//===-- VOP2Instructions.td - Vector Instruction Defintions ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // VOP2 Classes //===----------------------------------------------------------------------===// class VOP2e op, VOPProfile P> : Enc32 { bits<8> vdst; bits<9> src0; bits<8> src1; let Inst{8-0} = !if(P.HasSrc0, src0, 0); let Inst{16-9} = !if(P.HasSrc1, src1, 0); let Inst{24-17} = !if(P.EmitDst, vdst, 0); let Inst{30-25} = op; let Inst{31} = 0x0; //encoding } class VOP2_MADKe op, VOPProfile P> : Enc64 { bits<8> vdst; bits<9> src0; bits<8> src1; bits<32> imm; let Inst{8-0} = !if(P.HasSrc0, src0, 0); let Inst{16-9} = !if(P.HasSrc1, src1, 0); let Inst{24-17} = !if(P.EmitDst, vdst, 0); let Inst{30-25} = op; let Inst{31} = 0x0; // encoding let Inst{63-32} = imm; } class VOP2_SDWAe op, VOPProfile P> : VOP_SDWAe

{ bits<8> vdst; bits<8> src1; let Inst{8-0} = 0xf9; // sdwa let Inst{16-9} = !if(P.HasSrc1, src1{7-0}, 0); let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0); let Inst{30-25} = op; let Inst{31} = 0x0; // encoding } class VOP2_SDWA9Ae op, VOPProfile P> : VOP_SDWA9Ae

{ bits<8> vdst; bits<9> src1; let Inst{8-0} = 0xf9; // sdwa let Inst{16-9} = !if(P.HasSrc1, src1{7-0}, 0); let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0); let Inst{30-25} = op; let Inst{31} = 0x0; // encoding let Inst{63} = !if(P.HasSrc1, src1{8}, 0); // src1_sgpr } class VOP2_Pseudo pattern=[], string suffix = "_e32"> : VOP_Pseudo { let AsmOperands = P.Asm32; let Size = 4; let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let SubtargetPredicate = isGCN; let VOP2 = 1; let VALU = 1; let Uses = [EXEC]; let AsmVariantName = AMDGPUAsmVariants.Default; } class VOP2_Real : InstSI , SIMCInstr { let isPseudo = 0; let isCodeGenOnly = 0; let Constraints = ps.Constraints; let DisableEncoding = ps.DisableEncoding; // copy relevant pseudo op flags let SubtargetPredicate = ps.SubtargetPredicate; let AsmMatchConverter = ps.AsmMatchConverter; let AsmVariantName = ps.AsmVariantName; let Constraints = ps.Constraints; let DisableEncoding = ps.DisableEncoding; let TSFlags = ps.TSFlags; let UseNamedOperandTable = ps.UseNamedOperandTable; let Uses = ps.Uses; let Defs = ps.Defs; } class VOP2_SDWA_Pseudo pattern=[]> : VOP_SDWA_Pseudo { let AsmMatchConverter = "cvtSdwaVOP2"; } class getVOP2Pat64 : LetDummies { list ret = !if(P.HasModifiers, [(set P.DstVT:$vdst, (node (P.Src0VT !if(P.HasOMod, (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod), (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers, i1:$clamp))), (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))], [(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1))]); } multiclass VOP2Inst { let renamedInGFX9 = GFX9Renamed in { def _e32 : VOP2_Pseudo , Commutable_REV; def _e64 : VOP3_Pseudo .ret>, Commutable_REV; def _sdwa : VOP2_SDWA_Pseudo ; } } multiclass VOP2bInst { let renamedInGFX9 = GFX9Renamed in { let SchedRW = [Write32Bit, WriteSALU] in { let Uses = !if(useSGPRInput, [VCC, EXEC], [EXEC]), Defs = [VCC] in { def _e32 : VOP2_Pseudo , Commutable_REV; def _sdwa : VOP2_SDWA_Pseudo { let AsmMatchConverter = "cvtSdwaVOP2b"; } } def _e64 : VOP3_Pseudo .ret>, Commutable_REV; } } } multiclass VOP2eInst { let SchedRW = [Write32Bit] in { let Uses = !if(useSGPRInput, [VCC, EXEC], [EXEC]) in { def _e32 : VOP2_Pseudo , Commutable_REV; def _sdwa : VOP2_SDWA_Pseudo { let AsmMatchConverter = "cvtSdwaVOP2b"; } } def _e64 : VOP3_Pseudo .ret>, Commutable_REV; } } class VOP_MADAK : VOPProfile <[vt, vt, vt, vt]> { field Operand ImmOpType = !if(!eq(vt.Size, 32), f32kimm, f16kimm); field dag Ins32 = (ins VCSrc_f32:$src0, VGPR_32:$src1, ImmOpType:$imm); field bit HasExt = 0; // Hack to stop printing _e64 let DstRC = RegisterOperand; field string Asm32 = " $vdst, $src0, $src1, $imm"; } def VOP_MADAK_F16 : VOP_MADAK ; def VOP_MADAK_F32 : VOP_MADAK ; class VOP_MADMK : VOPProfile <[vt, vt, vt, vt]> { field Operand ImmOpType = !if(!eq(vt.Size, 