//===- llvm/lib/Target/ARM/ARMCallLowering.cpp - Call lowering ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This file implements the lowering of LLVM calls to machine code calls for /// GlobalISel. // //===----------------------------------------------------------------------===// #include "ARMCallLowering.h" #include "ARMBaseInstrInfo.h" #include "ARMISelLowering.h" #include "ARMSubtarget.h" #include "Utils/ARMBaseInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/LowLevelTypeImpl.h" #include #include #include #include using namespace llvm; ARMCallLowering::ARMCallLowering(const ARMTargetLowering &TLI) : CallLowering(&TLI) {} static bool isSupportedType(const DataLayout &DL, const ARMTargetLowering &TLI, Type *T) { if (T->isArrayTy()) return true; if (T->isStructTy()) { // For now we only allow homogeneous structs that we can manipulate with // G_MERGE_VALUES and G_UNMERGE_VALUES auto StructT = cast(T); for (unsigned i = 1, e = StructT->getNumElements(); i != e; ++i) if (StructT->getElementType(i) != StructT->getElementType(0)) return false; return true; } EVT VT = TLI.getValueType(DL, T, true); if (!VT.isSimple() || VT.isVector() || !(VT.isInteger() || VT.isFloatingPoint())) return false; unsigned VTSize = VT.getSimpleVT().getSizeInBits(); if (VTSize == 64) // FIXME: Support i64 too return VT.isFloatingPoint(); return VTSize == 1 || VTSize == 8 || VTSize == 16 || VTSize == 32; } namespace { /// Helper class for values going out through an ABI boundary (used for handling /// function return values and call parameters). struct OutgoingValueHandler : public CallLowering::ValueHandler { OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstrBuilder &MIB, CCAssignFn *AssignFn) : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} unsigned getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); LLT p0 = LLT::pointer(0, 32); LLT s32 = LLT::scalar(32); unsigned SPReg = MRI.createGenericVirtualRegister(p0); MIRBuilder.buildCopy(SPReg, ARM::SP); unsigned OffsetReg = MRI.createGenericVirtualRegister(s32); MIRBuilder.buildConstant(OffsetReg, Offset); unsigned AddrReg = MRI.createGenericVirtualRegister(p0); MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg); MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset); return AddrReg; } void assignValueToReg(unsigned ValVReg, unsigned PhysReg, CCValAssign &VA) override { assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); assert(VA.getValVT().getSizeInBits() <= 64 && "Unsupported value size"); assert(VA.getLocVT().getSizeInBits() <= 64 && "Unsupported location size"); unsigned ExtReg = extendRegister(ValVReg, VA); MIRBuilder.buildCopy(PhysReg, ExtReg); MIB.addUse(PhysReg, RegState::Implicit); } void assignValueToAddress(unsigned ValVReg, unsigned Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); unsigned ExtReg = extendRegister(ValVReg, VA); auto MMO = MIRBuilder.getMF().getMachineMemOperand( MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(), /* Alignment */ 0); MIRBuilder.buildStore(ExtReg, Addr, *MMO); } unsigned assignCustomValue(const CallLowering::ArgInfo &Arg, ArrayRef VAs) override { CCValAssign VA = VAs[0]; assert(VA.needsCustom() && "Value doesn't need custom handling"); assert(VA.getValVT() == MVT::f64 && "Unsupported type"); CCValAssign NextVA = VAs[1]; assert(NextVA.needsCustom() && "Value doesn't need custom handling"); assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); assert(VA.getValNo() == NextVA.getValNo() && "Values belong to different arguments"); assert(VA.isRegLoc() && "Value should be in reg"); assert(NextVA.isRegLoc() && "Value should be in reg"); unsigned NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), MRI.createGenericVirtualRegister(LLT::scalar(32))}; MIRBuilder.buildUnmerge(NewRegs, Arg.Reg); bool IsLittle = MIRBuilder.getMF().getSubtarget().isLittle(); if (!IsLittle) std::swap(NewRegs[0], NewRegs[1]); assignValueToReg(NewRegs[0], VA.getLocReg(), VA); assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); return 1; } bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const CallLowering::ArgInfo &Info, CCState &State) override { if (AssignFn(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State)) return true; StackSize = std::max(StackSize, static_cast(State.getNextStackOffset())); return false; } MachineInstrBuilder &MIB; uint64_t StackSize = 0; }; } // end anonymous namespace void ARMCallLowering::splitToValueTypes( const ArgInfo &OrigArg, SmallVectorImpl &SplitArgs, MachineFunction &MF, const SplitArgTy &PerformArgSplit) const { const ARMTargetLowering &TLI = *getTLI(); LLVMContext &Ctx = OrigArg.Ty->getContext(); const DataLayout &DL = MF.getDataLayout(); MachineRegisterInfo &MRI = MF.getRegInfo(); const Function &F = MF.getFunction(); SmallVector SplitVTs; SmallVector Offsets; ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); if (SplitVTs.size() == 1) { // Even if there is no splitting to do, we still want to replace the // original type (e.g. pointer type -> integer). auto Flags = OrigArg.Flags; unsigned OriginalAlignment = DL.getABITypeAlignment(OrigArg.Ty); Flags.setOrigAlign(OriginalAlignment); SplitArgs.emplace_back(OrigArg.Reg, SplitVTs[0].getTypeForEVT(Ctx), Flags, OrigArg.IsFixed); return; } unsigned FirstRegIdx = SplitArgs.size(); for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) { EVT SplitVT = SplitVTs[i]; Type *SplitTy = SplitVT.getTypeForEVT(Ctx); auto Flags = OrigArg.Flags; unsigned OriginalAlignment = DL.getABITypeAlignment(SplitTy); Flags.setOrigAlign(OriginalAlignment); bool NeedsConsecutiveRegisters = TLI.functionArgumentNeedsConsecutiveRegisters( SplitTy, F.getCallingConv(), F.isVarArg()); if (NeedsConsecutiveRegisters) { Flags.setInConsecutiveRegs(); if (i == e - 1) Flags.setInConsecutiveRegsLast(); } SplitArgs.push_back( ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*SplitTy, DL)), SplitTy, Flags, OrigArg.IsFixed}); } for (unsigned i = 0; i < Offsets.size(); ++i) PerformArgSplit(SplitArgs[FirstRegIdx + i].Reg, Offsets[i] * 8); } /// Lower the return value for the already existing \p Ret. This assumes that /// \p MIRBuilder's insertion point is correct. bool ARMCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder, const Value *Val, unsigned VReg, MachineInstrBuilder &Ret) const { if (!Val) // Nothing to do here. return true; auto &MF = MIRBuilder.getMF(); const auto &F = MF.getFunction(); auto DL = MF.getDataLayout(); auto &TLI = *getTLI(); if (!isSupportedType(DL, TLI, Val->getType())) return false; SmallVector SplitVTs; SmallVector Regs; ArgInfo RetInfo(VReg, Val->getType()); setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); splitToValueTypes(RetInfo, SplitVTs, MF, [&](unsigned Reg, uint64_t Offset) { Regs.push_back(Reg); }); if (Regs.size() > 1) MIRBuilder.buildUnmerge(Regs, VReg); CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv(), F.isVarArg()); OutgoingValueHandler RetHandler(MIRBuilder, MF.getRegInfo(), Ret, AssignFn); return handleAssignments(MIRBuilder, SplitVTs, RetHandler); } bool ARMCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val, unsigned VReg) const { assert(!Val == !VReg && "Return value without a vreg"); auto const &ST = MIRBuilder.getMF().getSubtarget(); unsigned Opcode = ST.getReturnOpcode(); auto Ret = MIRBuilder.buildInstrNoInsert(Opcode).add(predOps(ARMCC::AL)); if (!lowerReturnVal(MIRBuilder, Val, VReg, Ret)) return false; MIRBuilder.insertInstr(Ret); return true; } namespace { /// Helper class for values coming in through an ABI boundary (used for handling /// formal arguments and call return values). struct IncomingValueHandler : public CallLowering::ValueHandler { IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn AssignFn) : ValueHandler(MIRBuilder, MRI, AssignFn) {} unsigned getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); auto &MFI = MIRBuilder.getMF().getFrameInfo(); int FI = MFI.CreateFixedObject(Size, Offset, true); MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); unsigned AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(MPO.getAddrSpace(), 32)); MIRBuilder.buildFrameIndex(AddrReg, FI); return AddrReg; } void assignValueToAddress(unsigned ValVReg, unsigned Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) override { assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && "Unsupported size"); if (VA.getLocInfo() == CCValAssign::SExt || VA.getLocInfo() == CCValAssign::ZExt) { // If the value is zero- or sign-extended, its size becomes 4 bytes, so // that's what we should load. Size = 4; assert(MRI.getType(ValVReg).isScalar() && "Only scalars supported atm"); auto LoadVReg = MRI.createGenericVirtualRegister(LLT::scalar(32)); buildLoad(LoadVReg, Addr, Size, /* Alignment */ 0, MPO); MIRBuilder.buildTrunc(ValVReg, LoadVReg); } else { // If the value is not extended, a simple load will suffice. buildLoad(ValVReg, Addr, Size, /* Alignment */ 0, MPO); } } void buildLoad(unsigned Val, unsigned Addr, uint64_t Size, unsigned Alignment, MachinePointerInfo &MPO) { auto MMO = MIRBuilder.getMF().getMachineMemOperand( MPO, MachineMemOperand::MOLoad, Size, Alignment); MIRBuilder.buildLoad(Val, Addr, *MMO); } void assignValueToReg(unsigned ValVReg, unsigned PhysReg, CCValAssign &VA) override { assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); auto ValSize = VA.getValVT().getSizeInBits(); auto LocSize = VA.getLocVT().getSizeInBits(); assert(ValSize <= 64 && "Unsupported value size"); assert(LocSize <= 64 && "Unsupported location size"); markPhysRegUsed(PhysReg); if (ValSize == LocSize) { MIRBuilder.buildCopy(ValVReg, PhysReg); } else { assert(ValSize < LocSize && "Extensions not supported"); // We cannot create a truncating copy, nor a trunc of a physical register. // Therefore, we need to copy the content of the physical register into a // virtual one and then truncate that. auto PhysRegToVReg = MRI.createGenericVirtualRegister(LLT::scalar(LocSize)); MIRBuilder.buildCopy(PhysRegToVReg, PhysReg); MIRBuilder.buildTrunc(ValVReg, PhysRegToVReg); } } unsigned assignCustomValue(const ARMCallLowering::ArgInfo &Arg, ArrayRef VAs) override { CCValAssign VA = VAs[0]; assert(VA.needsCustom() && "Value doesn't need custom handling"); assert(VA.getValVT() == MVT::f64 && "Unsupported type"); CCValAssign NextVA = VAs[1]; assert(NextVA.needsCustom() && "Value doesn't need custom handling"); assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); assert(VA.getValNo() == NextVA.getValNo() && "Values belong to different arguments"); assert(VA.isRegLoc() && "Value should be in reg"); assert(NextVA.isRegLoc() && "Value should be in reg"); unsigned NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), MRI.createGenericVirtualRegister(LLT::scalar(32))}; assignValueToReg(NewRegs[0], VA.getLocReg(), VA); assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); bool IsLittle = MIRBuilder.getMF().getSubtarget().isLittle(); if (!IsLittle) std::swap(NewRegs[0], NewRegs[1]); MIRBuilder.buildMerge(Arg.Reg, NewRegs); return 1; } /// Marking a physical register as used is different between formal /// parameters, where it's a basic block live-in, and call returns, where it's /// an implicit-def of the call instruction. virtual void markPhysRegUsed(unsigned PhysReg) = 0; }; struct FormalArgHandler : public IncomingValueHandler { FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn AssignFn) : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {} void markPhysRegUsed(unsigned PhysReg) override { MIRBuilder.getMBB().addLiveIn(PhysReg); } }; } // end anonymous namespace bool ARMCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder, const Function &F, ArrayRef VRegs) const { auto &TLI = *getTLI(); auto Subtarget = TLI.getSubtarget(); if (Subtarget->isThumb()) return false; // Quick exit if there aren't any args if (F.arg_empty()) return true; if (F.isVarArg()) return false; auto &MF = MIRBuilder.getMF(); auto &MBB = MIRBuilder.getMBB(); auto DL = MF.getDataLayout(); for (auto &Arg : F.args()) { if (!isSupportedType(DL, TLI, Arg.getType())) return false; if (Arg.hasByValOrInAllocaAttr()) return false; } CCAssignFn *AssignFn = TLI.CCAssignFnForCall(F.getCallingConv(), F.isVarArg()); FormalArgHandler ArgHandler(MIRBuilder, MIRBuilder.getMF().getRegInfo(), AssignFn); SmallVector ArgInfos; SmallVector SplitRegs; unsigned Idx = 0; for (auto &Arg : F.args()) { ArgInfo AInfo(VRegs[Idx], Arg.getType()); setArgFlags(AInfo, Idx + AttributeList::FirstArgIndex, DL, F); SplitRegs.clear(); splitToValueTypes(AInfo, ArgInfos, MF, [&](unsigned Reg, uint64_t Offset) { SplitRegs.push_back(Reg); }); if (!SplitRegs.empty()) MIRBuilder.buildMerge(VRegs[Idx], SplitRegs); Idx++; } if (!MBB.empty()) MIRBuilder.setInstr(*MBB.begin()); return handleAssignments(MIRBuilder, ArgInfos, ArgHandler); } namespace { struct CallReturnHandler : public IncomingValueHandler { CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstrBuilder MIB, CCAssignFn *AssignFn) : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} void markPhysRegUsed(unsigned PhysReg) override { MIB.addDef(PhysReg, RegState::Implicit); } MachineInstrBuilder MIB; }; } // end anonymous namespace bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, CallingConv::ID CallConv, const MachineOperand &Callee, const ArgInfo &OrigRet, ArrayRef OrigArgs) const { MachineFunction &MF = MIRBuilder.getMF(); const auto &TLI = *getTLI(); const auto &DL = MF.getDataLayout(); const auto &STI = MF.getSubtarget(); const TargetRegisterInfo *TRI = STI.getRegisterInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); if (STI.genLongCalls()) return false; auto CallSeqStart = MIRBuilder.buildInstr(ARM::ADJCALLSTACKDOWN); // Create the call instruction so we can add the implicit uses of arg // registers, but don't insert it yet. bool isDirect = !Callee.isReg(); auto CallOpcode = isDirect ? ARM::BL : STI.hasV5TOps() ? ARM::BLX : STI.hasV4TOps() ? ARM::BX_CALL : ARM::BMOVPCRX_CALL; auto MIB = MIRBuilder.buildInstrNoInsert(CallOpcode) .add(Callee) .addRegMask(TRI->getCallPreservedMask(MF, CallConv)); if (Callee.isReg()) { auto CalleeReg = Callee.getReg(); if (CalleeReg && !TRI->isPhysicalRegister(CalleeReg)) MIB->getOperand(0).setReg(constrainOperandRegClass( MF, *TRI, MRI, *STI.getInstrInfo(), *STI.getRegBankInfo(), *MIB.getInstr(), MIB->getDesc(), CalleeReg, 0)); } SmallVector ArgInfos; for (auto Arg : OrigArgs) { if (!isSupportedType(DL, TLI, Arg.Ty)) return false; if (!Arg.IsFixed) return false; if (Arg.Flags.isByVal()) return false; SmallVector Regs; splitToValueTypes(Arg, ArgInfos, MF, [&](unsigned Reg, uint64_t Offset) { Regs.push_back(Reg); }); if (Regs.size() > 1) MIRBuilder.buildUnmerge(Regs, Arg.Reg); } auto ArgAssignFn = TLI.CCAssignFnForCall(CallConv, /*IsVarArg=*/false); OutgoingValueHandler ArgHandler(MIRBuilder, MRI, MIB, ArgAssignFn); if (!handleAssignments(MIRBuilder, ArgInfos, ArgHandler)) return false; // Now we can add the actual call instruction to the correct basic block. MIRBuilder.insertInstr(MIB); if (!OrigRet.Ty->isVoidTy()) { if (!isSupportedType(DL, TLI, OrigRet.Ty)) return false; ArgInfos.clear(); SmallVector SplitRegs; splitToValueTypes(OrigRet, ArgInfos, MF, [&](unsigned Reg, uint64_t Offset) { SplitRegs.push_back(Reg); }); auto RetAssignFn = TLI.CCAssignFnForReturn(CallConv, /*IsVarArg=*/false); CallReturnHandler RetHandler(MIRBuilder, MRI, MIB, RetAssignFn); if (!handleAssignments(MIRBuilder, ArgInfos, RetHandler)) return false; if (!SplitRegs.empty()) { // We have split the value and allocated each individual piece, now build // it up again. MIRBuilder.buildMerge(OrigRet.Reg, SplitRegs); } } // We now know the size of the stack - update the ADJCALLSTACKDOWN // accordingly. CallSeqStart.addImm(ArgHandler.StackSize).addImm(0).add(predOps(ARMCC::AL)); MIRBuilder.buildInstr(ARM::ADJCALLSTACKUP) .addImm(ArgHandler.StackSize) .addImm(0) .add(predOps(ARMCC::AL)); return true; }