//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements hazard recognizers for scheduling on GCN processors. // //===----------------------------------------------------------------------===// #include "GCNHazardRecognizer.h" #include "AMDGPUSubtarget.h" #include "SIDefines.h" #include "SIInstrInfo.h" #include "SIRegisterInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Hazard Recoginizer Implementation //===----------------------------------------------------------------------===// GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : CurrCycleInstr(nullptr), MF(MF), ST(MF.getSubtarget()), TII(*ST.getInstrInfo()), TRI(TII.getRegisterInfo()), ClauseUses(TRI.getNumRegUnits()), ClauseDefs(TRI.getNumRegUnits()) { MaxLookAhead = 5; } void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { EmitInstruction(SU->getInstr()); } void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { CurrCycleInstr = MI; } static bool isDivFMas(unsigned Opcode) { return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; } static bool isSGetReg(unsigned Opcode) { return Opcode == AMDGPU::S_GETREG_B32; } static bool isSSetReg(unsigned Opcode) { return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; } static bool isRWLane(unsigned Opcode) { return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; } static bool isRFE(unsigned Opcode) { return Opcode == AMDGPU::S_RFE_B64; } static bool isSMovRel(unsigned Opcode) { switch (Opcode) { case AMDGPU::S_MOVRELS_B32: case AMDGPU::S_MOVRELS_B64: case AMDGPU::S_MOVRELD_B32: case AMDGPU::S_MOVRELD_B64: return true; default: return false; } } static bool isSendMsgTraceDataOrGDS(const MachineInstr &MI) { switch (MI.getOpcode()) { case AMDGPU::S_SENDMSG: case AMDGPU::S_SENDMSGHALT: case AMDGPU::S_TTRACEDATA: return true; default: // TODO: GDS return false; } } static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, AMDGPU::OpName::simm16); return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; } ScheduleHazardRecognizer::HazardType GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { MachineInstr *MI = SU->getInstr(); if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) return NoopHazard; // FIXME: Should flat be considered vmem? if ((SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) && checkVMEMHazards(MI) > 0) return NoopHazard; if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) return NoopHazard; if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) return NoopHazard; if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) return NoopHazard; if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) return NoopHazard; if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) return NoopHazard; if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) return NoopHazard; if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) return NoopHazard; if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && checkReadM0Hazards(MI) > 0) return NoopHazard; if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI) && checkReadM0Hazards(MI) > 0) return NoopHazard; if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) return NoopHazard; if (checkAnyInstHazards(MI) > 0) return NoopHazard; return NoHazard; } unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { return PreEmitNoops(SU->getInstr()); } unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { int WaitStates = std::max(0, checkAnyInstHazards(MI)); if (SIInstrInfo::isSMRD(*MI)) return std::max(WaitStates, checkSMRDHazards(MI)); if (SIInstrInfo::isVALU(*MI)) WaitStates = std::max(WaitStates, checkVALUHazards(MI)); if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); if (SIInstrInfo::isDPP(*MI)) WaitStates = std::max(WaitStates, checkDPPHazards(MI)); if (isDivFMas(MI->getOpcode())) WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); if (isRWLane(MI->getOpcode())) WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); if (MI->isInlineAsm()) return std::max(WaitStates, checkInlineAsmHazards(MI)); if (isSGetReg(MI->getOpcode())) return std::max(WaitStates, checkGetRegHazards(MI)); if (isSSetReg(MI->getOpcode())) return std::max(WaitStates, checkSetRegHazards(MI)); if (isRFE(MI->getOpcode())) return std::max(WaitStates, checkRFEHazards(MI)); if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()))) return std::max(WaitStates, checkReadM0Hazards(MI)); if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI)) return std::max(WaitStates, checkReadM0Hazards(MI)); return WaitStates; } void GCNHazardRecognizer::EmitNoop() { EmittedInstrs.push_front(nullptr); } void GCNHazardRecognizer::AdvanceCycle() { // When the scheduler detects a stall, it will call AdvanceCycle() without // emitting any instructions. if (!CurrCycleInstr) return; unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); // Keep track of emitted instructions EmittedInstrs.push_front(CurrCycleInstr); // Add a nullptr for each additional wait state after the first. Make sure // not to add more than getMaxLookAhead() items to the list, since we // truncate the list to that size right after this loop. for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); i < e; ++i) { EmittedInstrs.push_front(nullptr); } // getMaxLookahead() is the largest number of wait states we will ever need // to insert, so there is no point in keeping track of more than that many // wait states. EmittedInstrs.resize(getMaxLookAhead()); CurrCycleInstr = nullptr; } void GCNHazardRecognizer::RecedeCycle() { llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); } //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// int