instregex "t?BL$", "BL_pred$", "t?BLXi", "t?TPsoft")>; def : InstRW<[A57Write_2cyc_1B_1I], (instregex "BLX", "tBLX(NS)?r")>; // Pseudos def : InstRW<[A57Write_2cyc_1B_1I], (instregex "BCCi64", "BCCZi64")>; def : InstRW<[A57Write_3cyc_1B_1I], (instregex "BR_JTadd", "t?BR_JTr", "t2BR_JT", "t2BXJ", "(t2)?TB(B|H)(_JT)?$", "tBRIND")>; def : InstRW<[A57Write_6cyc_1B_1L], (instregex "BR_JTm")>; // --- 3.3 Arithmetic and Logical Instructions --- // ADD{S}, ADC{S}, ADR, AND{S}, BIC{S}, CMN, CMP, EOR{S}, ORN{S}, ORR{S}, // RSB{S}, RSC{S}, SUB{S}, SBC{S}, TEQ, TST def : InstRW<[A57Write_1cyc_1I], (instregex "tADDframe")>; // shift by register, conditional or unconditional // TODO: according to the doc, conditional uses I0/I1, unconditional uses M // Why more complex instruction uses more simple pipeline? // May be an error in doc. def A57WriteALUsi : SchedWriteVariant<[ // lsl #2, lsl #1, or lsr #1. SchedVar, SchedVar ]>; def A57WriteALUsr : SchedWriteVariant<[ SchedVar, SchedVar ]>; def A57WriteALUSsr : SchedWriteVariant<[ SchedVar, SchedVar ]>; def A57ReadALUsr : SchedReadVariant<[ SchedVar, SchedVar ]>; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def A57WriteCMPsr : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : SchedAlias; def : SchedAlias; def : SchedAlias; // --- 3.4 Move and Shift Instructions --- // Move, basic // MOV{S}, MOVW, MVN{S} def : InstRW<[A57Write_1cyc_1I], (instregex "MOV(r|i|i16|r_TC)", "(t2)?MVN(CC)?(r|i)", "BMOVPCB_CALL", "BMOVPCRX_CALL", "MOVCC(r|i|i16|i32imm)", "tMOV", "tMVN")>; // Move, shift by immed, setflags/no setflags // (ASR, LSL, LSR, ROR, RRX)=MOVsi, MVN // setflags = isCPSRDefined def A57WriteMOVsi : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteMOVsi], (instregex "MOV(CC)?si", "MVNsi", "ASRi", "(t2|t)ASRri", "LSRi", "(t2|t)LSRri", "LSLi", "(t2|t)LSLri", "RORi", "(t2|t)RORri", "(t2)?RRX", "t2MOV", "tROR")>; // shift by register, conditional or unconditional, setflags/no setflags def A57WriteMOVsr : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar ]>; def : InstRW<[A57WriteMOVsr], (instregex "MOV(CC)?sr", "MVNsr", "t2MVNs", "ASRr", "(t2|t)ASRrr", "LSRr", "(t2|t)LSRrr", "LSLr", "(t2|t)?LSLrr", "RORr", "(t2|t)RORrr")>; // Move, top // MOVT - A57Write_2cyc_1M for r0px, A57Write_1cyc_1I for r1p0 and later def A57WriteMOVT : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteMOVT], (instregex "MOVTi16")>; def A57WriteI2pc : WriteSequence<[A57Write_1cyc_1I, A57Write_1cyc_1I, A57Write_1cyc_1I]>; def A57WriteI2ld : WriteSequence<[A57Write_1cyc_1I, A57Write_1cyc_1I, A57Write_4cyc_1L]>; def : InstRW< [A57WriteI2pc], (instregex "MOV_ga_pcrel")>; def : InstRW< [A57WriteI2ld], (instregex "MOV_ga_pcrel_ldr")>; // +2cyc for branch forms def : InstRW<[A57Write_3cyc_1I], (instregex "MOVPC(LR|RX)")>; // --- 3.5 Divide and Multiply Instructions --- // Divide: SDIV, UDIV // latency from documentration: 4 ­‐ 20, maximum taken def : SchedAlias; // Multiply: tMul not bound to common WriteRes types def : InstRW<[A57Write_3cyc_1M], (instregex "tMUL")>; def : SchedAlias; def : SchedAlias; def : ReadAdvance; // Multiply accumulate: MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB, // SMLAWT, SMLAD{X}, SMLSD{X}, SMMLA{R}, SMMLS{R} // Multiply-accumulate pipelines support late-forwarding of accumulate operands // from similar μops, allowing a typical sequence of multiply-accumulate μops // to issue one every 1 cycle (sched advance = 2). def A57WriteMLA : SchedWriteRes<[A57UnitM]> { let Latency = 3; } def A57WriteMLAL : SchedWriteRes<[A57UnitM]> { let Latency = 4; } def A57ReadMLA : SchedReadAdvance<2, [A57WriteMLA, A57WriteMLAL]>; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; // Multiply long: SMULL, UMULL def : SchedAlias; def : SchedAlias; // --- 3.6 Saturating and Parallel Arithmetic Instructions --- // Parallel arith // SADD16, SADD8, SSUB16, SSUB8, UADD16, UADD8, USUB16, USUB8 // Conditional GE-setting instructions require three extra μops // and two additional cycles to conditionally update the GE field. def A57WriteParArith : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW< [A57WriteParArith], (instregex "(t2)?SADD(16|8)", "(t2)?SSUB(16|8)", "(t2)?UADD(16|8)", "(t2)?USUB(16|8)")>; // Parallel arith with exchange: SASX, SSAX, UASX, USAX def A57WriteParArithExch : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteParArithExch], (instregex "(t2)?SASX", "(t2)?SSAX", "(t2)?UASX", "(t2)?USAX")>; // Parallel halving arith // SHADD16, SHADD8, SHSUB16, SHSUB8, UHADD16, UHADD8, UHSUB16, UHSUB8 def : InstRW<[A57Write_2cyc_1M], (instregex "(t2)?SHADD(16|8)", "(t2)?SHSUB(16|8)", "(t2)?UHADD(16|8)", "(t2)?UHSUB(16|8)")>; // Parallel halving arith with exchange // SHASX, SHSAX, UHASX, UHSAX def : InstRW<[A57Write_3cyc_1I_1M], (instregex "(t2)?SHASX", "(t2)?SHSAX", "(t2)?UHASX", "(t2)?UHSAX")>; // Parallel saturating arith // QADD16, QADD8, QSUB16, QSUB8, UQADD16, UQADD8, UQSUB16, UQSUB8 def : InstRW<[A57Write_2cyc_1M], (instregex "QADD(16|8)", "QSUB(16|8)", "UQADD(16|8)", "UQSUB(16|8)", "t2(U?)QADD", "t2(U?)QSUB")>; // Parallel saturating arith with exchange // QASX, QSAX, UQASX, UQSAX def : InstRW<[A57Write_3cyc_1I_1M], (instregex "(t2)?QASX", "(t2)?QSAX", "(t2)?UQASX", "(t2)?UQSAX")>; // Saturate: SSAT, SSAT16, USAT, USAT16 def : InstRW<[A57Write_2cyc_1M], (instregex "(t2)?SSAT(16)?", "(t2)?USAT(16)?")