//===-- SIInstructions.td - SI Instruction Defintions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This file was originally auto-generated from a GPU register header file and // all the instruction definitions were originally commented out. Instructions // that are not yet supported remain commented out. //===----------------------------------------------------------------------===// def has16BankLDS : Predicate<"Subtarget->getLDSBankCount() == 16">; def has32BankLDS : Predicate<"Subtarget->getLDSBankCount() == 32">; def HasVGPRIndexMode : Predicate<"Subtarget->hasVGPRIndexMode()">, AssemblerPredicate<"FeatureVGPRIndexMode">; def HasMovrel : Predicate<"Subtarget->hasMovrel()">, AssemblerPredicate<"FeatureMovrel">; class GCNPat : AMDGPUPat { let SubtargetPredicate = isGCN; } include "VOPInstructions.td" include "SOPInstructions.td" include "SMInstructions.td" include "FLATInstructions.td" include "BUFInstructions.td" //===----------------------------------------------------------------------===// // EXP Instructions //===----------------------------------------------------------------------===// defm EXP : EXP_m<0, AMDGPUexport>; defm EXP_DONE : EXP_m<1, AMDGPUexport_done>; //===----------------------------------------------------------------------===// // VINTRP Instructions //===----------------------------------------------------------------------===// let Uses = [M0, EXEC] in { // FIXME: Specify SchedRW for VINTRP insturctions. multiclass V_INTERP_P1_F32_m : VINTRP_m < 0x00000000, (outs VGPR_32:$vdst), (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), "v_interp_p1_f32 $vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (AMDGPUinterp_p1 f32:$vsrc, (i32 imm:$attrchan), (i32 imm:$attr)))] >; let OtherPredicates = [has32BankLDS] in { defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS] let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { defm V_INTERP_P2_F32 : VINTRP_m < 0x00000001, (outs VGPR_32:$vdst), (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), "v_interp_p2_f32 $vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (AMDGPUinterp_p2 f32:$src0, f32:$vsrc, (i32 imm:$attrchan), (i32 imm:$attr)))]>; } // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" defm V_INTERP_MOV_F32 : VINTRP_m < 0x00000002, (outs VGPR_32:$vdst), (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), "v_interp_mov_f32 $vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (AMDGPUinterp_mov (i32 imm:$vsrc), (i32 imm:$attrchan), (i32 imm:$attr)))]>; } // End Uses = [M0, EXEC] //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// def ATOMIC_FENCE : SPseudoInstSI< (outs), (ins i32imm:$ordering, i32imm:$scope), [(atomic_fence (i32 imm:$ordering), (i32 imm:$scope))], "ATOMIC_FENCE $ordering, $scope"> { let hasSideEffects = 1; let maybeAtomic = 1; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { // For use in patterns def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { let isPseudo = 1; let isCodeGenOnly = 1; let usesCustomInserter = 1; } // 64-bit vector move instruction. This is mainly used by the // SIFoldOperands pass to enable folding of inline immediates. def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), (ins VSrc_b64:$src0)>; // Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the // WQM pass processes it. def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; // Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so // that the @earlyclobber is respected. The @earlyclobber is to make sure that // the instruction that defines $src0 (which is run in WWM) doesn't // accidentally clobber inactive channels of $vdst. let Constraints = "@earlyclobber $vdst" in { def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; } } // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] def EXIT_WWM : SPseudoInstSI <(outs SReg_64:$sdst), (ins SReg_64:$src0)> { let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; } // Invert the exec mask and overwrite the inactive lanes of dst with inactive, // restoring it after we're done. def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), (ins VGPR_32: $src, VSrc_b32:$inactive), [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> { let Constraints = "$src = $vdst"; } def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), (ins VReg_64: $src, VSrc_b64:$inactive), [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> { let Constraints = "$src = $vdst"; } let usesCustomInserter = 1, Defs = [SCC] in { def S_ADD_U64_PSEUDO : SPseudoInstSI < (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), [(set SReg_64:$vdst, (add i64:$src0, i64:$src1))] >; def S_SUB_U64_PSEUDO : SPseudoInstSI < (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), [(set SReg_64:$vdst, (sub i64:$src0, i64:$src1))] >; def S_ADD_U64_CO_PSEUDO : SPseudoInstSI < (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) >; def S_SUB_U64_CO_PSEUDO : SPseudoInstSI < (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) >; } // End usesCustomInserter = 1, Defs = [SCC] let usesCustomInserter = 1, SALU = 1 in { def GET_GROUPSTATICSIZE : PseudoInstSI <(outs SReg_32:$sdst), (ins), [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; } // End let usesCustomInserter = 1, SALU = 1 def S_MOV_B64_term : PseudoInstSI<(outs SReg_64:$dst), (ins SSrc_b64:$src0)> { let SALU = 1; let isAsCheapAsAMove = 1; let isTerminator = 1; } def S_XOR_B64_term : PseudoInstSI<(outs SReg_64:$dst), (ins SSrc_b64:$src0, SSrc_b64:$src1)> { let SALU = 1; let isAsCheapAsAMove = 1; let isTerminator = 1; } def S_ANDN2_B64_term : PseudoInstSI<(outs SReg_64:$dst), (ins SSrc_b64:$src0, SSrc_b64:$src1)> { let SALU = 1; let isAsCheapAsAMove = 1; let isTerminator = 1; } def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), [(int_amdgcn_wave_barrier)]> { let SchedRW = []; let hasNoSchedulingInfo = 1; let hasSideEffects = 1; let mayLoad = 1; let mayStore = 1; let isBarrier = 1; let isConvergent = 1; let FixedSize = 1; let Size = 0; } // SI pseudo instructions. These are used by the CFG structurizer pass // and should be lowered to ISA instructions prior to codegen. // Dummy terminator instruction to use after control flow instructions // replaced with exec mask operations. def SI_MASK_BRANCH : VPseudoInstSI < (outs), (ins brtarget:$target)> { let isBranch = 0; let isTerminator = 1; let isBarrier = 0; let SchedRW = []; let hasNoSchedulingInfo = 1; let FixedSize = 1; let Size = 0; } let isTerminator = 1 in { let OtherPredicates = [EnableLateCFGStructurize] in { def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < (outs), (ins SReg_64:$vcc, brtarget:$target), [(brcond i1:$vcc, bb:$target)]> { let Size = 12; } } def SI_IF: CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$vcc, brtarget:$target), [(set i64:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { let Constraints = ""; let Size = 12; let hasSideEffects = 1; } def SI_ELSE : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> { let Constraints = "$src = $dst"; let Size = 12; let hasSideEffects = 1; } def SI_LOOP : CFPseudoInstSI < (outs), (ins SReg_64:$saved, brtarget:$target), [(AMDGPUloop i64:$saved, bb:$target)], 1, 1> { let Size = 8; let isBranch = 0; let hasSideEffects = 1; } } // End isTerminator = 1 def SI_END_CF : CFPseudoInstSI < (outs), (ins SReg_64:$saved), [(int_amdgcn_end_cf i64:$saved)], 1, 1> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; let hasSideEffects = 1; let mayLoad = 1; // FIXME: Should not need memory flags let mayStore = 1; } def SI_BREAK : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$src), [(set i64:$dst, (int_amdgcn_break i64:$src))], 1> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } def SI_IF_BREAK : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$vcc, SReg_64:$src), [(set i64:$dst, (int_amdgcn_if_break i1:$vcc, i64:$src))]> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } def SI_ELSE_BREAK : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$src0, SReg_64:$src1), [(set i64:$dst, (int_amdgcn_else_break i64:$src0, i64:$src1))]> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } let Uses = [EXEC], Defs = [EXEC,VCC] in { multiclass PseudoInstKill { def _PSEUDO : PseudoInstSI <(outs), ins> { let isConvergent = 1; let usesCustomInserter = 1; } def _TERMINATOR : SPseudoInstSI <(outs), ins> { let isTerminator = 1; } } defm SI_KILL_I1 : PseudoInstKill <(ins SSrc_b64:$src, i1imm:$killvalue)>; defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; def SI_ILLEGAL_COPY : SPseudoInstSI < (outs unknown:$dst), (ins unknown:$src), [], " ; illegal copy $src to $dst">; } // End Uses = [EXEC], Defs = [EXEC,VCC] // Branch on undef scc. Used to avoid intermediate copy from // IMPLICIT_DEF to SCC. def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { let isTerminator = 1; let usesCustomInserter = 1; } def