32), f32kimm, f16kimm); field dag Ins32 = (ins VCSrc_f32:$src0, ImmOpType:$imm, VGPR_32:$src1); field bit HasExt = 0; // Hack to stop printing _e64 let DstRC = RegisterOperand; field string Asm32 = " $vdst, $src0, $imm, $src1"; } def VOP_MADMK_F16 : VOP_MADMK ; def VOP_MADMK_F32 : VOP_MADMK ; // FIXME: Remove src2_modifiers. It isn't used, so is wasting memory // and processing time but it makes it easier to convert to mad. class VOP_MAC : VOPProfile <[vt, vt, vt, vt]> { let Ins32 = (ins Src0RC32:$src0, Src1RC32:$src1, VGPR_32:$src2); let Ins64 = getIns64, 3, 0, HasModifiers, HasOMod, Src0Mod, Src1Mod, Src2Mod>.ret; let InsDPP = (ins DstRCDPP:$old, Src0ModDPP:$src0_modifiers, Src0DPP:$src0, Src1ModDPP:$src1_modifiers, Src1DPP:$src1, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask, bank_mask:$bank_mask, bound_ctrl:$bound_ctrl); let InsSDWA = (ins Src0ModSDWA:$src0_modifiers, Src0SDWA:$src0, Src1ModSDWA:$src1_modifiers, Src1SDWA:$src1, VGPR_32:$src2, // stub argument clampmod:$clamp, omod:$omod, dst_sel:$dst_sel, dst_unused:$dst_unused, src0_sel:$src0_sel, src1_sel:$src1_sel); let Asm32 = getAsm32<1, 2, vt>.ret; let Asm64 = getAsm64<1, 2, 0, HasModifiers, HasOMod, vt>.ret; let AsmDPP = getAsmDPP<1, 2, HasModifiers, vt>.ret; let AsmSDWA = getAsmSDWA<1, 2, vt>.ret; let AsmSDWA9 = getAsmSDWA9<1, 1, 2, vt>.ret; let HasSrc2 = 0; let HasSrc2Mods = 0; let HasExt = 1; let HasSDWA9 = 0; } def VOP_MAC_F16 : VOP_MAC { // FIXME: Move 'Asm64' definition to VOP_MAC, and use 'vt'. Currently it gives // 'not a string initializer' error. let Asm64 = getAsm64<1, 2, 0, HasModifiers, HasOMod, f16>.ret; } def VOP_MAC_F32 : VOP_MAC { // FIXME: Move 'Asm64' definition to VOP_MAC, and use 'vt'. Currently it gives // 'not a string initializer' error. let Asm64 = getAsm64<1, 2, 0, HasModifiers, HasOMod, f32>.ret; } // Write out to vcc or arbitrary SGPR. def VOP2b_I32_I1_I32_I32 : VOPProfile<[i32, i32, i32, untyped]> { let Asm32 = "$vdst, vcc, $src0, $src1"; let Asm64 = "$vdst, $sdst, $src0, $src1"; let AsmSDWA = "$vdst, vcc, $src0_modifiers, $src1_modifiers$clamp $dst_sel $dst_unused $src0_sel $src1_sel"; let AsmSDWA9 = "$vdst, vcc, $src0_modifiers, $src1_modifiers$clamp $dst_sel $dst_unused $src0_sel $src1_sel"; let AsmDPP = "$vdst, vcc, $src0, $src1 $dpp_ctrl$row_mask$bank_mask$bound_ctrl"; let Outs32 = (outs DstRC:$vdst); let Outs64 = (outs DstRC:$vdst, SReg_64:$sdst); } // Write out to vcc or arbitrary SGPR and read in from vcc or // arbitrary SGPR. def VOP2b_I32_I1_I32_I32_I1 : VOPProfile<[i32, i32, i32, i1]> { // We use VCSrc_b32 to exclude literal constants, even though the // encoding normally allows them since the implicit VCC use means // using one would always violate the constant bus // restriction. SGPRs are still allowed because it should // technically be possible to use VCC again as src0. let Src0RC32 = VCSrc_b32; let Asm32 = "$vdst, vcc, $src0, $src1, vcc"; let Asm64 = "$vdst, $sdst, $src0, $src1, $src2"; let AsmSDWA = "$vdst, vcc, $src0_modifiers, $src1_modifiers, vcc $clamp $dst_sel $dst_unused $src0_sel $src1_sel"; let AsmSDWA9 = "$vdst, vcc, $src0_modifiers, $src1_modifiers, vcc $clamp $dst_sel $dst_unused $src0_sel $src1_sel"; let AsmDPP = "$vdst, vcc, $src0, $src1, vcc $dpp_ctrl$row_mask$bank_mask$bound_ctrl"; let Outs32 = (outs DstRC:$vdst); let Outs64 = (outs DstRC:$vdst, SReg_64:$sdst); // Suppress src2 implied by type since the 32-bit encoding uses an // implicit VCC use. let Ins32 = (ins Src0RC32:$src0, Src1RC32:$src1); let InsSDWA = (ins Src0ModSDWA:$src0_modifiers, Src0SDWA:$src0, Src1ModSDWA:$src1_modifiers, Src1SDWA:$src1, clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused, src0_sel:$src0_sel, src1_sel:$src1_sel); let InsDPP = (ins DstRCDPP:$old, Src0DPP:$src0, Src1DPP:$src1, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask, bank_mask:$bank_mask, bound_ctrl:$bound_ctrl); let HasExt = 1; let HasSDWA9 = 1; } // Read in from vcc or arbitrary SGPR