>; // Saturating arith: QADD, QSUB def : InstRW<[A57Write_2cyc_1M], (instregex "QADD$", "QSUB$")>; // Saturating doubling arith: QDADD, QDSUB def : InstRW<[A57Write_3cyc_1I_1M], (instregex "(t2)?QDADD", "(t2)?QDSUB")>; // --- 3.7 Miscellaneous Data-Processing Instructions --- // Bit field extract: SBFX, UBFX def : InstRW<[A57Write_1cyc_1I], (instregex "(t2)?SBFX", "(t2)?UBFX")>; // Bit field insert/clear: BFI, BFC def : InstRW<[A57Write_2cyc_1M], (instregex "(t2)?BFI", "(t2)?BFC")>; // Select bytes, conditional/unconditional def A57WriteSEL : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteSEL], (instregex "(t2)?SEL")>; // Sign/zero extend, normal: SXTB, SXTH, UXTB, UXTH def : InstRW<[A57Write_1cyc_1I], (instregex "(t2|t)?SXT(B|H)$", "(t2|t)?UXT(B|H)$")>; // Sign/zero extend and add, normal: SXTAB, SXTAH, UXTAB, UXTAH def : InstRW<[A57Write_2cyc_1M], (instregex "(t2)?SXTA(B|H)$", "(t2)?UXTA(B|H)$")>; // Sign/zero extend and add, parallel: SXTAB16, UXTAB16 def : InstRW<[A57Write_4cyc_1M], (instregex "(t2)?SXTAB16", "(t2)?UXTAB16")>; // Sum of absolute differences: USAD8, USADA8 def : InstRW<[A57Write_3cyc_1M], (instregex "(t2)?USAD8", "(t2)?USADA8")>; // --- 3.8 Load Instructions --- // Load, immed offset // LDR and LDRB have LDRi12 and LDRBi12 forms for immediate def : InstRW<[A57Write_4cyc_1L], (instregex "LDRi12", "LDRBi12", "LDRcp", "(t2|t)?LDRConstPool", "LDRLIT_ga_(pcrel|abs)", "PICLDR", "tLDR")>; def : InstRW<[A57Write_4cyc_1L], (instregex "t2LDRS?(B|H)?(pcrel|T|i8|i12|pci|pci_pic|s)?$")>; // For "Load, register offset, minus" we need +1cyc, +1I def A57WriteLdrAm3 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteLdrAm3], (instregex "LDR(H|SH|SB)$")>; def A57WriteLdrAm3X2 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteLdrAm3X2, A57WriteLdrAm3X2], (instregex "LDRD$")>; def : InstRW<[A57Write_4cyc_1L, A57Write_4cyc_1L], (instregex "t2LDRDi8")>; def A57WriteLdrAmLDSTSO : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar ]>; def : InstRW<[A57WriteLdrAmLDSTSO], (instregex "LDRrs", "LDRBrs")>; def A57WrBackOne : SchedWriteRes<[]> { let Latency = 1; let NumMicroOps = 0; } def A57WrBackTwo : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; } def A57WrBackThree : SchedWriteRes<[]> { let Latency = 3; let NumMicroOps = 0; } // --- LDR pre-indexed --- // Load, immed pre-indexed (4 cyc for load result, 1 cyc for Base update) def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackOne], (instregex "LDR_PRE_IMM", "LDRB_PRE_IMM", "t2LDRB_PRE")>; // Load, register pre-indexed (4 cyc for load result, 2 cyc for Base update) // (5 cyc load result for not-lsl2 scaled) def A57WriteLdrAmLDSTSOPre : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteLdrAmLDSTSOPre, A57WrBackTwo], (instregex "LDR_PRE_REG", "LDRB_PRE_REG")>; def A57WriteLdrAm3PreWrBack : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57Write_4cyc_1L, A57WriteLdrAm3PreWrBack], (instregex "LDR(H|SH|SB)_PRE")>; def : InstRW<[A57Write_4cyc_1L, A57WrBackOne], (instregex "t2LDR(H|SH|SB)?_PRE")>; // LDRD pre-indexed: 5(2) cyc for reg, 4(1) cyc for imm. def A57WriteLdrDAm3Pre : SchedWriteVariant<[ SchedVar, SchedVar ]>; def A57WriteLdrDAm3PreWrBack : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteLdrDAm3Pre, A57WriteLdrDAm3Pre, A57WriteLdrDAm3PreWrBack], (instregex "LDRD_PRE")>; def : InstRW<[A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I, A57WrBackOne], (instregex "t2LDRD_PRE")>; // --- LDR post-indexed --- def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackOne], (instregex "LDR(T?)_POST_IMM", "LDRB(T?)_POST_IMM", "LDR(SB|H|SH)Ti", "t2LDRB_POST")>; def A57WriteLdrAm3PostWrBack : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57Write_4cyc_1L_1I, A57WriteLdrAm3PostWrBack], (instregex "LDR(H|SH|SB)_POST")>; def : InstRW<[A57Write_4cyc_1L, A57WrBackOne], (instregex "t2LDR(H|SH|SB)?_POST")>; def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackTwo], (instregex "LDR_POST_REG", "LDRB_POST_REG", "LDR(B?)T_POST$")>; def A57WriteLdrTRegPost : SchedWriteVariant<[ SchedVar, SchedVar ]>; def A57WriteLdrTRegPostWrBack : SchedWriteVariant<[ SchedVar, SchedVar ]>; // 4(3) "I0/I1,L,M" for scaled register, otherwise 4(2) "I0/I1,L" def : InstRW<[A57WriteLdrTRegPost, A57WriteLdrTRegPostWrBack], (instregex "LDRT_POST_REG", "LDRBT_POST_REG")>; def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackTwo], (instregex "LDR(SB|H|SH)Tr")>; def A57WriteLdrAm3PostWrBackX3 : SchedWriteVariant<[ SchedVar, SchedVar ]>; // LDRD post-indexed: 4(2) cyc for reg, 4(1) cyc for imm. def : InstRW<[A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I, A57WriteLdrAm3PostWrBackX3], (instregex "LDRD_POST")>; def : InstRW<[A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I, A57WrBackOne], (instregex "t2LDRD_POST")>; // --- Preload instructions --- // Preload, immed offset def : InstRW<[A57Write_4cyc_1L], (instregex "(t2)?PLDi12", "(t2)?PLDWi12", "t2PLDW?