//===-- SIFormMemoryClauses.cpp -------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This pass creates bundles of SMEM and VMEM instructions forming memory /// clauses if XNACK is enabled. Def operands of clauses are marked as early /// clobber to make sure we will not override any source within a clause. /// //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "GCNRegPressure.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineFunctionPass.h" using namespace llvm; #define DEBUG_TYPE "si-form-memory-clauses" // Clauses longer then 15 instructions would overflow one of the counters // and stall. They can stall even earlier if there are outstanding counters. static cl::opt MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15), cl::desc("Maximum length of a memory clause, instructions")); namespace { class SIFormMemoryClauses : public MachineFunctionPass { typedef DenseMap> RegUse; public: static char ID; public: SIFormMemoryClauses() : MachineFunctionPass(ID) { initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Form memory clauses"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } private: template void forAllLanes(unsigned Reg, LaneBitmask LaneMask, Callable Func) const; bool canBundle(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const; bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT); void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const; bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses, GCNDownwardRPTracker &RPT); const GCNSubtarget *ST; const SIRegisterInfo *TRI; const MachineRegisterInfo *MRI; SIMachineFunctionInfo *MFI; unsigned LastRecordedOccupancy; unsigned MaxVGPRs; unsigned MaxSGPRs; }; } // End anonymous namespace. INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE, "SI Form memory clauses", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE, "SI Form memory clauses", false, false) char SIFormMemoryClauses::ID = 0; char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID; FunctionPass *llvm::createSIFormMemoryClausesPass() { return new SIFormMemoryClauses(); } static bool isVMEMClauseInst(const MachineInstr &MI) { return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI); } static bool isSMEMClauseInst(const MachineInstr &MI) { return SIInstrInfo::isSMRD(MI); } // There no sense to create store clauses, they do not define anything, // thus there is nothing to set early-clobber. static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) { if (MI.isDebugValue() || MI.isBundled()) return false; if (!MI.mayLoad() || MI.mayStore()) return false; if (AMDGPU::getAtomicNoRetOp(MI.getOpcode()) != -1 || AMDGPU::getAtomicRetOp(MI.getOpcode()) != -1) return false; if (IsVMEMClause && !isVMEMClauseInst(MI)) return false; if (!IsVMEMClause && !isSMEMClauseInst(MI)) return false; return true; } static unsigned getMopState(const MachineOperand &MO) { unsigned S = 0; if (MO.isImplicit()) S |= RegState::Implicit; if (MO.isDead()) S |= RegState::Dead; if (MO.isUndef()) S |= RegState::Undef; if (MO.isKill()) S |= RegState::Kill; if (MO.isEarlyClobber()) S |= RegState::EarlyClobber; if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && MO.isRenamable()) S |= RegState::Renamable; return S; } template void SIFormMemoryClauses::forAllLanes(unsigned Reg, LaneBitmask LaneMask, Callable Func) const { if (LaneMask.all() || TargetRegisterInfo::isPhysicalRegister(Reg) || LaneMask == MRI->getMaxLaneMaskForVReg(Reg)) { Func(0); return; } const TargetRegisterClass *RC = MRI->getRegClass(Reg); unsigned E = TRI->getNumSubRegIndices(); SmallVector CoveringSubregs; for (unsigned Idx = 1; Idx < E; ++Idx) { // Is this index even compatible with the given class? if (TRI->getSubClassWithSubReg(RC, Idx) != RC) continue; LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx); // Early exit if we found a perfect match. if (SubRegMask == LaneMask) { Func(Idx); return; } if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none()) continue; CoveringSubregs.push_back(Idx); } llvm::sort(CoveringSubregs.begin(), CoveringSubregs.end(), [this](unsigned A, unsigned B) { LaneBitmask MaskA = TRI->getSubRegIndexLaneMask(A); LaneBitmask MaskB = TRI->getSubRegIndexLaneMask(B); unsigned NA = MaskA.getNumLanes(); unsigned NB = MaskB.getNumLanes(); if (NA != NB) return NA > NB; return MaskA.getHighestLane() > MaskB.getHighestLane(); }); for (unsigned Idx : CoveringSubregs) { LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx); if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none()) continue; Func(Idx); LaneMask &= ~SubRegMask; if (LaneMask.none()) return; } llvm_unreachable("Failed to find all subregs to cover lane mask"); } // Returns false if there is a use of a def already in the map. // In this case we must break the clause. bool