GCNHazardRecognizer::getWaitStatesSince( function_ref IsHazard) { int WaitStates = 0; for (MachineInstr *MI : EmittedInstrs) { if (MI) { if (IsHazard(MI)) return WaitStates; unsigned Opcode = MI->getOpcode(); if (Opcode == AMDGPU::DBG_VALUE || Opcode == AMDGPU::IMPLICIT_DEF || Opcode == AMDGPU::INLINEASM) continue; } ++WaitStates; } return std::numeric_limits::max(); } int GCNHazardRecognizer::getWaitStatesSinceDef( unsigned Reg, function_ref IsHazardDef) { const SIRegisterInfo *TRI = ST.getRegisterInfo(); auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); }; return getWaitStatesSince(IsHazardFn); } int GCNHazardRecognizer::getWaitStatesSinceSetReg( function_ref IsHazard) { auto IsHazardFn = [IsHazard] (MachineInstr *MI) { return isSSetReg(MI->getOpcode()) && IsHazard(MI); }; return getWaitStatesSince(IsHazardFn); } //===----------------------------------------------------------------------===// // No-op Hazard Detection //===----------------------------------------------------------------------===// static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, unsigned Reg) { for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) BV.set(*RUI); } static void addRegsToSet(const SIRegisterInfo &TRI, iterator_range Ops, BitVector &Set) { for (const MachineOperand &Op : Ops) { if (Op.isReg()) addRegUnits(TRI, Set, Op.getReg()); } } void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { // XXX: Do we need to worry about implicit operands addRegsToSet(TRI, MI.defs(), ClauseDefs); addRegsToSet(TRI, MI.uses(), ClauseUses); } int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { // SMEM soft clause are only present on VI+, and only matter if xnack is // enabled. if (!ST.isXNACKEnabled()) return 0; bool IsSMRD = TII.isSMRD(*MEM); resetClause(); // A soft-clause is any group of consecutive SMEM instructions. The // instructions in this group may return out of order and/or may be // replayed (i.e. the same instruction issued more than once). // // In order to handle these situations correctly we need to make sure // that when a clause has more than one instruction, no instruction in the // clause writes to a register that is read another instruction in the clause // (including itself). If we encounter this situaion, we need to break the // clause by inserting a non SMEM instruction. for (MachineInstr *MI : EmittedInstrs) { // When we hit a non-SMEM instruction then we have passed the start of the // clause and we can stop. if (!MI) break; if (IsSMRD != SIInstrInfo::isSMRD(*MI)) break; addClauseInst(*MI); } if (ClauseDefs.none()) return 0; // We need to make sure not to put loads and stores in the same clause if they // use the same address. For now, just start a new clause whenever we see a // store. if (MEM->mayStore()) return 1; addClauseInst(*MEM); // If the set of defs and uses intersect then we cannot add this instruction // to the clause, so we have a hazard. return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; } int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { const GCNSubtarget &ST = MF.getSubtarget(); int WaitStatesNeeded = 0; WaitStatesNeeded = checkSoftClauseHazards(SMRD); // This SMRD hazard only affects SI. if (ST.getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS) return WaitStatesNeeded; // A read of an SGPR by SMRD instruction requires 4 wait states when the // SGPR was written by a VALU instruction. int SmrdSgprWaitStates = 4; auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); for (const MachineOperand &Use : SMRD->uses()) { if (!Use.isReg()) continue; int WaitStatesNeededForUse = SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); // This fixes what appears to be undocumented hardware behavior in SI where // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor // needs some number of nops in between. We don't know how many we need, but // let's use 4. This wasn't discovered before probably because the only // case when this happens is when we expand a 64-bit pointer into a full // descriptor and use s_buffer_load_dword instead of s_load_dword, which was // probably never encountered in the closed-source land. if (IsBufferSMRD) { int WaitStatesNeededForUse = SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsBufferHazardDefFn); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); } } return WaitStatesNeeded; } int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) return 0; int WaitStatesNeeded = checkSoftClauseHazards(VMEM); // A read of an SGPR by a VMEM instruction requires 5 wait states when the // SGPR was written by a VALU Instruction. const int VmemSgprWaitStates = 5; auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; for (const MachineOperand &Use : VMEM->uses()) { if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) continue; int WaitStatesNeededForUse = VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); } return WaitStatesNeeded; } int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { const SIRegisterInfo *TRI = ST.getRegisterInfo(); const SIInstrInfo *TII = ST.getInstrInfo(); // Check for DPP VGPR read after VALU VGPR write and EXEC write. int DppVgprWaitStates = 2; int DppExecWaitStates = 5; int WaitStatesNeeded = 0; auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; for (const MachineOperand &Use : DPP->uses()) { if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) continue; int WaitStatesNeededForUse = DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); } WaitStatesNeeded = std::max( WaitStatesNeeded, DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn)); return