SI_PS_LIVE : PseudoInstSI < (outs SReg_64:$dst), (ins), [(set i1:$dst, (int_amdgcn_ps_live))]> { let SALU = 1; } def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), [(int_amdgcn_unreachable)], "; divergent unreachable"> { let Size = 0; let hasNoSchedulingInfo = 1; let FixedSize = 1; } // Used as an isel pseudo to directly emit initialization with an // s_mov_b32 rather than a copy of another initialized // register. MachineCSE skips copies, and we don't want to have to // fold operands before it runs. def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { let Defs = [M0]; let usesCustomInserter = 1; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } def SI_INIT_EXEC : SPseudoInstSI < (outs), (ins i64imm:$src), []> { let Defs = [EXEC]; let usesCustomInserter = 1; let isAsCheapAsAMove = 1; } def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < (outs), (ins SSrc_b32:$input, i32imm:$shift), []> { let Defs = [EXEC]; let usesCustomInserter = 1; } // Return for returning shaders to a shader variant epilog. def SI_RETURN_TO_EPILOG : SPseudoInstSI < (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { let isTerminator = 1; let isBarrier = 1; let isReturn = 1; let hasNoSchedulingInfo = 1; let DisableWQM = 1; } // Return for returning function calls. def SI_RETURN : SPseudoInstSI < (outs), (ins), [], "; return"> { let isTerminator = 1; let isBarrier = 1; let isReturn = 1; let SchedRW = [WriteBranch]; } // Return for returning function calls without output register. // // This version is only needed so we can fill in the output regiter in // the custom inserter. def SI_CALL_ISEL : SPseudoInstSI < (outs), (ins SSrc_b64:$src0), [(AMDGPUcall i64:$src0)]> { let Size = 4; let isCall = 1; let SchedRW = [WriteBranch]; let usesCustomInserter = 1; } // Wrapper around s_swappc_b64 with extra $callee parameter to track // the called function after regalloc. def SI_CALL : SPseudoInstSI < (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { let Size = 4; let isCall = 1; let UseNamedOperandTable = 1; let SchedRW = [WriteBranch]; } // Tail call handling pseudo def SI_TCRETURN_ISEL : SPseudoInstSI<(outs), (ins SSrc_b64:$src0, i32imm:$fpdiff), [(AMDGPUtc_return i64:$src0, i32:$fpdiff)]> { let isCall = 1; let isTerminator = 1; let isReturn = 1; let isBarrier = 1; let SchedRW = [WriteBranch]; let usesCustomInserter = 1; } def SI_TCRETURN : SPseudoInstSI < (outs), (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff)> { let Size = 4; let isCall = 1; let isTerminator = 1; let isReturn = 1; let isBarrier = 1; let UseNamedOperandTable = 1; let SchedRW = [WriteBranch]; } def ADJCALLSTACKUP : SPseudoInstSI< (outs), (ins i32imm:$amt0, i32imm:$amt1), [(callseq_start timm:$amt0, timm:$amt1)], "; adjcallstackup $amt0 $amt1"> { let Size = 8; // Worst case. (s_add_u32 + constant) let FixedSize = 1; let hasSideEffects = 1; let usesCustomInserter = 1; } def ADJCALLSTACKDOWN : SPseudoInstSI< (outs), (ins i32imm:$amt1, i32imm:$amt2), [(callseq_end timm:$amt1, timm:$amt2)], "; adjcallstackdown $amt1"> { let Size = 8; // Worst case. (s_add_u32 + constant) let hasSideEffects = 1; let usesCustomInserter = 1; } let Defs = [M0, EXEC], UseNamedOperandTable = 1 in { class SI_INDIRECT_SRC : VPseudoInstSI < (outs VGPR_32:$vdst), (ins rc:$src, VS_32:$idx, i32imm:$offset)> { let usesCustomInserter = 1; } class SI_INDIRECT_DST : VPseudoInstSI < (outs rc:$vdst), (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { let Constraints = "$src = $vdst"; let usesCustomInserter = 1; } // TODO: We can support indirect SGPR access. def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC; def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST; } // End Uses = [EXEC], Defs = [M0, EXEC] multiclass SI_SPILL_SGPR { let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { def _SAVE : PseudoInstSI < (outs), (ins sgpr_class:$data, i32imm:$addr)> { let mayStore = 1; let mayLoad = 0; } def _RESTORE : PseudoInstSI < (outs sgpr_class:$data), (ins i32imm:$addr)> { let mayStore = 0; let mayLoad = 1; } } // End UseNamedOperandTable = 1 } // You cannot use M0 as the output of v_readlane_b32 instructions or // use it in the sdata operand of SMEM instructions. We still need to // be able to spill the physical register m0, so allow it for // SI_SPILL_32_* instructions. defm SI_SPILL_S32 : SI_SPILL_SGPR ; defm SI_SPILL_S64 : SI_SPILL_SGPR ; defm SI_SPILL_S128 : SI_SPILL_SGPR ; defm SI_SPILL_S256 : SI_SPILL_SGPR ; defm SI_SPILL_S512 : SI_SPILL_SGPR ; multiclass SI_SPILL_VGPR { let UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] in { def _SAVE : VPseudoInstSI < (outs), (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, i32imm:$offset)> { let mayStore = 1; let mayLoad = 0; // (2 * 4) + (8 * num_subregs) bytes maximum let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); } def _RESTORE : VPseudoInstSI < (outs vgpr_class:$vdata), (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, i32imm:$offset)> { let mayStore = 0; let mayLoad = 1; // (2 * 4) + (8 * num_subregs) bytes maximum let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); } } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] } defm SI_SPILL_V32 : SI_SPILL_VGPR ; defm SI_SPILL_V64 : SI_SPILL_VGPR ; defm SI_SPILL_V96 : SI_SPILL_VGPR ; defm SI_SPILL_V128 : SI_SPILL_VGPR ; defm SI_SPILL_V256 : SI_SPILL_VGPR ; defm SI_SPILL_V512 : SI_SPILL_VGPR ; def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < (outs SReg_64:$dst), (ins si_ga:$ptr_lo, si_ga:$ptr_hi), [(set SReg_64:$dst, (i64 (SIpc_add_rel_offset (tglobaladdr:$ptr_lo), (tglobaladdr:$ptr_hi))))]> { let Defs = [SCC]; } def : GCNPat < (AMDGPUinit_exec i64:$src), (SI_INIT_EXEC (as_i64imm $src)) >; def : GCNPat < (AMDGPUinit_exec_from_input i32:$input, i32:$shift), (SI_INIT_EXEC_FROM_INPUT (i32 $input), (as_i32imm $shift)) >; def : GCNPat< (AMDGPUtrap timm:$trapid), (S_TRAP $trapid) >; def : GCNPat< (AMDGPUelse i64:$src, bb:$target), (SI_ELSE $src, $target, 0) >; def : GCNPat < (int_AMDGPU_kilp), (SI_KILL_I1_PSEUDO (i1 0), 0) >; def : Pat < // -1.0 as i32 (LowerINTRINSIC_VOID converts all other constants to -1.0) (AMDGPUkill (i32 -1082130432)), (SI_KILL_I1_PSEUDO (i1 0), 0) >; def : Pat < (int_amdgcn_kill i1:$src), (SI_KILL_I1_PSEUDO $src, 0) >; def : Pat < (int_amdgcn_kill (i1 (not i1:$src))), (SI_KILL_I1_PSEUDO $src, -1) >; def : Pat < (AMDGPUkill i32:$src), (SI_KILL_F32_COND_IMM_PSEUDO $src, 0, 3) // 3 means SETOGE >; def : Pat < (int_amdgcn_kill (i1 (setcc f32:$src, InlineFPImm:$imm, cond:$cond))), (SI_KILL_F32_COND_IMM_PSEUDO $src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) >; // TODO: we could add more variants for other types of conditionals //===----------------------------------------------------------------------===// // VOP1 Patterns //===----------------------------------------------------------------------===// let SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] in { //def : RcpPat; //defm : RsqPat; //defm : RsqPat; def : RsqPat; def : RsqPat; // Convert (x - floor(x)) to fract(x) def : GCNPat < (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), (V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) >; // Convert (x + (-floor(x))) to fract(x) def : GCNPat < (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) >; } // End SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] // f16_to_fp patterns def : GCNPat < (f32 (f16_to_fp i32:$src0)), (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) >; def : GCNPat < (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) >; def : GCNPat < (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) >; def : GCNPat < (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) >; def : GCNPat < (f64 (fpextend f16:$src)), (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) >; // fp_to_fp16 patterns def : GCNPat < (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0, DSTCLAMP.NONE, DSTOMOD.NONE) >; def : GCNPat < (i32 (fp_to_sint f16:$src)), (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 $src)) >; def : GCNPat < (i32 (fp_to_uint f16:$src)), (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 $src)) >; def : GCNPat < (f16 (sint_to_fp i32:$src)), (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 $src)) >; def : GCNPat < (f16 (uint_to_fp i32:$src)), (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 $src)) >; //===----------------------------------------------------------------------===// // VOP2 Patterns //===----------------------------------------------------------------------===// multiclass FMADPat { def : GCNPat < (vt (fmad (VOP3NoMods vt:$src0), (VOP3NoMods vt:$src1), (VOP3NoMods vt:$src2))), (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; } defm : FMADPat ; defm : FMADPat ; class FMADModsPat : GCNPat< (f32 (mad_opr (VOP3Mods f32:$src0, i32:$src0_mod), (VOP3Mods