(i8|pci|s)", "(t2)?PLI")>; // Preload, register offset, // 5cyc "I0/I1,L" for minus reg or scaled not plus lsl2 // otherwise 4cyc "L" def A57WritePLD : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar ]>; def : InstRW<[A57WritePLD], (instregex "PLDrs", "PLDWrs")>; // --- Load multiple instructions --- foreach NumAddr = 1-8 in { def A57LMAddrPred#NumAddr : SchedPredicate<"(TII->getLDMVariableDefsSize(*MI)+1)/2 == "#NumAddr>; } def A57LDMOpsListNoregin : A57WriteLMOpsListType< [A57Write_3cyc_1L, A57Write_3cyc_1L, A57Write_4cyc_1L, A57Write_4cyc_1L, A57Write_5cyc_1L, A57Write_5cyc_1L, A57Write_6cyc_1L, A57Write_6cyc_1L, A57Write_7cyc_1L, A57Write_7cyc_1L, A57Write_8cyc_1L, A57Write_8cyc_1L, A57Write_9cyc_1L, A57Write_9cyc_1L, A57Write_10cyc_1L, A57Write_10cyc_1L]>; def A57WriteLDMnoreginlist : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]> { let Variadic=1; } def A57LDMOpsListRegin : A57WriteLMOpsListType< [A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I, A57Write_5cyc_1L_1I, A57Write_5cyc_1L_1I, A57Write_6cyc_1L_1I, A57Write_6cyc_1L_1I, A57Write_7cyc_1L_1I, A57Write_7cyc_1L_1I, A57Write_8cyc_1L_1I, A57Write_8cyc_1L_1I, A57Write_9cyc_1L_1I, A57Write_9cyc_1L_1I, A57Write_10cyc_1L_1I, A57Write_10cyc_1L_1I, A57Write_11cyc_1L_1I, A57Write_11cyc_1L_1I]>; def A57WriteLDMreginlist : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]> { let Variadic=1; } def A57LDMOpsList_Upd : A57WriteLMOpsListType< [A57WrBackOne, A57Write_3cyc_1L_1I, A57Write_3cyc_1L_1I, A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I, A57Write_5cyc_1L_1I, A57Write_5cyc_1L_1I, A57Write_6cyc_1L_1I, A57Write_6cyc_1L_1I, A57Write_7cyc_1L_1I, A57Write_7cyc_1L_1I, A57Write_8cyc_1L_1I, A57Write_8cyc_1L_1I, A57Write_9cyc_1L_1I, A57Write_9cyc_1L_1I, A57Write_10cyc_1L_1I, A57Write_10cyc_1L_1I]>; def A57WriteLDM_Upd : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]> { let Variadic=1; } def A57WriteLDM : SchedWriteVariant<[ SchedVar, SchedVar ]> { let Variadic=1; } def : InstRW<[A57WriteLDM], (instregex "(t|t2|sys)?LDM(IA|DA|DB|IB)$")>; // TODO: no writeback latency defined in documentation (implemented as 1 cyc) def : InstRW<[A57WriteLDM_Upd], (instregex "(t|t2|sys)?LDM(IA_UPD|DA_UPD|DB_UPD|IB_UPD|IA_RET)", "tPOP")>; // --- 3.9 Store Instructions --- // Store, immed offset def : InstRW<[A57Write_1cyc_1S], (instregex "STRi12", "STRBi12", "PICSTR", "t2STR(B?)(T|i12|i8|s)", "t2STRDi8", "t2STRH(i12|i8|s)", "tSTR")>; // Store, register offset // For minus or for not plus lsl2 scaled we need 3cyc "I0/I1, S", // otherwise 1cyc S. def A57WriteStrAmLDSTSO : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar ]>; def : InstRW<[A57WriteStrAmLDSTSO], (instregex "STRrs", "STRBrs")>; // STRH,STRD: 3cyc "I0/I1, S" for minus reg, 1cyc S for imm or for plus reg. def A57WriteStrAm3 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteStrAm3], (instregex "STRH$")>; def A57WriteStrAm3X2 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteStrAm3X2], (instregex "STRD$")>; // Store, immed pre-indexed (1cyc "S, I0/I1", 1cyc writeback) def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I], (instregex "STR_PRE_IMM", "STRB_PRE_IMM", "STR(B)?(r|i)_preidx", "(t2)?STRH_(preidx|PRE)", "t2STR(B?)_(PRE|preidx)", "t2STRD_PRE")>; // Store, register pre-indexed: // 1(1) "S, I0/I1" for plus reg // 3(2) "I0/I1, S" for minus reg // 1(2) "S, M" for scaled plus lsl2 // 3(2) "I0/I1, S" for other scaled def A57WriteStrAmLDSTSOPre : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar ]>; def A57WriteStrAmLDSTSOPreWrBack : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar ]>; def : InstRW<[A57WriteStrAmLDSTSOPreWrBack, A57WriteStrAmLDSTSOPre], (instregex "STR_PRE_REG", "STRB_PRE_REG")>; // pre-indexed STRH/STRD (STRH_PRE, STRD_PRE) // 1(1) "S, I0/I1" for imm or reg plus // 3(2) "I0/I1, S" for reg minus def A57WriteStrAm3PreX2 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def A57WriteStrAm3PreWrBackX2 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteStrAm3PreWrBackX2, A57WriteStrAm3PreX2], (instregex "STRH_PRE")>; def A57WriteStrAm3PreX3 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def A57WriteStrAm3PreWrBackX3 : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteStrAm3PreWrBackX3, A57WriteStrAm3PreX3], (instregex "STRD_PRE")>; def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I], (instregex "STR(T?)_POST_IMM", "STRB(T?)_POST_IMM", "t2STR(B?)_POST")>; // 1(2) "S, M" for STR/STRB register post-indexed (both scaled or not) def : InstRW<[A57WrBackTwo, A57Write_1cyc_1S_1M], (instregex "STR(T?)_POST_REG", "STRB(T?)