def VOP2e_I32_I32_I32_I1 : VOPProfile<[i32, i32, i32, i1]> { let Src0RC32 = VCSrc_b32; // See comment in def VOP2b_I32_I1_I32_I32_I1 above. let Asm32 = "$vdst, $src0, $src1, vcc"; let Asm64 = "$vdst, $src0, $src1, $src2"; let AsmSDWA = "$vdst, $src0_modifiers, $src1_modifiers, vcc $clamp $dst_sel $dst_unused $src0_sel $src1_sel"; let AsmSDWA9 = "$vdst, $src0_modifiers, $src1_modifiers, vcc $clamp $dst_sel $dst_unused $src0_sel $src1_sel"; let AsmDPP = "$vdst, $src0, $src1, vcc $dpp_ctrl$row_mask$bank_mask$bound_ctrl"; let Outs32 = (outs DstRC:$vdst); let Outs64 = (outs DstRC:$vdst); // Suppress src2 implied by type since the 32-bit encoding uses an // implicit VCC use. let Ins32 = (ins Src0RC32:$src0, Src1RC32:$src1); let InsSDWA = (ins Src0ModSDWA:$src0_modifiers, Src0SDWA:$src0, Src1ModSDWA:$src1_modifiers, Src1SDWA:$src1, clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused, src0_sel:$src0_sel, src1_sel:$src1_sel); let InsDPP = (ins DstRCDPP:$old, Src0DPP:$src0, Src1DPP:$src1, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask, bank_mask:$bank_mask, bound_ctrl:$bound_ctrl); let HasExt = 1; let HasSDWA9 = 1; } def VOP_READLANE : VOPProfile<[i32, i32, i32]> { let Outs32 = (outs SReg_32:$vdst); let Outs64 = Outs32; let Ins32 = (ins VGPR_32:$src0, SCSrc_b32:$src1); let Ins64 = Ins32; let Asm32 = " $vdst, $src0, $src1"; let Asm64 = Asm32; let HasExt = 0; let HasSDWA9 = 0; } def VOP_WRITELANE : VOPProfile<[i32, i32, i32, i32]> { let Outs32 = (outs VGPR_32:$vdst); let Outs64 = Outs32; let Ins32 = (ins SCSrc_b32:$src0, SCSrc_b32:$src1, VGPR_32:$vdst_in); let Ins64 = Ins32; let Asm32 = " $vdst, $src0, $src1"; let Asm64 = Asm32; let HasExt = 0; let HasSDWA9 = 0; let HasSrc2 = 0; let HasSrc2Mods = 0; } //===----------------------------------------------------------------------===// // VOP2 Instructions //===----------------------------------------------------------------------===// let SubtargetPredicate = isGCN in { defm V_CNDMASK_B32 : VOP2eInst <"v_cndmask_b32", VOP2e_I32_I32_I32_I1>; def V_MADMK_F32 : VOP2_Pseudo <"v_madmk_f32", VOP_MADMK_F32, [], "">; let isCommutable = 1 in { defm V_ADD_F32 : VOP2Inst <"v_add_f32", VOP_F32_F32_F32, fadd>; defm V_SUB_F32 : VOP2Inst <"v_sub_f32", VOP_F32_F32_F32, fsub>; defm V_SUBREV_F32 : VOP2Inst <"v_subrev_f32", VOP_F32_F32_F32, null_frag, "v_sub_f32">; defm V_MUL_LEGACY_F32 : VOP2Inst <"v_mul_legacy_f32", VOP_F32_F32_F32, AMDGPUfmul_legacy>; defm V_MUL_F32 : VOP2Inst <"v_mul_f32", VOP_F32_F32_F32, fmul>; defm V_MUL_I32_I24 : VOP2Inst <"v_mul_i32_i24", VOP_I32_I32_I32, AMDGPUmul_i24>; defm V_MUL_HI_I32_I24 : VOP2Inst <"v_mul_hi_i32_i24", VOP_I32_I32_I32, AMDGPUmulhi_i24>; defm V_MUL_U32_U24 : VOP2Inst <"v_mul_u32_u24", VOP_I32_I32_I32, AMDGPUmul_u24>; defm V_MUL_HI_U32_U24 : VOP2Inst <"v_mul_hi_u32_u24", VOP_I32_I32_I32, AMDGPUmulhi_u24>; defm V_MIN_F32 : VOP2Inst <"v_min_f32", VOP_F32_F32_F32, fminnum>; defm V_MAX_F32 : VOP2Inst <"v_max_f32", VOP_F32_F32_F32, fmaxnum>; defm V_MIN_I32 : VOP2Inst <"v_min_i32", VOP_I32_I32_I32>; defm V_MAX_I32 : VOP2Inst <"v_max_i32", VOP_I32_I32_I32>; defm V_MIN_U32 : VOP2Inst <"v_min_u32", VOP_I32_I32_I32>; defm V_MAX_U32 : VOP2Inst <"v_max_u32", VOP_I32_I32_I32>; defm V_LSHRREV_B32 : VOP2Inst <"v_lshrrev_b32", VOP_I32_I32_I32, null_frag, "v_lshr_b32">; defm V_ASHRREV_I32 : VOP2Inst <"v_ashrrev_i32", VOP_I32_I32_I32, null_frag, "v_ashr_i32">; defm V_LSHLREV_B32 : VOP2Inst <"v_lshlrev_b32", VOP_I32_I32_I32, null_frag, "v_lshl_b32">; defm V_AND_B32 : VOP2Inst <"v_and_b32", VOP_I32_I32_I32>; defm V_OR_B32 : VOP2Inst <"v_or_b32", VOP_I32_I32_I32>; defm V_XOR_B32 : VOP2Inst <"v_xor_b32", VOP_I32_I32_I32>; let Constraints = "$vdst = $src2", DisableEncoding="$src2", isConvertibleToThreeAddress = 1 in { defm V_MAC_F32 : VOP2Inst <"v_mac_f32", VOP_MAC_F32>; } def V_MADAK_F32 : VOP2_Pseudo <"v_madak_f32", VOP_MADAK_F32, [], "">; // No patterns so that the scalar instructions are always selected. // The