f32:$src1, i32:$src1_mod), (VOP3Mods f32:$src2, i32:$src2_mod))), (inst $src0_mod, $src0, $src1_mod, $src1, $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; def : FMADModsPat; multiclass SelectPat { def : GCNPat < (vt (select i1:$src0, vt:$src1, vt:$src2)), (inst $src2, $src1, $src0) >; } defm : SelectPat ; defm : SelectPat ; defm : SelectPat ; defm : SelectPat ; def : GCNPat < (i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)), (V_BCNT_U32_B32_e64 $popcnt, $val) >; /********** ============================================ **********/ /********** Extraction, Insertion, Building and Casting **********/ /********** ============================================ **********/ foreach Index = 0-2 in { def Extract_Element_v2i32_#Index : Extract_Element < i32, v2i32, Index, !cast(sub#Index) >; def Insert_Element_v2i32_#Index : Insert_Element < i32, v2i32, Index, !cast(sub#Index) >; def Extract_Element_v2f32_#Index : Extract_Element < f32, v2f32, Index, !cast(sub#Index) >; def Insert_Element_v2f32_#Index : Insert_Element < f32, v2f32, Index, !cast(sub#Index) >; } foreach Index = 0-3 in { def Extract_Element_v4i32_#Index : Extract_Element < i32, v4i32, Index, !cast(sub#Index) >; def Insert_Element_v4i32_#Index : Insert_Element < i32, v4i32, Index, !cast(sub#Index) >; def Extract_Element_v4f32_#Index : Extract_Element < f32, v4f32, Index, !cast(sub#Index) >; def Insert_Element_v4f32_#Index : Insert_Element < f32, v4f32, Index, !cast(sub#Index) >; } foreach Index = 0-7 in { def Extract_Element_v8i32_#Index : Extract_Element < i32, v8i32, Index, !cast(sub#Index) >; def Insert_Element_v8i32_#Index : Insert_Element < i32, v8i32, Index, !cast(sub#Index) >; def Extract_Element_v8f32_#Index : Extract_Element < f32, v8f32, Index, !cast(sub#Index) >; def Insert_Element_v8f32_#Index : Insert_Element < f32, v8f32, Index, !cast(sub#Index) >; } foreach Index = 0-15 in { def Extract_Element_v16i32_#Index : Extract_Element < i32, v16i32, Index, !cast(sub#Index) >; def Insert_Element_v16i32_#Index : Insert_Element < i32, v16i32, Index, !cast(sub#Index) >; def Extract_Element_v16f32_#Index : Extract_Element < f32, v16f32, Index, !cast(sub#Index) >; def Insert_Element_v16f32_#Index : Insert_Element < f32, v16f32, Index, !cast(sub#Index) >; } let SubtargetPredicate = isGCN in { // FIXME: Why do only some of these type combinations for SReg and // VReg? // 16-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 32-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 64-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 128-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 256-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 512-bit bitcast def : BitConvert ; def : BitConvert ; } // End SubtargetPredicate = isGCN /********** =================== **********/ /********** Src & Dst modifiers **********/ /********** =================== **********/ // If denormals are not enabled, it only impacts the compare of the // inputs. The output result is not flushed. class ClampPat : GCNPat < (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), (inst i32:$src0_modifiers, vt:$src0, i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) >; def : ClampPat; def : ClampPat; def : ClampPat; def : GCNPat < (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), (V_PK_MAX_F16 $src0_modifiers, $src0, $src0_modifiers, $src0, DSTCLAMP.ENABLE) >; /********** ================================ **********/ /********** Floating point absolute/negative **********/ /********** ================================ **********/ // Prevent expanding both fneg and fabs. def : GCNPat < (fneg (fabs f32:$src)), (S_OR_B32 $src, (S_MOV_B32(i32 0x80000000))) // Set sign bit >; // FIXME: Should use S_OR_B32 def : GCNPat < (fneg (fabs f64:$src)), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_OR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. sub1) >; def : GCNPat < (fabs f32:$src), (V_AND_B32_e64 $src, (V_MOV_B32_e32 (i32 0x7fffffff))) >; def : GCNPat < (fneg f32:$src), (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x80000000))) >; def : GCNPat < (fabs f64:$src), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_AND_B32_e64 (i32 (EXTRACT_SUBREG f64:$src, sub1)), (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. sub1) >; def : GCNPat < (fneg f64:$src), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), (i32 (V_MOV_B32_e32 (i32 0x80000000)))), sub1) >; def : GCNPat < (fcopysign f16:$src0, f16:$src1), (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) >; def : GCNPat < (fcopysign f32:$src0, f16:$src1), (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0, (V_LSHLREV_B32_e64 (i32 16), $src1)) >; def : GCNPat < (fcopysign f64:$src0, f16:$src1), (REG_SEQUENCE SReg_64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) >; def : GCNPat < (fcopysign f16:$src0, f32:$src1), (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, (V_LSHRREV_B32_e64 (i32 16), $src1)) >; def : GCNPat < (fcopysign f16:$src0, f64:$src1), (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) >; def : GCNPat < (fneg f16:$src), (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x00008000))) >; def : GCNPat < (fabs f16:$src), (V_AND_B32_e64 $src, (V_MOV_B32_e32 (i32 0x00007fff))) >; def : GCNPat < (fneg (fabs f16:$src)), (S_OR_B32 $src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit >; def : GCNPat < (fneg v2f16:$src), (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), $src) >; def : GCNPat < (fabs v2f16:$src), (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), $src) >; // This is really (fneg (fabs v2f16:$src)) // // fabs is not reported as free because there is modifier for it in // VOP3P instructions, so it is turned into the bit op. def : GCNPat < (fneg (v2f16 (bitconvert (and_oneuse i32:$src, 0x7fff7fff)))), (S_OR_B32 (S_MOV_B32 (i32 0x80008000)), $src) // Set sign bit >; /********** ================== **********/ /********** Immediate Patterns **********/ /********** ================== **********/ def : GCNPat < (VGPRImm<(i32 imm)>:$imm), (V_MOV_B32_e32 imm:$imm) >; def : GCNPat < (VGPRImm<(f32 fpimm)>:$imm), (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (i32 imm:$imm), (S_MOV_B32 imm:$imm) >; // FIXME: Workaround for ordering issue with peephole optimizer where // a register class copy interferes with immediate folding. Should // use s_mov_b32, which can be shrunk to s_movk_i32 def : GCNPat < (VGPRImm<(f16 fpimm)>:$imm), (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (f32 fpimm:$imm), (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (f16 fpimm:$imm), (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (i32 frameindex:$fi), (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi))) >; def : GCNPat < (i64 InlineImm:$imm), (S_MOV_B64 InlineImm:$imm) >; // XXX - Should this use a s_cmp to set SCC? // Set to sign-extended 64-bit value (true = -1, false = 0) def : GCNPat < (i1 imm:$imm), (S_MOV_B64 (i64 (as_i64imm $imm))) >; def : GCNPat < (f64 InlineFPImm:$imm), (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm:$imm))) >; /********** ================== **********/ /********** Intrinsic Patterns **********/ /********** ================== **********/ let SubtargetPredicate = isGCN in { def : POW_Common ; } def : GCNPat < (i32 (sext i1:$src0)), (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src0) >; class Ext32Pat : GCNPat < (i32 (ext i1:$src0)), (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src0) >; def : Ext32Pat ; def : Ext32Pat ; // The multiplication scales from [0,1] to the unsigned integer range def : GCNPat < (AMDGPUurecip i32:$src0), (V_CVT_U32_F32_e32 (V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1), (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) >; //===----------------------------------------------------------------------===// // VOP3 Patterns //===----------------------------------------------------------------------===// let SubtargetPredicate = isGCN in { def : IMad24Pat; def : UMad24Pat; defm : BFIPatterns ; def : ROTRPattern ; } def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; /********** ====================== **********/ /********** Indirect addressing **********/ /********** ====================== **********/ multiclass SI_INDIRECT_Pattern { // Extract with offset def : GCNPat< (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), (!cast("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) >; // Insert with offset def : GCNPat< (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), (!cast("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) >; } defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; //===----------------------------------------------------------------------===// // SAD Patterns //===----------------------------------------------------------------------===// def : GCNPat < (add (sub_oneuse (umax i32:$src0, i32:$src1), (umin i32:$src0, i32:$src1)), i32:$src2), (V_SAD_U32 $src0, $src1, $src2, (i1 0)) >; def : GCNPat < (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), (sub i32:$src0, i32:$src1), (sub i32:$src1, i32:$src0)), i32:$src2), (V_SAD_U32 $src0, $src1, $src2, (i1 0)) >; //===----------------------------------------------------------------------===// // Conversion Patterns //===----------------------------------------------------------------------===// def : GCNPat<(i32 (sext_inreg i32:$src, i1)), (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 // Handle sext_inreg in i64 def : GCNPat < (i64 (sext_inreg i64:$src, i1)), (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 >; def : GCNPat < (i16 (sext_inreg i16:$src, i1)), (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 >; def : GCNPat < (i16 (sext_inreg i16:$src, i8)), (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 >; def : GCNPat < (i64 (sext_inreg i64:$src, i8)), (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 >; def : GCNPat < (i64 (sext_inreg i64:$src, i16)), (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 >; def : GCNPat < (i64 (sext_inreg i64:$src, i32)), (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 >; def : GCNPat < (i64 (zext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) >; def : GCNPat < (i64 (anyext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) >; class ZExt_i64_i1_Pat : GCNPat < (i64 (ext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0, (S_MOV_B32 (i32 0)), sub1) >; def : ZExt_i64_i1_Pat; def : ZExt_i64_i1_Pat; // FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that // REG_SEQUENCE patterns don't support instructions with multiple outputs. def : GCNPat < (i64 (sext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) >; def : GCNPat < (i64 (sext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub0, (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub1) >; class FPToI1Pat : GCNPat < (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) >; def : FPToI1Pat; def : FPToI1Pat; def : FPToI1Pat; def : FPToI1Pat; // If we need to perform a logical operation on i1 values, we need to // use vector comparisons since there is only one SCC register. Vector // comparisons still write to a pair of SGPRs, so treat these as // 64-bit comparisons. When legalizing SGPR copies, instructions // resulting in the copies from SCC to these instructions will be // moved to the VALU. def : GCNPat < (i1 (and i1:$src0, i1:$src1)), (S_AND_B64 $src0, $src1) >; def : GCNPat < (i1 (or i1:$src0, i1:$src1)), (S_OR_B64 $src0, $src1) >; def : GCNPat < (i1 (xor i1:$src0, i1:$src1)), (S_XOR_B64 $src0, $src1) >; def : GCNPat < (f32 (sint_to_fp i1:$src)), (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_NEG_ONE), $src) >; def : GCNPat < (f32 (uint_to_fp i1:$src)), (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_ONE), $src) >; def : GCNPat < (f64 (sint_to_fp i1:$src)), (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src)) >; def : GCNPat < (f64 (uint_to_fp i1:$src)), (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src)) >; //===----------------------------------------------------------------------===// // Miscellaneous Patterns //===----------------------------------------------------------------------===// def : GCNPat < (i32 (AMDGPUfp16_zext f16:$src)), (COPY $src) >; def : GCNPat < (i32 (trunc i64:$a)), (EXTRACT_SUBREG $a, sub0) >; def : GCNPat < (i1 (trunc i32:$a)), (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) >; def : GCNPat < (i1 (trunc i16:$a)), (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) >; def : GCNPat < (i1 (trunc i64:$a)), (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) >; def : GCNPat < (i32 (bswap i32:$a)), (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)), (V_ALIGNBIT_B32 $a, $a, (i32 24)), (V_ALIGNBIT_B32 $a, $a, (i32 8))) >; let OtherPredicates = [NoFP16Denormals] in { def : GCNPat< (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src, 0, 0) >; def : GCNPat< (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), (V_PK_MUL_F16 0, (i32 CONST.V2FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) >; } let OtherPredicates = [FP16Denormals] in { def : GCNPat< (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0) >; def : GCNPat< (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE) >; } let OtherPredicates = [NoFP32Denormals] in { def : GCNPat< (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src, 0, 0) >; } let OtherPredicates = [FP32Denormals] in { def : GCNPat< (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src, 0, 0) >; } let OtherPredicates = [NoFP64Denormals] in { def : GCNPat< (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), (V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src, 0, 0) >; } let OtherPredicates = [FP64Denormals] in { def : GCNPat< (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), (V_MAX_F64 $src_mods, $src, $src_mods, $src, 0, 0) >; } // Allow integer inputs class ExpPattern : GCNPat< (node (i8 timm:$tgt), (i8 timm:$en), vt:$src0, vt:$src1, vt:$src2, vt:$src3, (i1 timm:$compr), (i1 timm:$vm)), (Inst i8:$tgt, vt:$src0, vt:$src1, vt:$src2, vt:$src3, i1:$vm, i1:$compr, i8:$en) >; def : ExpPattern; def : ExpPattern; def : GCNPat < (v2i16 (build_vector i16:$src0, i16:$src1)), (v2i16 (S_PACK_LL_B32_B16 $src0, $src1)) >; // COPY_TO_REGCLASS is workaround tablegen bug from multiple outputs // from S_LSHL_B32's multiple outputs from implicit scc def. def : GCNPat < (v2i16 (build_vector (i16 0), i16:$src1)), (v2i16 (COPY_TO_REGCLASS (S_LSHL_B32 i16:$src1, (i16 16)), SReg_32_XM0)) >; // With multiple uses of the shift, this will duplicate the shift and // increase register pressure. def : GCNPat < (v2i16 (build_vector i16:$src0, (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), (v2i16 (S_PACK_LH_B32_B16 i16:$src0, i32:$src1)) >; def : GCNPat < (v2i16 (build_vector (i16 (trunc (srl_oneuse i32:$src0, (i32 16)))), (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), (v2i16 (S_PACK_HH_B32_B16 $src0, $src1)) >; // TODO: Should source modifiers be matched to v_pack_b32_f16? def : GCNPat < (v2f16 (build_vector f16:$src0, f16:$src1)), (v2f16 (S_PACK_LL_B32_B16 $src0, $src1)) >; // def : GCNPat < // (v2f16 (scalar_to_vector f16:$src0)), // (COPY $src0) // >; // def : GCNPat < // (v2i16 (scalar_to_vector i16:$src0)), // (COPY $src0) // >; //===----------------------------------------------------------------------===// // Fract Patterns //===----------------------------------------------------------------------===// let SubtargetPredicate = isSI in { // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is // used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient // way to implement it is using V_FRACT_F64. // The workaround for the V_FRACT bug is: // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) // Convert floor(x) to (x - fract(x)) def : GCNPat < (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), (V_ADD_F64 $mods, $x, SRCMODS.NEG, (V_CNDMASK_B64_PSEUDO (V_MIN_F64 SRCMODS.NONE, (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), SRCMODS.NONE, (V_MOV_B64_PSEUDO 0x3fefffffffffffff), DSTCLAMP.NONE, DSTOMOD.NONE), $x, (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))), DSTCLAMP.NONE, DSTOMOD.NONE) >; } // End SubtargetPredicates = isSI //============================================================================// // Miscellaneous Optimization Patterns //============================================================================// // Undo sub x, c -> add x, -c canonicalization since c is more likely // an inline immediate than -c. // TODO: Also do for 64-bit. def : GCNPat< (add i32:$src0, (i32 NegSubInlineConst32:$src1)), (S_SUB_I32 $src0, NegSubInlineConst32:$src1) >; multiclass BFMPatterns { def : GCNPat < (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), (BFM $a, $b) >; def : GCNPat < (vt (add (vt (shl 1, vt:$a)), -1)), (BFM $a, (MOV (i32 0))) >; } let SubtargetPredicate = isGCN in { defm : BFMPatterns ; // FIXME: defm : BFMPatterns ; defm : BFEPattern ; def : SHA256MaPattern ; def : IntMed3Pat; def : IntMed3Pat; } // This matches 16 permutations of // max(min(x, y), min(max(x, y), z)) class FPMed3Pat : GCNPat< (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; class FP16Med3Pat : GCNPat< (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE) >; class Int16Med3Pat : GCNPat< (max (min_oneuse vt:$src0, vt:$src1), (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), (med3Inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE) >; def : FPMed3Pat; let OtherPredicates = [isGFX9] in { def : FP16Med3Pat; def : Int16Med3Pat; def : Int16Med3Pat; } // End Predicates = [isGFX9]