_POST_REG", "STR(B?)T_POST$")>; // post-indexed STRH/STRD(STRH_POST, STRD_POST), STRHTi, STRHTr // 1(1) "S, I0/I1" both for reg or imm def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I], (instregex "(t2)?STR(H|D)_POST", "STRHT(i|r)", "t2STRHT")>; // --- Store multiple instructions --- // TODO: no writeback latency defined in documentation def A57WriteSTM : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]>; def A57WriteSTM_Upd : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]>; def : InstRW<[A57WriteSTM], (instregex "(t2|sys|t)?STM(IA|DA|DB|IB)$")>; def : InstRW<[A57WrBackOne, A57WriteSTM_Upd], (instregex "(t2|sys|t)?STM(IA_UPD|DA_UPD|DB_UPD|IB_UPD)", "tPUSH")>; // --- 3.10 FP Data Processing Instructions --- def : SchedAlias; def : SchedAlias; def : InstRW<[A57Write_3cyc_1V], (instregex "VABS(S|D|H)")>; // fp compare - 3cyc F1 for unconditional, 6cyc "F0/F1, F1" for conditional def A57WriteVcmp : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[A57WriteVcmp], (instregex "VCMP(D|S|H|ZD|ZS|ZH)$", "VCMPE(D|S|H|ZD|ZS|ZH)")>; // fp convert def : InstRW<[A57Write_5cyc_1V], (instregex "VCVT(A|N|P|M)(SH|UH|SS|US|SD|UD)", "VCVT(BDH|THD|TDH)")>; def : SchedAlias; // FP round to integral def : InstRW<[A57Write_5cyc_1V], (instregex "VRINT(A|N|P|M|Z|R|X)(H|S|D)$")>; // FP divide, FP square root def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; // FP max/min def : InstRW<[A57Write_5cyc_1V], (instregex "VMAX", "VMIN")>; // FP multiply-accumulate pipelines support late forwarding of the result // from FP multiply μops to the accumulate operands of an // FP multiply-accumulate μop. The latter can potentially be issued 1 cycle // after the FP multiply μop has been issued // FP multiply, FZ def A57WriteVMUL : SchedWriteRes<[A57UnitV]> { let Latency = 5; } def : SchedAlias; def : SchedAlias; def : ReadAdvance; // FP multiply accumulate, FZ: 9cyc "F0/F1" or 4 cyc for sequenced accumulate // VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VNMLA, VNMLS def A57WriteVFMA : SchedWriteRes<[A57UnitV]> { let Latency = 9; } // VFMA takes 9 cyc for common case and 4 cyc for VFMA->VFMA chain (5 read adv.) // VMUL takes 5 cyc for common case and 1 cyc for VMUL->VFMA chain (4 read adv.) // Currently, there is no way to define different read advances for VFMA operand // from VFMA or from VMUL, so there will be 5 read advance. // Zero latency (instead of one) for VMUL->VFMA shouldn't break something. // The same situation with ASIMD VMUL/VFMA instructions // def A57ReadVFMA : SchedRead; // def : ReadAdvance; // def : ReadAdvance; def A57ReadVFMA5 : SchedReadAdvance<5, [A57WriteVFMA, A57WriteVMUL]>; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : InstRW<[A57Write_3cyc_1V], (instregex "VNEG")>; def : InstRW<[A57Write_3cyc_1V], (instregex "VSEL")>; // --- 3.11 FP Miscellaneous Instructions --- // VMOV: 3cyc "F0/F1" for imm/reg def : InstRW<[A57Write_3cyc_1V], (instregex "FCONST(D|S|H)")>; def : InstRW<[A57Write_3cyc_1V], (instregex "VMOV(D|S|H)(cc)?$")>; // 5cyc L for FP transfer, vfp to core reg, // 5cyc L for FP transfer, core reg to vfp def : SchedAlias; // VMOVRRS/VMOVRRD in common code declared with one WriteFPMOV (instead of 2). def : InstRW<[A57Write_5cyc_1L, A57Write_5cyc_1L], (instregex "VMOV(RRS|RRD)")>; // 8cyc "L,F0/F1" for FP transfer, core reg to upper or lower half of vfp D-reg def : InstRW<[A57Write_8cyc_1L_1I], (instregex "VMOVDRR")>; // --- 3.12 FP Load Instructions --- def : InstRW<[A57Write_5cyc_1L], (instregex "VLDR(D|S|H)")>; def : InstRW<[A57Write_5cyc_1L], (instregex "VLDMQIA$")>; // FP load multiple (VLDM) def A57VLDMOpsListUncond : A57WriteLMOpsListType< [A57Write_5cyc_1L, A57Write_5cyc_1L, A57Write_6cyc_1L, A57Write_6cyc_1L, A57Write_7cyc_1L, A57Write_7cyc_1L, A57Write_8cyc_1L, A57Write_8cyc_1L, A57Write_9cyc_1L, A57Write_9cyc_1L, A57Write_10cyc_1L, A57Write_10cyc_1L, A57Write_11cyc_1L, A57Write_11cyc_1L, A57Write_12cyc_1L, A57Write_12cyc_1L]>; def A57WriteVLDMuncond : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]> { let Variadic=1; } def A57VLDMOpsListCond : A57WriteLMOpsListType< [A57Write_5cyc_1L, A57Write_6cyc_1L, A57Write_7cyc_1L, A57Write_8cyc_1L, A57Write_9cyc_1L, A57Write_10cyc_1L, A57Write_11cyc_1L, A57Write_12cyc_1L, A57Write_13cyc_1L, A57Write_14cyc_1L, A57Write_15cyc_1L, A57Write_16cyc_1L, A57Write_17cyc_1L, A57Write_18cyc_1L, A57Write_19cyc_1L, A57Write_20cyc_1L]>; def A57WriteVLDMcond : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]> { let Variadic=1; } def A57WriteVLDM : SchedWriteVariant<[ SchedVar, SchedVar ]> { let Variadic=1; } def : InstRW<[A57WriteVLDM], (instregex "VLDM(DIA|SIA)$")>; def A57VLDMOpsListUncond_Upd : A57WriteLMOpsListType< [A57Write_5cyc_1L_1I, A57Write_5cyc_1L_1I, A57Write_6cyc_1L_1I, A57Write_6cyc_1L_1I, A57Write_7cyc_1L_1I, A57Write_7cyc_1L_1I, A57Write_8cyc_1L_1I, A57Write_8cyc_1L_1I, A57Write_9cyc_1L_1I, A57Write_9cyc_1L_1I, A57Write_10cyc_1L_1I, A57Write_10cyc_1L_1I, A57Write_11cyc_1L_1I, A57Write_11cyc_1L_1I, A57Write_12cyc_1L_1I, A57Write_12cyc_1L_1I]>; def A57WriteVLDMuncond_UPD : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]> { let Variadic=1; } def A57VLDMOpsListCond_Upd : A57WriteLMOpsListType< [A57Write_5cyc_1L_1I, A57Write_6cyc_1L_1I, A57Write_7cyc_1L_1I, A57Write_8cyc_1L_1I, A57Write_9cyc_1L_1I, A57Write_10cyc_1L_1I, A57Write_11cyc_1L_1I, A57Write_12cyc_1L_1I, A57Write_13cyc_1L_1I, A57Write_14cyc_1L_1I, A57Write_15cyc_1L_1I, A57Write_16cyc_1L_1I, A57Write_17cyc_1L_1I, A57Write_18cyc_1L_1I, A57Write_19cyc_1L_1I, A57Write_20cyc_1L_1I]>; def A57WriteVLDMcond_UPD : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]> { let Variadic=1; } def A57WriteVLDM_UPD : SchedWriteVariant<[ SchedVar, SchedVar ]> { let Variadic=1; } def : InstRW<[A57WrBackOne, A57WriteVLDM_UPD], (instregex "VLDM(DIA_UPD|DDB_UPD|SIA_UPD|SDB_UPD)")>; // --- 3.13 FP Store Instructions --- def : InstRW<[A57Write_1cyc_1S], (instregex "VSTR(D|S|H)")>; def : InstRW<[A57Write_2cyc_1S], (instregex "VSTMQIA$")>; def A57WriteVSTMs : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]>; def A57WriteVSTMd : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]>; def A57WriteVSTMs_Upd : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]>; def A57WriteVSTMd_Upd : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar, SchedVar ]>; def : InstRW<[A57WriteVSTMs], (instregex "VSTMSIA$")>; def : InstRW<[A57WriteVSTMd], (instregex "VSTMDIA$")>; def : InstRW<[A57WrBackOne, A57WriteVSTMs_Upd], (instregex "VSTM(SIA_UPD|SDB_UPD)")>; def : InstRW<[A57WrBackOne, A57WriteVSTMd_Upd], (instregex "VSTM(DIA_UPD|DDB_UPD)")>; // --- 3.14 ASIMD Integer Instructions --- // ASIMD absolute diff, 3cyc F0/F1 for integer VABD def : InstRW<[A57Write_3cyc_1V], (instregex "VABD(s|u)")>; // ASIMD absolute diff accum: 4(1) F1 for D-form, 5(2) F1 for Q-form def A57WriteVABAD : SchedWriteRes<[A57UnitX]> { let Latency = 4; } def A57ReadVABAD : SchedReadAdvance<3, [A57WriteVABAD]>; def : InstRW<[A57WriteVABAD, A57ReadVABAD], (instregex "VABA(s|u)(v8i8|v4i16|v2i32)")>; def A57WriteVABAQ : SchedWriteRes<[A57UnitX]> { let Latency = 5; } def A57ReadVABAQ : SchedReadAdvance<3, [A57WriteVABAQ]>; def : InstRW<[A57WriteVABAQ, A57ReadVABAQ], (instregex "VABA(s|u)(v16i8|v8i16|v4i32)")>; // ASIMD absolute diff accum long: 4(1) F1 for VABAL def A57WriteVABAL : SchedWriteRes<[A57UnitX]> { let Latency = 4; } def A57ReadVABAL : SchedReadAdvance<3, [A57WriteVABAL]>; def : InstRW<[A57WriteVABAL, A57ReadVABAL], (instregex "VABAL(s|u)")>; // ASIMD absolute diff long: 3cyc F0/F1 for VABDL def : InstRW<[A57Write_3cyc_1V], (instregex "VABDL(s|u)")>; // ASIMD arith, basic def : InstRW<[A57Write_3cyc_1V], (instregex "VADDv", "VADDL", "VADDW", "VNEG(s8d|s16d|s32d|s8q|s16q|s32q|d|q)", "VPADDi", "VPADDL", "VSUBv", "VSUBL", "VSUBW")>; // ASIMD arith, complex def : InstRW<[A57Write_3cyc_1V], (instregex "VABS", "VADDHN", "VHADD", "VHSUB", "VQABS", "VQADD", "VQNEG", "VQSUB", "VRADDHN", "VRHADD", "VRSUBHN", "VSUBHN")>; // ASIMD compare def : InstRW<[A57Write_3cyc_1V], (instregex "VCEQ", "VCGE", "VCGT", "VCLE", "VTST", "VCLT")>; // ASIMD logical def : InstRW<[A57Write_3cyc_1V], (instregex "VAND", "VBIC", "VMVN", "VORR", "VORN", "VEOR")>; // ASIMD max/min def : InstRW<[A57Write_3cyc_1V], (instregex "(VMAX|VMIN)(s|u)", "(VPMAX|VPMIN)(s8|s16|s32|u8|u16|u32)")>; // ASIMD multiply, D-form: 5cyc F0 for r0px, 4cyc F0 for r1p0 and later // Cortex-A57 r1p0 and later reduce the latency of ASIMD multiply // and multiply-with-accumulate instructions relative to r0pX. def A57WriteVMULD_VecInt : SchedWriteVariant<[ SchedVar, SchedVar]>; def : InstRW<[A57WriteVMULD_VecInt], (instregex "VMUL(v8i8|v4i16|v2i32|pd)", "VMULsl(v4i16|v2i32)", "VQDMULH(sl)?(v4i16|v2i32)", "VQRDMULH(sl)?(v4i16|v2i32)")>; // ASIMD multiply, Q-form: 6cyc F0 for r0px, 5cyc F0 for r1p0 and later def A57WriteVMULQ_VecInt : SchedWriteVariant<[ SchedVar, SchedVar]>; def : InstRW<[A57WriteVMULQ_VecInt], (instregex "VMUL(v16i8|v8i16|v4i32|pq)", "VMULsl(v8i16|v4i32)", "VQDMULH(sl)?(v8i16|v4i32)", "VQRDMULH(sl)?(v8i16|v4i32)")>; // ASIMD multiply accumulate, D-form // 5cyc F0 for r0px, 4cyc F0 for r1p0 and later, 1cyc for accumulate sequence // (4 or 3 ReadAdvance) def A57WriteVMLAD_VecInt : SchedWriteVariant<[ SchedVar, SchedVar]>; def A57ReadVMLAD_VecInt : SchedReadVariant<[ SchedVar]>, SchedVar]> ]>; def : InstRW<[A57WriteVMLAD_VecInt, A57ReadVMLAD_VecInt], (instregex "VMLA(sl)?(v8i8|v4i16|v2i32)", "VMLS(sl)?(v8i8|v4i16|v2i32)")>; // ASIMD multiply accumulate, Q-form // 6cyc F0 for r0px, 5cyc F0 for r1p0 and later, 2cyc for accumulate sequence // (4 or 3 ReadAdvance) def A57WriteVMLAQ_VecInt : SchedWriteVariant<[ SchedVar, SchedVar]>; def A57ReadVMLAQ_VecInt : SchedReadVariant<[ SchedVar]>, SchedVar]> ]>; def : InstRW<[A57WriteVMLAQ_VecInt, A57ReadVMLAQ_VecInt], (instregex "VMLA(sl)?(v16i8|v8i16|v4i32)", "VMLS(sl)?