scalar versions will be replaced with vector when needed later. // V_ADD_I32, V_SUB_I32, and V_SUBREV_I32 where renamed to *_U32 in VI, // but the VI instructions behave the same as the SI versions. defm V_ADD_I32 : VOP2bInst <"v_add_i32", VOP2b_I32_I1_I32_I32, null_frag, "v_add_i32", 1>; defm V_SUB_I32 : VOP2bInst <"v_sub_i32", VOP2b_I32_I1_I32_I32, null_frag, "v_sub_i32", 1>; defm V_SUBREV_I32 : VOP2bInst <"v_subrev_i32", VOP2b_I32_I1_I32_I32, null_frag, "v_sub_i32", 1>; defm V_ADDC_U32 : VOP2bInst <"v_addc_u32", VOP2b_I32_I1_I32_I32_I1, null_frag, "v_addc_u32", 1>; defm V_SUBB_U32 : VOP2bInst <"v_subb_u32", VOP2b_I32_I1_I32_I32_I1, null_frag, "v_subb_u32", 1>; defm V_SUBBREV_U32 : VOP2bInst <"v_subbrev_u32", VOP2b_I32_I1_I32_I32_I1, null_frag, "v_subb_u32", 1>; let SubtargetPredicate = HasAddNoCarryInsts in { defm V_ADD_U32 : VOP2Inst <"v_add_u32", VOP_I32_I32_I32, null_frag, "v_add_u32", 1>; defm V_SUB_U32 : VOP2Inst <"v_sub_u32", VOP_I32_I32_I32, null_frag, "v_sub_u32", 1>; defm V_SUBREV_U32 : VOP2Inst <"v_subrev_u32", VOP_I32_I32_I32, null_frag, "v_sub_u32", 1>; } } // End isCommutable = 1 // These are special and do not read the exec mask. let isConvergent = 1, Uses = [] in { def V_READLANE_B32 : VOP2_Pseudo<"v_readlane_b32", VOP_READLANE, [(set i32:$vdst, (int_amdgcn_readlane i32:$src0, i32:$src1))], "">; let Constraints = "$vdst = $vdst_in", DisableEncoding="$vdst_in" in { def V_WRITELANE_B32 : VOP2_Pseudo<"v_writelane_b32", VOP_WRITELANE, [(set i32:$vdst, (int_amdgcn_writelane i32:$src0, i32:$src1, i32:$vdst_in))], "">; } // End $vdst = $vdst_in, DisableEncoding $vdst_in } // End isConvergent = 1 defm V_BFM_B32 : VOP2Inst <"v_bfm_b32", VOP_NO_EXT>; defm V_BCNT_U32_B32 : VOP2Inst <"v_bcnt_u32_b32", VOP_NO_EXT>; defm V_MBCNT_LO_U32_B32 : VOP2Inst <"v_mbcnt_lo_u32_b32", VOP_NO_EXT, int_amdgcn_mbcnt_lo>; defm V_MBCNT_HI_U32_B32 : VOP2Inst <"v_mbcnt_hi_u32_b32", VOP_NO_EXT, int_amdgcn_mbcnt_hi>; defm V_LDEXP_F32 : VOP2Inst <"v_ldexp_f32", VOP_NO_EXT, AMDGPUldexp>; defm V_CVT_PKACCUM_U8_F32 : VOP2Inst <"v_cvt_pkaccum_u8_f32", VOP_NO_EXT>; // TODO: set "Uses = dst" defm V_CVT_PKNORM_I16_F32 : VOP2Inst <"v_cvt_pknorm_i16_f32", VOP_NO_EXT, AMDGPUpknorm_i16_f32>; defm V_CVT_PKNORM_U16_F32 : VOP2Inst <"v_cvt_pknorm_u16_f32", VOP_NO_EXT, AMDGPUpknorm_u16_f32>; defm V_CVT_PKRTZ_F16_F32 : VOP2Inst <"v_cvt_pkrtz_f16_f32", VOP_NO_EXT, AMDGPUpkrtz_f16_f32>; defm V_CVT_PK_U16_U32 : VOP2Inst <"v_cvt_pk_u16_u32", VOP_NO_EXT, AMDGPUpk_u16_u32>; defm V_CVT_PK_I16_I32 : VOP2Inst <"v_cvt_pk_i16_i32", VOP_NO_EXT, AMDGPUpk_i16_i32>; } // End SubtargetPredicate = isGCN def : GCNPat< (AMDGPUadde i32:$src0, i32:$src1, i1:$src2), (V_ADDC_U32_e64 $src0, $src1, $src2) >; def : GCNPat< (AMDGPUsube i32:$src0, i32:$src1, i1:$src2), (V_SUBB_U32_e64 $src0, $src1, $src2) >; // These instructions only exist on SI and CI let SubtargetPredicate = isSICI in { defm V_MIN_LEGACY_F32 : VOP2Inst <"v_min_legacy_f32", VOP_F32_F32_F32, AMDGPUfmin_legacy>; defm V_MAX_LEGACY_F32 : VOP2Inst <"v_max_legacy_f32", VOP_F32_F32_F32, AMDGPUfmax_legacy>; let isCommutable = 1 in { defm V_MAC_LEGACY_F32 : VOP2Inst <"v_mac_legacy_f32", VOP_F32_F32_F32>; defm V_LSHR_B32 : VOP2Inst <"v_lshr_b32", VOP_I32_I32_I32>; defm V_ASHR_I32 : VOP2Inst <"v_ashr_i32", VOP_I32_I32_I32>; defm V_LSHL_B32 : VOP2Inst <"v_lshl_b32", VOP_I32_I32_I32>; } // End isCommutable = 1 } // End let SubtargetPredicate = SICI let SubtargetPredicate = Has16BitInsts in { def V_MADMK_F16 : VOP2_Pseudo <"v_madmk_f16", VOP_MADMK_F16, [], "">; defm V_LSHLREV_B16 : VOP2Inst <"v_lshlrev_b16", VOP_I16_I16_I16>; defm V_LSHRREV_B16 : VOP2Inst <"v_lshrrev_b16", VOP_I16_I16_I16>; defm V_ASHRREV_I16 : VOP2Inst <"v_ashrrev_i16", VOP_I16_I16_I16>; defm V_LDEXP_F16 : VOP2Inst <"v_ldexp_f16", VOP_F16_F16_I32, AMDGPUldexp>; let isCommutable = 1 in { defm V_ADD_F16 : VOP2Inst <"v_add_f16", VOP_F16_F16_F16, fadd>; defm V_SUB_F16 : VOP2Inst <"v_sub_f16", VOP_F16_F16_F16, fsub>; defm