SIFormMemoryClauses::canBundle(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const { // Check interference with defs. for (const MachineOperand &MO : MI.operands()) { // TODO: Prologue/Epilogue Insertion pass does not process bundled // instructions. if (MO.isFI()) return false; if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); // If it is tied we will need to write same register as we read. if (MO.isTied()) return false; RegUse &Map = MO.isDef() ? Uses : Defs; auto Conflict = Map.find(Reg); if (Conflict == Map.end()) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg)) return false; LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); if ((Conflict->second.second & Mask).any()) return false; } return true; } // Since all defs in the clause are early clobber we can run out of registers. // Function returns false if pressure would hit the limit if instruction is // bundled into a memory clause. bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT) { // NB: skip advanceBeforeNext() call. Since all defs will be marked // early-clobber they will all stay alive at least to the end of the // clause. Therefor we should not decrease pressure even if load // pointer becomes dead and could otherwise be reused for destination. RPT.advanceToNext(); GCNRegPressure MaxPressure = RPT.moveMaxPressure(); unsigned Occupancy = MaxPressure.getOccupancy(*ST); if (Occupancy >= MFI->getMinAllowedOccupancy() && MaxPressure.getVGPRNum() <= MaxVGPRs && MaxPressure.getSGPRNum() <= MaxSGPRs) { LastRecordedOccupancy = Occupancy; return true; } return false; } // Collect register defs and uses along with their lane masks and states. void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const { for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; LaneBitmask Mask = TargetRegisterInfo::isVirtualRegister(Reg) ? TRI->getSubRegIndexLaneMask(MO.getSubReg()) : LaneBitmask::getAll(); RegUse &Map = MO.isDef() ? Defs : Uses; auto Loc = Map.find(Reg); unsigned State = getMopState(MO); if (Loc == Map.end()) { Map[Reg] = std::make_pair(State, Mask); } else { Loc->second.first |= State; Loc->second.second |= Mask; } } } // Check register def/use conflicts, occupancy limits and collect def/use maps. // Return true if instruction can be bundled with previous. It it cannot // def/use maps are not updated. bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses, GCNDownwardRPTracker &RPT) { if (!canBundle(MI, Defs, Uses)) return false; if (!checkPressure(MI, RPT)) return false; collectRegUses(MI, Defs, Uses); return true; } bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; ST = &MF.getSubtarget(); if (!ST->isXNACKEnabled()) return false; const SIInstrInfo *TII = ST->getInstrInfo(); TRI = ST->getRegisterInfo(); MRI = &MF.getRegInfo(); MFI = MF.getInfo(); LiveIntervals *LIS = &getAnalysis(); SlotIndexes *Ind = LIS->getSlotIndexes(); bool Changed = false; MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count(); MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count(); for (MachineBasicBlock &MBB : MF) { MachineBasicBlock::instr_iterator Next; for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) { MachineInstr &MI = *I; Next = std::next(I); bool IsVMEM = isVMEMClauseInst(MI); if (!isValidClauseInst(MI, IsVMEM)) continue; RegUse Defs, Uses; GCNDownwardRPTracker RPT(*LIS); RPT.reset(MI); if (!processRegUses(MI, Defs, Uses, RPT)) continue; unsigned Length = 1; for ( ; Next != E && Length < MaxClause; ++Next) { if (!isValidClauseInst(*Next, IsVMEM)) break; // A load from pointer which was loaded inside the same bundle is an // impossible clause because we will need to write and read the same // register inside. In this case processRegUses will return false. if (!processRegUses(*Next, Defs, Uses, RPT)) break; ++Length; } if (Length < 2) continue; Changed = true; MFI->limitOccupancy(LastRecordedOccupancy); auto B = BuildMI(MBB, I, DebugLoc(), TII->get(TargetOpcode::BUNDLE)); Ind->insertMachineInstrInMaps(*B); for (auto BI = I; BI != Next; ++BI) { BI->bundleWithPred(); Ind->removeSingleMachineInstrFromMaps(*BI); for (MachineOperand &MO : BI->defs()) if (MO.readsReg()) MO.setIsInternalRead(true); } for (auto &&R : Defs) { forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) { unsigned S = R.second.first | RegState::EarlyClobber; if (!SubReg) S &= ~(RegState::Undef | RegState::Dead); B.addDef(R.first, S, SubReg); }); } for (auto &&R : Uses) { forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) { B.addUse(R.first, R.second.first & ~RegState::Kill, SubReg); }); } for (auto &&R : Defs) { unsigned Reg = R.first; Uses.erase(Reg); if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); } for (auto &&R : Uses) { unsigned Reg = R.first; if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); } } } return Changed; }