(v16i8|v8i16|v4i32)")>; // ASIMD multiply accumulate long // 5cyc F0 for r0px, 4cyc F0 for r1p0 and later, 1cyc for accumulate sequence // (4 or 3 ReadAdvance) def A57WriteVMLAL_VecInt : SchedWriteVariant<[ SchedVar, SchedVar]>; def A57ReadVMLAL_VecInt : SchedReadVariant<[ SchedVar]>, SchedVar]> ]>; def : InstRW<[A57WriteVMLAL_VecInt, A57ReadVMLAL_VecInt], (instregex "VMLAL(s|u)", "VMLSL(s|u)")>; // ASIMD multiply accumulate saturating long // 5cyc F0 for r0px, 4cyc F0 for r1p0 and later, 2cyc for accumulate sequence // (3 or 2 ReadAdvance) def A57WriteVQDMLAL_VecInt : SchedWriteVariant<[ SchedVar, SchedVar]>; def A57ReadVQDMLAL_VecInt : SchedReadVariant<[ SchedVar]>, SchedVar]> ]>; def : InstRW<[A57WriteVQDMLAL_VecInt, A57ReadVQDMLAL_VecInt], (instregex "VQDMLAL", "VQDMLSL")>; // ASIMD multiply long // 5cyc F0 for r0px, 4cyc F0 for r1p0 and later def A57WriteVMULL_VecInt : SchedWriteVariant<[ SchedVar, SchedVar]>; def : InstRW<[A57WriteVMULL_VecInt], (instregex "VMULL(s|u|p8|sls|slu)", "VQDMULL")>; // ASIMD pairwise add and accumulate // 4cyc F1, 1cyc for accumulate sequence (3cyc ReadAdvance) def A57WriteVPADAL : SchedWriteRes<[A57UnitX]> { let Latency = 4; } def A57ReadVPADAL : SchedReadAdvance<3, [A57WriteVPADAL]>; def : InstRW<[A57WriteVPADAL, A57ReadVPADAL], (instregex "VPADAL(s|u)")>; // ASIMD shift accumulate // 4cyc F1, 1cyc for accumulate sequence (3cyc ReadAdvance) def A57WriteVSRA : SchedWriteRes<[A57UnitX]> { let Latency = 4; } def A57ReadVSRA : SchedReadAdvance<3, [A57WriteVSRA]>; def : InstRW<[A57WriteVSRA, A57ReadVSRA], (instregex "VSRA", "VRSRA")>; // ASIMD shift by immed, basic def : InstRW<[A57Write_3cyc_1X], (instregex "VMOVL", "VSHLi", "VSHLL", "VSHR(s|u)", "VSHRN")>; // ASIMD shift by immed, complex def : InstRW<[A57Write_4cyc_1X], (instregex "VQRSHRN", "VQRSHRUN", "VQSHL(si|ui|su)", "VQSHRN", "VQSHRUN", "VRSHR(s|u)", "VRSHRN")>; // ASIMD shift by immed and insert, basic, D-form def : InstRW<[A57Write_4cyc_1X], (instregex "VSLI(v8i8|v4i16|v2i32|v1i64)", "VSRI(v8i8|v4i16|v2i32|v1i64)")>; // ASIMD shift by immed and insert, basic, Q-form def : InstRW<[A57Write_5cyc_1X], (instregex "VSLI(v16i8|v8i16|v4i32|v2i64)", "VSRI(v16i8|v8i16|v4i32|v2i64)")>; // ASIMD shift by register, basic, D-form def : InstRW<[A57Write_3cyc_1X], (instregex "VSHL(s|u)(v8i8|v4i16|v2i32|v1i64)")>; // ASIMD shift by register, basic, Q-form def : InstRW<[A57Write_4cyc_1X], (instregex "VSHL(s|u)(v16i8|v8i16|v4i32|v2i64)")>; // ASIMD shift by register, complex, D-form // VQRSHL, VQSHL, VRSHL def : InstRW<[A57Write_4cyc_1X], (instregex "VQRSHL(s|u)(v8i8|v4i16|v2i32|v1i64)", "VQSHL(s|u)(v8i8|v4i16|v2i32|v1i64)", "VRSHL(s|u)(v8i8|v4i16|v2i32|v1i64)")>; // ASIMD shift by register, complex, Q-form def : InstRW<[A57Write_5cyc_1X], (instregex "VQRSHL(s|u)(v16i8|v8i16|v4i32|v2i64)", "VQSHL(s|u)(v16i8|v8i16|v4i32|v2i64)", "VRSHL(s|u)(v16i8|v8i16|v4i32|v2i64)")>; // --- 3.15 ASIMD Floating-Point Instructions --- // ASIMD FP absolute value def : InstRW<[A57Write_3cyc_1V], (instregex "VABS(fd|fq|hd|hq)")>; // ASIMD FP arith def : InstRW<[A57Write_5cyc_1V], (instregex "VABD(fd|fq|hd|hq)", "VADD(fd|fq|hd|hq)", "VPADD(f|h)", "VSUB(fd|fq|hd|hq)")>; // ASIMD FP compare def : InstRW<[A57Write_5cyc_1V], (instregex "VAC(GE|GT|LE|LT)", "VC(EQ|GE|GT|LE)(fd|fq|hd|hq)")>; // ASIMD FP convert, integer def : InstRW<[A57Write_5cyc_1V], (instregex "VCVT(f2sd|f2ud|s2fd|u2fd|f2sq|f2uq|s2fq|u2fq|f2xsd|f2xud|xs2fd|xu2fd)", "VCVT(f2xsq|f2xuq|xs2fq|xu2fq)", "VCVT(AN|MN|NN|PN)(SDf|SQf|UDf|UQf|SDh|SQh|UDh|UQh)")>; // ASIMD FP convert, half-precision: 8cyc F0/F1 def : InstRW<[A57Write_8cyc_1V], (instregex "VCVT(h2sd|h2ud|s2hd|u2hd|h2sq|h2uq|s2hq|u2hq|h2xsd|h2xud|xs2hd|xu2hd)", "VCVT(h2xsq|h2xuq|xs2hq|xu2hq)", "VCVT(f2h|h2f)")>; // ASIMD FP max/min def : InstRW<[A57Write_5cyc_1V], (instregex "(VMAX|VMIN)(fd|fq|hd|hq)", "(VPMAX|VPMIN)(f|h)", "VMAXNM", "VMINNM")>; // ASIMD FP multiply def A57WriteVMUL_VecFP : SchedWriteRes<[A57UnitV]> { let Latency = 5; } def : InstRW<[A57WriteVMUL_VecFP], (instregex "VMUL(sl)?(fd|fq|hd|hq)")>; // ASIMD FP multiply accumulate: 9cyc F0/F1, 4cyc for accumulate sequence def A57WriteVMLA_VecFP : SchedWriteRes<[A57UnitV]> { let Latency = 9; } def A57ReadVMLA_VecFP : SchedReadAdvance<5, [A57WriteVMLA_VecFP, A57WriteVMUL_VecFP]>; def : InstRW<[A57WriteVMLA_VecFP, A57ReadVMLA_VecFP], (instregex "(VMLA|VMLS)(sl)?(fd|fq|hd|hq)", "(VFMA|VFMS)(fd|fq|hd|hq)")>; // ASIMD FP negate def : InstRW<[A57Write_3cyc_1V], (instregex "VNEG(fd|f32q|hd|hq)")>; // ASIMD FP round to integral def : InstRW<[A57Write_5cyc_1V], (instregex "VRINT(AN|MN|NN|PN|XN|ZN)(Df|Qf|Dh|Qh)")>; // --- 3.16 ASIMD Miscellaneous Instructions --- // ASIMD bitwise insert def : InstRW<[A57Write_3cyc_1V], (instregex "VBIF", "VBIT", "VBSL")>; // ASIMD count def : InstRW<[A57Write_3cyc_1V], (instregex "VCLS", "VCLZ", "VCNT")>; // ASIMD duplicate, core reg: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V], (instregex "VDUP(8|16|32)(d|q)")>; // ASIMD duplicate, scalar: 3cyc "F0/F1" def : InstRW<[A57Write_3cyc_1V], (instregex "VDUPLN(8|16|32)(d|q)")>; // ASIMD extract def : InstRW<[A57Write_3cyc_1V], (instregex "VEXT(d|q)(8|16|32|64)")>; // ASIMD move, immed def : InstRW<[A57Write_3cyc_1V], (instregex "VMOV(v8i8|v16i8|v4i16|v8i16|v2i32|v4i32|v1i64|v2i64|v2f32|v4f32)", "VMOVQ0")>; // ASIMD move, narrowing def : InstRW<[A57Write_3cyc_1V], (instregex "VMOVN")>; // ASIMD move, saturating def : InstRW<[A57Write_4cyc_1X], (instregex "VQMOVN")>; // ASIMD reciprocal estimate def : InstRW<[A57Write_5cyc_1V], (instregex "VRECPE", "VRSQRTE")>; // ASIMD reciprocal step, FZ def : InstRW<[A57Write_9cyc_1V], (instregex "VRECPS", "VRSQRTS")>; // ASIMD reverse, swap, table lookup (1-2 reg) def : InstRW<[A57Write_3cyc_1V], (instregex "VREV", "VSWP", "VTB(L|X)(1|2)")>; // ASIMD table lookup (3-4 reg) def : InstRW<[A57Write_6cyc_1V], (instregex "VTBL(3|4)", "VTBX(3|4)")>; // ASIMD transfer, scalar to core reg: 6cyc "L, I0/I1" def : InstRW<[A57Write_6cyc_1L_1I], (instregex "VGETLN")>; // ASIMD transfer, core reg to scalar: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V], (instregex "VSETLN")>; // ASIMD transpose def : InstRW<[A57Write_3cyc_1V, A57Write_3cyc_1V], (instregex "VTRN")>; // ASIMD unzip/zip, D-form def : InstRW<[A57Write_3cyc_1V, A57Write_3cyc_1V], (instregex "VUZPd", "VZIPd")>; // ASIMD unzip/zip, Q-form def : InstRW<[A57Write_6cyc_1V, A57Write_6cyc_1V], (instregex "VUZPq", "VZIPq")>; // --- 3.17 ASIMD Load Instructions --- // Overriden via InstRW for this processor. def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; // 1-2 reg: 5cyc L, +I for writeback, 1 cyc wb latency def : InstRW<[A57Write_5cyc_1L], (instregex "VLD1(d|q)(8|16|32|64)$")>; def : InstRW<[A57Write_5cyc_1L_1I, A57WrBackOne], (instregex "VLD1(d|q)(8|16|32|64)wb")>; // 3-4 reg: 6cyc L, +I for writeback, 1 cyc wb latency def : InstRW<[A57Write_6cyc_1L], (instregex "VLD1(d|q)(8|16|32|64)(T|Q)$", "VLD1d64(T|Q)Pseudo")>; def : InstRW<[A57Write_6cyc_1L_1I, A57WrBackOne], (instregex "VLD1(d|q)(8|16|32|64)(T|Q)wb")>; // ASIMD load, 1 element, one lane and all lanes: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V], (instregex "VLD1(LN|DUP)(d|q)(8|16|32)$", "VLD1(LN|DUP)(d|q)(8|16|32)Pseudo$")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD1(LN|DUP)(d|q)(8|16|32)(wb|_UPD)", "VLD1LNq(8|16|32)Pseudo_UPD")>; // ASIMD load, 2 element, multiple, 2 reg: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V], (instregex "VLD2(d|q)(8|16|32)$", "VLD2q(8|16|32)Pseudo$")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD2(d|q)(8|16|32)wb", "VLD2q(8|16|32)PseudoWB")>; // ASIMD load, 2 element, multiple, 4 reg: 9cyc "L, F0/F1" def : InstRW<[A57Write_9cyc_1L_1V], (instregex "VLD2b(8|16|32)$")>; def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD2b(8|16|32)wb")>; // ASIMD load, 2 element, one lane and all lanes: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V], (instregex "VLD2(DUP|LN)(d|q)(8|16|32|8x2|16x2|32x2)$", "VLD2LN(d|q)(8|16|32)Pseudo$")>; // 2 results + wb result def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V, A57WrBackOne], (instregex "VLD2LN(d|q)(8|16|32)_UPD$")>; // 1 result + wb result def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD2DUPd(8|16|32|8x2|16x2|32x2)wb", "VLD2LN(d|q)(8|16|32)Pseudo_UPD")>; // ASIMD load, 3 element, multiple, 3 reg: 9cyc "L, F0/F1" // 3 results def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V], (instregex "VLD3(d|q)(8|16|32)$")>; // 1 result def : InstRW<[A57Write_9cyc_1L_1V], (instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo$")>; // 3 results + wb def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3(d|q)(8|16|32)_UPD$")>; // 1 result + wb def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo_UPD")>; // ASIMD load, 3 element, one lane, size 32: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V], (instregex "VLD3LN(d|q)32$", "VLD3LN(d|q)32Pseudo$")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3LN(d|q)32_UPD")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3LN(d|q)32Pseudo_UPD")>; // ASIMD load, 3 element, one lane, size 8/16: 9cyc "L, F0/F1" def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V], (instregex "VLD3LN(d|q)(8|16)$", "VLD3LN(d|q)(8|16)Pseudo$")>; def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3LN(d|q)(8|16)_UPD")>; def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3LN(d|q)(8|16)Pseudo_UPD")>; // ASIMD load, 3 element, all lanes: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V], (instregex "VLD3DUP(d|q)(8|16|32)$", "VLD3DUP(d|q)(8|16|32)Pseudo$")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3DUP(d|q)(8|16|32)_UPD")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD3DUP(d|q)(8|16|32)Pseudo_UPD")>; // ASIMD load, 4 element, multiple, 4 reg: 9cyc "L, F0/F1" def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V], (instregex "VLD4(d|q)(8|16|32)$")>; def : InstRW<[A57Write_9cyc_1L_1V], (instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo$")>; def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4(d|q)(8|16|32)_UPD")>; def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo_UPD")>; // ASIMD load, 4 element, one lane, size 32: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V], (instregex "VLD4LN(d|q)32$", "VLD4LN(d|q)32Pseudo$")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4LN(d|q)32_UPD")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4LN(d|q)32Pseudo_UPD")>; // ASIMD