V_SUBREV_F16 : VOP2Inst <"v_subrev_f16", VOP_F16_F16_F16, null_frag, "v_sub_f16">; defm V_MUL_F16 : VOP2Inst <"v_mul_f16", VOP_F16_F16_F16, fmul>; def V_MADAK_F16 : VOP2_Pseudo <"v_madak_f16", VOP_MADAK_F16, [], "">; defm V_ADD_U16 : VOP2Inst <"v_add_u16", VOP_I16_I16_I16>; defm V_SUB_U16 : VOP2Inst <"v_sub_u16" , VOP_I16_I16_I16>; defm V_SUBREV_U16 : VOP2Inst <"v_subrev_u16", VOP_I16_I16_I16, null_frag, "v_sub_u16">; defm V_MUL_LO_U16 : VOP2Inst <"v_mul_lo_u16", VOP_I16_I16_I16>; defm V_MAX_F16 : VOP2Inst <"v_max_f16", VOP_F16_F16_F16, fmaxnum>; defm V_MIN_F16 : VOP2Inst <"v_min_f16", VOP_F16_F16_F16, fminnum>; defm V_MAX_U16 : VOP2Inst <"v_max_u16", VOP_I16_I16_I16>; defm V_MAX_I16 : VOP2Inst <"v_max_i16", VOP_I16_I16_I16>; defm V_MIN_U16 : VOP2Inst <"v_min_u16", VOP_I16_I16_I16>; defm V_MIN_I16 : VOP2Inst <"v_min_i16", VOP_I16_I16_I16>; let Constraints = "$vdst = $src2", DisableEncoding="$src2", isConvertibleToThreeAddress = 1 in { defm V_MAC_F16 : VOP2Inst <"v_mac_f16", VOP_MAC_F16>; } } // End isCommutable = 1 } // End SubtargetPredicate = Has16BitInsts let SubtargetPredicate = HasDLInsts in { defm V_XNOR_B32 : VOP2Inst <"v_xnor_b32", VOP_I32_I32_I32>; let Constraints = "$vdst = $src2", DisableEncoding="$src2", isConvertibleToThreeAddress = 1, isCommutable = 1 in { defm V_FMAC_F32 : VOP2Inst <"v_fmac_f32", VOP_MAC_F32>; } } // End SubtargetPredicate = HasDLInsts // Note: 16-bit instructions produce a 0 result in the high 16-bits. multiclass Arithmetic_i16_Pats { def : GCNPat< (op i16:$src0, i16:$src1), (inst $src0, $src1) >; def : GCNPat< (i32 (zext (op i16:$src0, i16:$src1))), (inst $src0, $src1) >; def : GCNPat< (i64 (zext (op i16:$src0, i16:$src1))), (REG_SEQUENCE VReg_64, (inst $src0, $src1), sub0, (V_MOV_B32_e32 (i32 0)), sub1) >; } multiclass Bits_OpsRev_i16_Pats { def : GCNPat< (op i16:$src0, i16:$src1), (inst $src1, $src0) >; def : GCNPat< (i32 (zext (op i16:$src0, i16:$src1))), (inst $src1, $src0) >; def : GCNPat< (i64 (zext (op i16:$src0, i16:$src1))), (REG_SEQUENCE VReg_64, (inst $src1, $src0), sub0, (V_MOV_B32_e32 (i32 0)), sub1) >; } class ZExt_i16_i1_Pat : GCNPat < (i16 (ext i1:$src)), (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src) >; let Predicates = [Has16BitInsts] in { defm : Arithmetic_i16_Pats; defm : Arithmetic_i16_Pats; defm : Arithmetic_i16_Pats; defm : Arithmetic_i16_Pats; defm : Arithmetic_i16_Pats; defm : Arithmetic_i16_Pats; defm : Arithmetic_i16_Pats; def : GCNPat < (and i16:$src0, i16:$src1), (V_AND_B32_e64 $src0, $src1) >; def : GCNPat < (or i16:$src0, i16:$src1), (V_OR_B32_e64 $src0, $src1) >; def : GCNPat < (xor i16:$src0, i16:$src1), (V_XOR_B32_e64 $src0, $src1) >; defm : Bits_OpsRev_i16_Pats; defm : Bits_OpsRev_i16_Pats; defm : Bits_OpsRev_i16_Pats; def : ZExt_i16_i1_Pat; def : ZExt_i16_i1_Pat; def : GCNPat < (i16 (sext i1:$src)), (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src) >; // Undo sub x, c -> add x, -c canonicalization since c is more likely // an inline immediate than -c. // TODO: Also do for 64-bit. def : GCNPat< (add i16:$src0, (i16 NegSubInlineConst16:$src1)), (V_SUB_U16_e64 $src0, NegSubInlineConst16:$src1) >; } // End Predicates = [Has16BitInsts] //===----------------------------------------------------------------------===// // SI //===----------------------------------------------------------------------===// let AssemblerPredicates = [isSICI], DecoderNamespace = "SICI" in { multiclass VOP2_Real_si op> { def _si : VOP2_Real(NAME), SIEncodingFamily.SI>, VOP2e(NAME).Pfl>; } multiclass VOP2_Real_MADK_si op> { def _si : VOP2_Real(NAME), SIEncodingFamily.SI>, VOP2_MADKe(NAME).Pfl>; } multiclass VOP2_Real_e32_si op> { def _e32_si : VOP2_Real(NAME#"_e32"), SIEncodingFamily.SI>, VOP2e(NAME#"_e32").Pfl>; } multiclass VOP2_Real_e32e64_si op> : VOP2_Real_e32_si { def _e64_si : VOP3_Real(NAME#"_e64"), SIEncodingFamily.SI>, VOP3e_si <{1, 0, 0, op{5-0}}, !cast(NAME#"_e64").Pfl>; } multiclass