//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "SIMachineFunctionInfo.h" #include "AMDGPUArgumentUsageInfo.h" #include "AMDGPUSubtarget.h" #include "SIRegisterInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/Optional.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Function.h" #include #include #define MAX_LANES 64 using namespace llvm; SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF) : AMDGPUMachineFunction(MF), PrivateSegmentBuffer(false), DispatchPtr(false), QueuePtr(false), KernargSegmentPtr(false), DispatchID(false), FlatScratchInit(false), WorkGroupIDX(false), WorkGroupIDY(false), WorkGroupIDZ(false), WorkGroupInfo(false), PrivateSegmentWaveByteOffset(false), WorkItemIDX(false), WorkItemIDY(false), WorkItemIDZ(false), ImplicitBufferPtr(false), ImplicitArgPtr(false), GITPtrHigh(0xffffffff), HighBitsOf32BitAddress(0) { const GCNSubtarget &ST = MF.getSubtarget(); const Function &F = MF.getFunction(); FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F); WavesPerEU = ST.getWavesPerEU(F); Occupancy = getMaxWavesPerEU(); limitOccupancy(MF); CallingConv::ID CC = F.getCallingConv(); if (CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL) { if (!F.arg_empty()) KernargSegmentPtr = true; WorkGroupIDX = true; WorkItemIDX = true; } else if (CC == CallingConv::AMDGPU_PS) { PSInputAddr = AMDGPU::getInitialPSInputAddr(F); } if (!isEntryFunction()) { // Non-entry functions have no special inputs for now, other registers // required for scratch access. ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3; ScratchWaveOffsetReg = AMDGPU::SGPR4; FrameOffsetReg = AMDGPU::SGPR5; StackPtrOffsetReg = AMDGPU::SGPR32; ArgInfo.PrivateSegmentBuffer = ArgDescriptor::createRegister(ScratchRSrcReg); ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(ScratchWaveOffsetReg); if (F.hasFnAttribute("amdgpu-implicitarg-ptr")) ImplicitArgPtr = true; } else { if (F.hasFnAttribute("amdgpu-implicitarg-ptr")) { KernargSegmentPtr = true; MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(), MaxKernArgAlign); } } if (ST.debuggerEmitPrologue()) { // Enable everything. WorkGroupIDX = true; WorkGroupIDY = true; WorkGroupIDZ = true; WorkItemIDX = true; WorkItemIDY = true; WorkItemIDZ = true; } else { if (F.hasFnAttribute("amdgpu-work-group-id-x")) WorkGroupIDX = true; if (F.hasFnAttribute("amdgpu-work-group-id-y")) WorkGroupIDY = true; if (F.hasFnAttribute("amdgpu-work-group-id-z")) WorkGroupIDZ = true; if (F.hasFnAttribute("amdgpu-work-item-id-x")) WorkItemIDX = true; if (F.hasFnAttribute("amdgpu-work-item-id-y")) WorkItemIDY = true; if (F.hasFnAttribute("amdgpu-work-item-id-z")) WorkItemIDZ = true; } const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); bool MaySpill = ST.isVGPRSpillingEnabled(F); bool HasStackObjects = FrameInfo.hasStackObjects(); if (isEntryFunction()) { // X, XY, and XYZ are the only supported combinations, so make sure Y is // enabled if Z is. if (WorkItemIDZ) WorkItemIDY = true; if (HasStackObjects || MaySpill) { PrivateSegmentWaveByteOffset = true; // HS and GS always have the scratch wave offset in SGPR5 on GFX9. if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 && (CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS)) ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(AMDGPU::SGPR5); } } bool IsCOV2 = ST.isAmdCodeObjectV2(F); if (IsCOV2) { if (HasStackObjects || MaySpill) PrivateSegmentBuffer = true; if (F.hasFnAttribute("amdgpu-dispatch-ptr")) DispatchPtr = true; if (F.hasFnAttribute("amdgpu-queue-ptr")) QueuePtr = true; if (F.hasFnAttribute("amdgpu-dispatch-id")) DispatchID = true; } else if (ST.isMesaGfxShader(F)) { if (HasStackObjects || MaySpill) ImplicitBufferPtr = true; } if (F.hasFnAttribute("amdgpu-kernarg-segment-ptr")) KernargSegmentPtr = true; if (ST.hasFlatAddressSpace() && isEntryFunction() && IsCOV2) { // TODO: This could be refined a lot. The attribute is a poor way of // detecting calls that may require it before argument lowering. if (HasStackObjects || F.hasFnAttribute("amdgpu-flat-scratch")) FlatScratchInit = true; } Attribute A = F.getFnAttribute("amdgpu-git-ptr-high"); StringRef S = A.getValueAsString(); if (!S.empty()) S.consumeInteger(0, GITPtrHigh); A = F.getFnAttribute("amdgpu-32bit-address-high-bits"); S = A.getValueAsString(); if (!S.empty()) S.consumeInteger(0, HighBitsOf32BitAddress); } void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) { limitOccupancy(getMaxWavesPerEU()); const GCNSubtarget& ST = MF.getSubtarget(); limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(), MF.getFunction())); } unsigned SIMachineFunctionInfo::addPrivateSegmentBuffer( const SIRegisterInfo &TRI) { ArgInfo.PrivateSegmentBuffer = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_128RegClass)); NumUserSGPRs += 4; return ArgInfo.PrivateSegmentBuffer.getRegister(); } unsigned SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) { ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.DispatchPtr.getRegister(); } unsigned SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) { ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.QueuePtr.getRegister(); } unsigned SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) { ArgInfo.KernargSegmentPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.KernargSegmentPtr.getRegister(); } unsigned SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) { ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.DispatchID.getRegister(); } unsigned SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) { ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.FlatScratchInit.getRegister(); } unsigned SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) { ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); NumUserSGPRs += 2; return ArgInfo.ImplicitBufferPtr.getRegister(); } static bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg) { for (unsigned I = 0; CSRegs[I]; ++I) { if (CSRegs[I] == Reg) return true; } return false; } /// Reserve a slice of a VGPR to support spilling for FrameIndex \p FI. bool SIMachineFunctionInfo::allocateSGPRSpillToVGPR(MachineFunction &MF, int FI) { std::vector &SpillLanes = SGPRToVGPRSpills[FI]; // This has already been allocated. if (!SpillLanes.empty()) return true; const GCNSubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineFrameInfo &FrameInfo = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned WaveSize = ST.getWavefrontSize(); unsigned Size = FrameInfo.getObjectSize(FI); assert(Size >= 4 && Size <= 64 && "invalid sgpr spill size"); assert(TRI->spillSGPRToVGPR() && "not spilling SGPRs to VGPRs"); int NumLanes = Size / 4; const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); // Make sure to handle the case where a wide SGPR spill may span between two // VGPRs. for (int I = 0; I < NumLanes; ++I, ++NumVGPRSpillLanes) { unsigned LaneVGPR; unsigned VGPRIndex = (NumVGPRSpillLanes % WaveSize); if (VGPRIndex == 0) { LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF); if (LaneVGPR == AMDGPU::NoRegister) { // We have no VGPRs left for spilling SGPRs. Reset because we will not // partially spill the SGPR to VGPRs. SGPRToVGPRSpills.erase(FI); NumVGPRSpillLanes -= I; return false; } Optional CSRSpillFI; if ((FrameInfo.hasCalls() || !isEntryFunction()) && CSRegs && isCalleeSavedReg(CSRegs, LaneVGPR)) { CSRSpillFI = FrameInfo.CreateSpillStackObject(4, 4); } SpillVGPRs.push_back(SGPRSpillVGPRCSR(LaneVGPR, CSRSpillFI)); // Add this register as live-in to all blocks to avoid machine verifer // complaining about use of an undefined physical register. for (MachineBasicBlock &BB : MF) BB.addLiveIn(LaneVGPR); } else { LaneVGPR = SpillVGPRs.back().VGPR; } SpillLanes.push_back(SpilledReg(LaneVGPR, VGPRIndex)); } return true; } void SIMachineFunctionInfo::removeSGPRToVGPRFrameIndices(MachineFrameInfo &MFI) { for (auto &R : SGPRToVGPRSpills) MFI.RemoveStackObject(R.first); } /// \returns VGPR used for \p Dim' work item ID. unsigned SIMachineFunctionInfo::getWorkItemIDVGPR(unsigned Dim) const { switch (Dim) { case 0: assert(hasWorkItemIDX()); return AMDGPU::VGPR0; case 1: assert(hasWorkItemIDY()); return AMDGPU::VGPR1; case 2: assert(hasWorkItemIDZ()); return AMDGPU::VGPR2; } llvm_unreachable("unexpected dimension"); } MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const { assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs"); return AMDGPU::SGPR0 + NumUserSGPRs; } MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const { return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs; }