load, 4 element, one lane, size 8/16: 9cyc "L, F0/F1" def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V], (instregex "VLD4LN(d|q)(8|16)$", "VLD4LN(d|q)(8|16)Pseudo$")>; def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4LN(d|q)(8|16)_UPD")>; def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4LN(d|q)(8|16)Pseudo_UPD")>; // ASIMD load, 4 element, all lanes: 8cyc "L, F0/F1" def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V], (instregex "VLD4DUP(d|q)(8|16|32)$", "VLD4DUP(d|q)(8|16|32)Pseudo$")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4DUP(d|q)(8|16|32)_UPD")>; def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex "VLD4DUP(d|q)(8|16|32)Pseudo_UPD")>; // --- 3.18 ASIMD Store Instructions --- // ASIMD store, 1 element, multiple, 1 reg: 1cyc S def : InstRW<[A57Write_1cyc_1S], (instregex "VST1d(8|16|32|64)$")>; def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I], (instregex "VST1d(8|16|32|64)wb")>; // ASIMD store, 1 element, multiple, 2 reg: 2cyc S def : InstRW<[A57Write_2cyc_1S], (instregex "VST1q(8|16|32|64)$")>; def : InstRW<[A57WrBackOne, A57Write_2cyc_1S_1I], (instregex "VST1q(8|16|32|64)wb")>; // ASIMD store, 1 element, multiple, 3 reg: 3cyc S def : InstRW<[A57Write_3cyc_1S], (instregex "VST1d(8|16|32|64)T$", "VST1d64TPseudo$")>; def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1I], (instregex "VST1d(8|16|32|64)Twb", "VST1d64TPseudoWB")>; // ASIMD store, 1 element, multiple, 4 reg: 4cyc S def : InstRW<[A57Write_4cyc_1S], (instregex "VST1d(8|16|32|64)(Q|QPseudo)$")>; def : InstRW<[A57WrBackOne, A57Write_4cyc_1S_1I], (instregex "VST1d(8|16|32|64)(Qwb|QPseudoWB)")>; // ASIMD store, 1 element, one lane: 3cyc "F0/F1, S" def : InstRW<[A57Write_3cyc_1S_1V], (instregex "VST1LNd(8|16|32)$", "VST1LNq(8|16|32)Pseudo$")>; def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I], (instregex "VST1LNd(8|16|32)_UPD", "VST1LNq(8|16|32)Pseudo_UPD")>; // ASIMD store, 2 element, multiple, 2 reg: 3cyc "F0/F1, S" def : InstRW<[A57Write_3cyc_1S_1V], (instregex "VST2(d|b)(8|16|32)$")>; def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I], (instregex "VST2(b|d)(8|16|32)wb")>; // ASIMD store, 2 element, multiple, 4 reg: 4cyc "F0/F1, S" def : InstRW<[A57Write_4cyc_1S_1V], (instregex "VST2q(8|16|32)$", "VST2q(8|16|32)Pseudo$")>; def : InstRW<[A57WrBackOne, A57Write_4cyc_1S_1V_1I], (instregex "VST2q(8|16|32)wb", "VST2q(8|16|32)PseudoWB")>; // ASIMD store, 2 element, one lane: 3cyc "F0/F1, S" def : InstRW<[A57Write_3cyc_1S_1V], (instregex "VST2LN(d|q)(8|16|32)$", "VST2LN(d|q)(8|16|32)Pseudo$")>; def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I], (instregex "VST2LN(d|q)(8|16|32)_UPD", "VST2LN(d|q)(8|16|32)Pseudo_UPD")>; // ASIMD store, 3 element, multiple, 3 reg def : InstRW<[A57Write_3cyc_1S_1V], (instregex "VST3(d|q)(8|16|32)$", "VST3(d|q)(8|16|32)(oddP|P)seudo$")>; def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I], (instregex "VST3(d|q)(8|16|32)_UPD", "VST3(d|q)(8|16|32)(oddP|P)seudo_UPD$")>; // ASIMD store, 3 element, one lane def : InstRW<[A57Write_3cyc_1S_1V], (instregex "VST3LN(d|q)(8|16|32)$", "VST3LN(d|q)(8|16|32)Pseudo$")>; def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I], (instregex "VST3LN(d|q)(8|16|32)_UPD", "VST3LN(d|q)(8|16|32)Pseudo_UPD")>; // ASIMD store, 4 element, multiple, 4 reg def : InstRW<[A57Write_4cyc_1S_1V], (instregex "VST4(d|q)(8|16|32)$", "VST4(d|q)(8|16|32)(oddP|P)seudo$")>; def : InstRW<[A57WrBackOne, A57Write_4cyc_1S_1V_1I], (instregex "VST4(d|q)(8|16|32)_UPD", "VST4(d|q)(8|16|32)(oddP|P)seudo_UPD$")>; // ASIMD store, 4 element, one lane def : InstRW<[A57Write_3cyc_1S_1V], (instregex "VST4LN(d|q)(8|16|32)$", "VST4LN(d|q)(8|16|32)Pseudo$")>; def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I], (instregex "VST4LN(d|q)(8|16|32)_UPD", "VST4LN(d|q)(8|16|32)Pseudo_UPD")>; // --- 3.19 Cryptography Extensions --- // Crypto AES ops // AESD, AESE, AESIMC, AESMC: 3cyc F0 def : InstRW<[A57Write_3cyc_1W], (instregex "^AES")>; // Crypto polynomial (64x64) multiply long (VMULL.P64): 3cyc F0 def : InstRW<[A57Write_3cyc_1W], (instregex "^VMULLp64")>; // Crypto SHA1 xor ops: 6cyc F0/F1 def : InstRW<[A57Write_6cyc_2V], (instregex "^SHA1SU0")>; // Crypto SHA1 fast ops: 3cyc F0 def : InstRW<[A57Write_3cyc_1W], (instregex "^SHA1(H|SU1)")>; // Crypto SHA1 slow ops: 6cyc F0 def : InstRW<[A57Write_6cyc_2W], (instregex "^SHA1[CMP]")>; // Crypto SHA256 fast ops: 3cyc F0 def : InstRW<[A57Write_3cyc_1W], (instregex "^SHA256SU0")>; // Crypto SHA256 slow ops: 6cyc F0 def : InstRW<[A57Write_6cyc_2W], (instregex "^SHA256(H|H2|SU1)")>; // --- 3.20 CRC --- def : InstRW<[A57Write_3cyc_1W], (instregex "^(t2)?CRC32")>; // ----------------------------------------------------------------------------- // Common definitions def : WriteRes { let Latency = 0; let NumMicroOps = 0; } def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : ReadAdvance; } // SchedModel = CortexA57Model