VOP2be_Real_e32e64_si op> : VOP2_Real_e32_si { def _e64_si : VOP3_Real(NAME#"_e64"), SIEncodingFamily.SI>, VOP3be_si <{1, 0, 0, op{5-0}}, !cast(NAME#"_e64").Pfl>; } } // End AssemblerPredicates = [isSICI], DecoderNamespace = "SICI" defm V_CNDMASK_B32 : VOP2_Real_e32e64_si <0x0>; defm V_ADD_F32 : VOP2_Real_e32e64_si <0x3>; defm V_SUB_F32 : VOP2_Real_e32e64_si <0x4>; defm V_SUBREV_F32 : VOP2_Real_e32e64_si <0x5>; defm V_MUL_LEGACY_F32 : VOP2_Real_e32e64_si <0x7>; defm V_MUL_F32 : VOP2_Real_e32e64_si <0x8>; defm V_MUL_I32_I24 : VOP2_Real_e32e64_si <0x9>; defm V_MUL_HI_I32_I24 : VOP2_Real_e32e64_si <0xa>; defm V_MUL_U32_U24 : VOP2_Real_e32e64_si <0xb>; defm V_MUL_HI_U32_U24 : VOP2_Real_e32e64_si <0xc>; defm V_MIN_F32 : VOP2_Real_e32e64_si <0xf>; defm V_MAX_F32 : VOP2_Real_e32e64_si <0x10>; defm V_MIN_I32 : VOP2_Real_e32e64_si <0x11>; defm V_MAX_I32 : VOP2_Real_e32e64_si <0x12>; defm V_MIN_U32 : VOP2_Real_e32e64_si <0x13>; defm V_MAX_U32 : VOP2_Real_e32e64_si <0x14>; defm V_LSHRREV_B32 : VOP2_Real_e32e64_si <0x16>; defm V_ASHRREV_I32 : VOP2_Real_e32e64_si <0x18>; defm V_LSHLREV_B32 : VOP2_Real_e32e64_si <0x1a>; defm V_AND_B32 : VOP2_Real_e32e64_si <0x1b>; defm V_OR_B32 : VOP2_Real_e32e64_si <0x1c>; defm V_XOR_B32 : VOP2_Real_e32e64_si <0x1d>; defm V_MAC_F32 : VOP2_Real_e32e64_si <0x1f>; defm V_MADMK_F32 : VOP2_Real_MADK_si <0x20>; defm V_MADAK_F32 : VOP2_Real_MADK_si <0x21>; defm V_ADD_I32 : VOP2be_Real_e32e64_si <0x25>; defm V_SUB_I32 : VOP2be_Real_e32e64_si <0x26>; defm V_SUBREV_I32 : VOP2be_Real_e32e64_si <0x27>; defm V_ADDC_U32 : VOP2be_Real_e32e64_si <0x28>; defm V_SUBB_U32 : VOP2be_Real_e32e64_si <0x29>; defm V_SUBBREV_U32 : VOP2be_Real_e32e64_si <0x2a>; defm V_READLANE_B32 : VOP2_Real_si <0x01>; let InOperandList = (ins SSrc_b32:$src0, SCSrc_b32:$src1, VSrc_b32:$vdst_in) in { defm V_WRITELANE_B32 : VOP2_Real_si <0x02>; } defm V_MAC_LEGACY_F32 : VOP2_Real_e32e64_si <0x6>; defm V_MIN_LEGACY_F32 : VOP2_Real_e32e64_si <0xd>; defm V_MAX_LEGACY_F32 : VOP2_Real_e32e64_si <0xe>; defm V_LSHR_B32 : VOP2_Real_e32e64_si <0x15>; defm V_ASHR_I32 : VOP2_Real_e32e64_si <0x17>; defm V_LSHL_B32 : VOP2_Real_e32e64_si <0x19>; defm V_BFM_B32 : VOP2_Real_e32e64_si <0x1e>; defm V_BCNT_U32_B32 : VOP2_Real_e32e64_si <0x22>; defm V_MBCNT_LO_U32_B32 : VOP2_Real_e32e64_si <0x23>; defm V_MBCNT_HI_U32_B32 : VOP2_Real_e32e64_si <0x24>; defm V_LDEXP_F32 : VOP2_Real_e32e64_si <0x2b>; defm V_CVT_PKACCUM_U8_F32 : VOP2_Real_e32e64_si <0x2c>; defm V_CVT_PKNORM_I16_F32 : VOP2_Real_e32e64_si <0x2d>; defm V_CVT_PKNORM_U16_F32 : VOP2_Real_e32e64_si <0x2e>; defm V_CVT_PKRTZ_F16_F32 : VOP2_Real_e32e64_si <0x2f>; defm V_CVT_PK_U16_U32 : VOP2_Real_e32e64_si <0x30>; defm V_CVT_PK_I16_I32 : VOP2_Real_e32e64_si <0x31>; //===----------------------------------------------------------------------===// // VI //===----------------------------------------------------------------------===// class VOP2_DPP op, VOP2_Pseudo ps, string OpName = ps.OpName, VOPProfile P = ps.Pfl> : VOP_DPP { let Defs = ps.Defs; let Uses = ps.Uses; let SchedRW = ps.SchedRW; let hasSideEffects = ps.hasSideEffects; bits<8> vdst; bits<8> src1; let Inst{8-0} = 0xfa; //dpp let Inst{16-9} = !if(P.HasSrc1, src1{7-0}, 0); let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0); let Inst{30-25} = op; let Inst{31} = 0x0; //encoding } let AssemblerPredicates = [isVI], DecoderNamespace = "VI" in { multiclass VOP32_Real_vi op> { def _vi : VOP2_Real(NAME), SIEncodingFamily.VI>, VOP3e_vi(NAME).Pfl>; } multiclass VOP2_Real_MADK_vi op> { def _vi : VOP2_Real(NAME), SIEncodingFamily.VI>, VOP2_MADKe(NAME).Pfl>; } multiclass VOP2_Real_e32_vi op> { def _e32_vi : VOP2_Real(NAME#"_e32"), SIEncodingFamily.VI>, VOP2e(NAME#"_e32").Pfl>; } multiclass VOP2_Real_e64_vi op> { def _e64_vi : VOP3_Real(NAME#"_e64"), SIEncodingFamily.VI>, VOP3e_vi (NAME#"_e64").Pfl>; } multiclass VOP2_Real_e64only_vi op> { def _e64_vi : VOP3_Real(NAME#"_e64"), SIEncodingFamily.VI>, VOP3e_vi (NAME#"_e64").Pfl> { // Hack to stop printing _e64 VOP3_Pseudo ps = !cast(NAME#"_e64"); let OutOperandList = (outs VGPR_32:$vdst); let AsmString = ps.Mnemonic # " " # ps.AsmOperands; } } multiclass Base_VOP2_Real_e32e64_vi op> : VOP2_Real_e32_vi, VOP2_Real_e64_vi<{0, 1, 0, 0, op{5-0}}>; } // End AssemblerPredicates = [isVI], DecoderNamespace = "VI" multiclass VOP2_SDWA_Real op> { def _sdwa_vi : VOP_SDWA_Real (NAME#"_sdwa")>, VOP2_SDWAe (NAME#"_sdwa").Pfl>; } multiclass VOP2_SDWA9_Real op> { def _sdwa_gfx9 : VOP_SDWA9_Real (NAME#"_sdwa")>, VOP2_SDWA9Ae (NAME#"_sdwa").Pfl>; } let AssemblerPredicates = [isVIOnly] in { multiclass VOP2be_Real_e32e64_vi_only op, string OpName, string AsmName> { def _e32_vi : VOP2_Real(OpName#"_e32"), SIEncodingFamily.VI>, VOP2e(OpName#"_e32").Pfl> { VOP2_Pseudo ps = !cast(OpName#"_e32"); let AsmString = AsmName # ps.AsmOperands; let DecoderNamespace = "VI"; } def _e64_vi : VOP3_Real(OpName#"_e64"), SIEncodingFamily.VI>, VOP3be_vi <{0, 1, 0, 0, op{5-0}}, !cast(OpName#"_e64").Pfl> { VOP3_Pseudo ps = !cast(OpName#"_e64"); let AsmString = AsmName # ps.AsmOperands; let DecoderNamespace = "VI"; } def _sdwa_vi : VOP_SDWA_Real (OpName#"_sdwa")>, VOP2_SDWAe (OpName#"_sdwa").Pfl> { VOP2_SDWA_Pseudo ps = !cast(OpName#"_sdwa"); let AsmString = AsmName # ps.AsmOperands; } def _dpp : VOP2_DPP(OpName#"_e32"), AsmName>; } } let AssemblerPredicates = [isGFX9] in { multiclass VOP2be_Real_e32e64_gfx9 op, string OpName, string AsmName> { def _e32_gfx9 : VOP2_Real(OpName#"_e32"), SIEncodingFamily.GFX9>, VOP2e(OpName#"_e32").Pfl> { VOP2_Pseudo ps = !cast(OpName#"_e32"); let AsmString = AsmName # ps.AsmOperands; let DecoderNamespace = "GFX9"; } def _e64_gfx9 : VOP3_Real(OpName#"_e64"), SIEncodingFamily.GFX9>, VOP3be_vi <{0, 1, 0, 0, op{5-0}}, !cast(OpName#"_e64").Pfl> { VOP3_Pseudo ps = !cast(OpName#"_e64"); let AsmString = AsmName # ps.AsmOperands; let DecoderNamespace = "GFX9"; } def _sdwa_gfx9 : VOP_SDWA9_Real (OpName#"_sdwa")>, VOP2_SDWA9Ae (OpName#"_sdwa").Pfl> { VOP2_SDWA_Pseudo ps = !cast(OpName#"_sdwa"); let AsmString = AsmName # ps.AsmOperands; } def _dpp_gfx9 : VOP2_DPP(OpName#"_e32"), AsmName> { let DecoderNamespace = "SDWA9"; } } multiclass VOP2_Real_e32e64_gfx9 op> { def _e32_gfx9 : VOP2_Real(NAME#"_e32"), SIEncodingFamily.GFX9>, VOP2e(NAME#"_e32").Pfl>{ let DecoderNamespace = "GFX9"; } def _e64_gfx9 : VOP3_Real(NAME#"_e64"), SIEncodingFamily.GFX9>, VOP3e_vi <{0, 1, 0, 0, op{5-0}}, !cast(NAME#"_e64").Pfl> { let DecoderNamespace = "GFX9"; } def _sdwa_gfx9 : VOP_SDWA9_Real (NAME#"_sdwa")>, VOP2_SDWA9Ae (NAME#"_sdwa").Pfl> { } def _dpp_gfx9 : VOP2_DPP(NAME#"_e32")> { let DecoderNamespace = "SDWA9"; } } } // AssemblerPredicates = [isGFX9] multiclass VOP2_Real_e32e64_vi op> : Base_VOP2_Real_e32e64_vi, VOP2_SDWA_Real, VOP2_SDWA9_Real { // For now left dpp only for asm/dasm // TODO: add corresponding pseudo def _dpp : VOP2_DPP(NAME#"_e32")>; } defm V_CNDMASK_B32 : VOP2_Real_e32e64_vi <0x0>; defm V_ADD_F32 : VOP2_Real_e32e64_vi <0x1>; defm V_SUB_F32 : VOP2_Real_e32e64_vi <0x2>; defm V_SUBREV_F32 : VOP2_Real_e32e64_vi <0x3>; defm V_MUL_LEGACY_F32 : VOP2_Real_e32e64_vi <0x4>; defm V_MUL_F32 : VOP2_Real_e32e64_vi <0x5>; defm V_MUL_I32_I24 : VOP2_Real_e32e64_vi <0x6>; defm V_MUL_HI_I32_I24 : VOP2_Real_e32e64_vi <0x7>; defm V_MUL_U32_U24 : VOP2_Real_e32e64_vi <0x8>; defm V_MUL_HI_U32_U24 : VOP2_Real_e32e64_vi <0x9>; defm V_MIN_F32 : VOP2_Real_e32e64_vi <0xa>; defm V_MAX_F32 : VOP2_Real_e32e64_vi <0xb>; defm V_MIN_I32 : VOP2_Real_e32e64_vi <0xc>; defm V_MAX_I32 : VOP2_Real_e32e64_vi <0xd>; defm V_MIN_U32 : VOP2_Real_e32e64_vi <0xe>; defm V_MAX_U32 : VOP2_Real_e32e64_vi <0xf>; defm V_LSHRREV_B32 : VOP2_Real_e32e64_vi <0x10>; defm V_ASHRREV_I32 : VOP2_Real_e32e64_vi <0x11>; defm V_LSHLREV_B32 : VOP2_Real_e32e64_vi <0x12>; defm V_AND_B32 : VOP2_Real_e32e64_vi <0x13>; defm V_OR_B32 : VOP2_Real_e32e64_vi <0x14>; defm V_XOR_B32 : VOP2_Real_e32e64_vi <0x15>; defm V_MAC_F32 : VOP2_Real_e32e64_vi <0x16>; defm V_MADMK_F32 : VOP2_Real_MADK_vi <0x17>; defm V_MADAK_F32 : VOP2_Real_MADK_vi <0x18>; defm V_ADD_U32 : VOP2be_Real_e32e64_vi_only <0x19, "V_ADD_I32", "v_add_u32">; defm V_SUB_U32 : VOP2be_Real_e32e64_vi_only <0x1a, "V_SUB_I32", "v_sub_u32">; defm V_SUBREV_U32 : VOP2be_Real_e32e64_vi_only <0x1b, "V_SUBREV_I32", "v_subrev_u32">; defm V_ADDC_U32 : VOP2be_Real_e32e64_vi_only <0x1c, "V_ADDC_U32", "v_addc_u32">; defm V_SUBB_U32 : VOP2be_Real_e32e64_vi_only <0x1d, "V_SUBB_U32", "v_subb_u32">; defm V_SUBBREV_U32 : VOP2be_Real_e32e64_vi_only <0x1e, "V_SUBBREV_U32", "v_subbrev_u32">; defm V_ADD_CO_U32 : VOP2be_Real_e32e64_gfx9 <0x19, "V_ADD_I32", "v_add_co_u32">; defm V_SUB_CO_U32 : VOP2be_Real_e32e64_gfx9 <0x1a, "V_SUB_I32", "v_sub_co_u32">; defm V_SUBREV_CO_U32 : VOP2be_Real_e32e64_gfx9 <0x1b, "V_SUBREV_I32", "v_subrev_co_u32">; defm V_ADDC_CO_U32 : VOP2be_Real_e32e64_gfx9 <0x1c, "V_ADDC_U32", "v_addc_co_u32">; defm V_SUBB_CO_U32 : VOP2be_Real_e32e64_gfx9 <0x1d, "V_SUBB_U32", "v_subb_co_u32">; defm V_SUBBREV_CO_U32 : VOP2be_Real_e32e64_gfx9 <0x1e, "V_SUBBREV_U32", "v_subbrev_co_u32">; defm V_ADD_U32 : VOP2_Real_e32e64_gfx9 <0x34>; defm V_SUB_U32 : VOP2_Real_e32e64_gfx9 <0x35>; defm V_SUBREV_U32 : VOP2_Real_e32e64_gfx9 <0x36>; defm V_READLANE_B32 : VOP32_Real_vi <0x289>; defm V_WRITELANE_B32 : VOP32_Real_vi <0x28a>; defm V_BFM_B32 : VOP2_Real_e64only_vi <0x293>; defm V_BCNT_U32_B32 : VOP2_Real_e64only_vi <0x28b>; defm V_MBCNT_LO_U32_B32 : VOP2_Real_e64only_vi <0x28c>; defm V_MBCNT_HI_U32_B32 : VOP2_Real_e64only_vi <0x28d>; defm V_LDEXP_F32 : VOP2_Real_e64only_vi <0x288>; defm V_CVT_PKACCUM_U8_F32 : VOP2_Real_e64only_vi <0x1f0>; defm V_CVT_PKNORM_I16_F32 : VOP2_Real_e64only_vi <0x294>; defm V_CVT_PKNORM_U16_F32 : VOP2_Real_e64only_vi <0x295>; defm V_CVT_PKRTZ_F16_F32 : VOP2_Real_e64only_vi <0x296>; defm V_CVT_PK_U16_U32 : VOP2_Real_e64only_vi <0x297>; defm V_CVT_PK_I16_I32 : VOP2_Real_e64only_vi <0x298>; defm V_ADD_F16 : VOP2_Real_e32e64_vi <0x1f>; defm V_SUB_F16 : VOP2_Real_e32e64_vi <0x20>; defm V_SUBREV_F16 : VOP2_Real_e32e64_vi <0x21>; defm V_MUL_F16 : VOP2_Real_e32e64_vi <0x22>; defm V_MAC_F16 : VOP2_Real_e32e64_vi <0x23>; defm V_MADMK_F16 : VOP2_Real_MADK_vi <0x24>; defm V_MADAK_F16 : VOP2_Real_MADK_vi <0x25>; defm V_ADD_U16 : VOP2_Real_e32e64_vi <0x26>; defm V_SUB_U16 : VOP2_Real_e32e64_vi <0x27>; defm V_SUBREV_U16 : VOP2_Real_e32e64_vi <0x28>; defm V_MUL_LO_U16 : VOP2_Real_e32e64_vi <0x29>; defm V_LSHLREV_B16 : VOP2_Real_e32e64_vi <0x2a>; defm V_LSHRREV_B16 : VOP2_Real_e32e64_vi <0x2b>; defm V_ASHRREV_I16 : VOP2_Real_e32e64_vi <0x2c>; defm V_MAX_F16 : VOP2_Real_e32e64_vi <0x2d>; defm V_MIN_F16 : VOP2_Real_e32e64_vi <0x2e>; defm V_MAX_U16 : VOP2_Real_e32e64_vi <0x2f>; defm V_MAX_I16 : VOP2_Real_e32e64_vi <0x30>; defm V_MIN_U16 : VOP2_Real_e32e64_vi <0x31>; defm V_MIN_I16 : VOP2_Real_e32e64_vi <0x32>; defm V_LDEXP_F16 : VOP2_Real_e32e64_vi <0x33>; let SubtargetPredicate = isVI in { // Aliases to simplify matching of floating-point instructions that // are VOP2 on SI and VOP3 on VI. class SI2_VI3Alias : InstAlias < name#" $dst, $src0, $src1", !if(inst.Pfl.HasOMod, (inst VGPR_32:$dst, 0, VCSrc_f32:$src0, 0, VCSrc_f32:$src1, 0, 0), (inst VGPR_32:$dst, 0, VCSrc_f32:$src0, 0, VCSrc_f32:$src1, 0)) >, PredicateControl { let UseInstAsmMatchConverter = 0; let AsmVariantName = AMDGPUAsmVariants.VOP3; } def : SI2_VI3Alias <"v_ldexp_f32", V_LDEXP_F32_e64_vi>; def : SI2_VI3Alias <"v_cvt_pkaccum_u8_f32", V_CVT_PKACCUM_U8_F32_e64_vi>; def : SI2_VI3Alias <"v_cvt_pknorm_i16_f32", V_CVT_PKNORM_I16_F32_e64_vi>; def : SI2_VI3Alias <"v_cvt_pknorm_u16_f32", V_CVT_PKNORM_U16_F32_e64_vi>; def : SI2_VI3Alias <"v_cvt_pkrtz_f16_f32", V_CVT_PKRTZ_F16_F32_e64_vi>; } // End SubtargetPredicate = isVI let SubtargetPredicate = HasDLInsts in { defm V_FMAC_F32 : VOP2_Real_e32e64_vi <0x3b>; defm V_XNOR_B32 : VOP2_Real_e32e64_vi <0x3d>; } // End SubtargetPredicate = HasDLInsts