//===-- ARMBasicBlockInfo.h - Basic Block Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Utility functions and data structure for computing block size. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_ARMBASICBLOCKINFO_H #define LLVM_LIB_TARGET_ARM_ARMBASICBLOCKINFO_H #include "llvm/Support/MathExtras.h" #include #include namespace llvm { /// UnknownPadding - Return the worst case padding that could result from /// unknown offset bits. This does not include alignment padding caused by /// known offset bits. /// /// @param LogAlign log2(alignment) /// @param KnownBits Number of known low offset bits. inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { if (KnownBits < LogAlign) return (1u << LogAlign) - (1u << KnownBits); return 0; } /// BasicBlockInfo - Information about the offset and size of a single /// basic block. struct BasicBlockInfo { /// Offset - Distance from the beginning of the function to the beginning /// of this basic block. /// /// Offsets are computed assuming worst case padding before an aligned /// block. This means that subtracting basic block offsets always gives a /// conservative estimate of the real distance which may be smaller. /// /// Because worst case padding is used, the computed offset of an aligned /// block may not actually be aligned. unsigned Offset = 0; /// Size - Size of the basic block in bytes. If the block contains /// inline assembly, this is a worst case estimate. /// /// The size does not include any alignment padding whether from the /// beginning of the block, or from an aligned jump table at the end. unsigned Size = 0; /// KnownBits - The number of low bits in Offset that are known to be /// exact. The remaining bits of Offset are an upper bound. uint8_t KnownBits = 0; /// Unalign - When non-zero, the block contains instructions (inline asm) /// of unknown size. The real size may be smaller than Size bytes by a /// multiple of 1 << Unalign. uint8_t Unalign = 0; /// PostAlign - When non-zero, the block terminator contains a .align /// directive, so the end of the block is aligned to 1 << PostAlign /// bytes. uint8_t PostAlign = 0; BasicBlockInfo() = default; /// Compute the number of known offset bits internally to this block. /// This number should be used to predict worst case padding when /// splitting the block. unsigned internalKnownBits() const { unsigned Bits = Unalign ? Unalign : KnownBits; // If the block size isn't a multiple of the known bits, assume the // worst case padding. if (Size & ((1u << Bits) - 1)) Bits = countTrailingZeros(Size); return Bits; } /// Compute the offset immediately following this block. If LogAlign is /// specified, return the offset the successor block will get if it has /// this alignment. unsigned postOffset(unsigned LogAlign = 0) const { unsigned PO = Offset + Size; unsigned LA = std::max(unsigned(PostAlign), LogAlign); if (!LA) return PO; // Add alignment padding from the terminator. return PO + UnknownPadding(LA, internalKnownBits()); } /// Compute the number of known low bits of postOffset. If this block /// contains inline asm, the number of known bits drops to the /// instruction alignment. An aligned terminator may increase the number /// of know bits. /// If LogAlign is given, also consider the alignment of the next block. unsigned postKnownBits(unsigned LogAlign = 0) const { return std::max(std::max(unsigned(PostAlign), LogAlign), internalKnownBits()); } }; } // end namespace llvm #endif // LLVM_LIB_TARGET_ARM_ARMBASICBLOCKINFO_H