WaitStatesNeeded; } int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { const SIInstrInfo *TII = ST.getInstrInfo(); // v_div_fmas requires 4 wait states after a write to vcc from a VALU // instruction. const int DivFMasWaitStates = 4; auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn); return DivFMasWaitStates - WaitStatesNeeded; } int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { const SIInstrInfo *TII = ST.getInstrInfo(); unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); const int GetRegWaitStates = 2; auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { return GetRegHWReg == getHWReg(TII, *MI); }; int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); return GetRegWaitStates - WaitStatesNeeded; } int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { const SIInstrInfo *TII = ST.getInstrInfo(); unsigned HWReg = getHWReg(TII, *SetRegInstr); const int SetRegWaitStates = ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { return HWReg == getHWReg(TII, *MI); }; int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); return SetRegWaitStates - WaitStatesNeeded; } int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { if (!MI.mayStore()) return -1; const SIInstrInfo *TII = ST.getInstrInfo(); unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MI.getDesc(); int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); int VDataRCID = -1; if (VDataIdx != -1) VDataRCID = Desc.OpInfo[VDataIdx].RegClass; if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { // There is no hazard if the instruction does not use vector regs // (like wbinvl1) if (VDataIdx == -1) return -1; // For MUBUF/MTBUF instructions this hazard only exists if the // instruction is not using a register in the soffset field. const MachineOperand *SOffset = TII->getNamedOperand(MI, AMDGPU::OpName::soffset); // If we have no soffset operand, then assume this field has been // hardcoded to zero. if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && (!SOffset || !SOffset->isReg())) return VDataIdx; } // MIMG instructions create a hazard if they don't use a 256-bit T# and // the store size is greater than 8 bytes and they have more than two bits // of their dmask set. // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. if (TII->isMIMG(MI)) { int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); assert(SRsrcIdx != -1 && AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); (void)SRsrcIdx; } if (TII->isFLAT(MI)) { int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) return DataIdx; } return -1; } int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, const MachineRegisterInfo &MRI) { // Helper to check for the hazard where VMEM instructions that store more than // 8 bytes can have there store data over written by the next instruction. const SIRegisterInfo *TRI = ST.getRegisterInfo(); const int VALUWaitStates = 1; int WaitStatesNeeded = 0; if (!TRI->isVGPR(MRI, Def.getReg())) return WaitStatesNeeded; unsigned Reg = Def.getReg(); auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { int DataIdx = createsVALUHazard(*MI); return DataIdx >= 0 && TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); }; int WaitStatesNeededForDef = VALUWaitStates - getWaitStatesSince(IsHazardFn); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); return WaitStatesNeeded; } int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { // This checks for the hazard where VMEM instructions that store more than // 8 bytes can have there store data over written by the next instruction. if (!ST.has12DWordStoreHazard()) return 0; const MachineRegisterInfo &MRI = MF.getRegInfo(); int WaitStatesNeeded = 0; for (const MachineOperand &Def : VALU->defs()) { WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); } return WaitStatesNeeded; } int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { // This checks for hazards associated with inline asm statements. // Since inline asms can contain just about anything, we use this // to call/leverage other check*Hazard routines. Note that // this function doesn't attempt to address all possible inline asm // hazards (good luck), but is a collection of what has been // problematic thus far. // see checkVALUHazards() if (!ST.has12DWordStoreHazard()) return 0; const MachineRegisterInfo &MRI = MF.getRegInfo(); int WaitStatesNeeded = 0; for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); I != E; ++I) { const MachineOperand &Op = IA->getOperand(I); if (Op.isReg() && Op.isDef()) { WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); } } return WaitStatesNeeded; } int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); const MachineOperand *LaneSelectOp = TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) return 0; unsigned LaneSelectReg = LaneSelectOp->getReg(); auto IsHazardFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; const int RWLaneWaitStates = 4; int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn); return RWLaneWaitStates - WaitStatesSince; } int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) return 0; const SIInstrInfo *TII = ST.getInstrInfo(); const int RFEWaitStates = 1; auto IsHazardFn = [TII] (MachineInstr *MI) { return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; }; int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); return RFEWaitStates - WaitStatesNeeded; } int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { if (MI->isDebugInstr()) return 0; const SIRegisterInfo *TRI = ST.getRegisterInfo(); if (!ST.hasSMovFedHazard()) return 0; // Check for any instruction reading an SGPR after a write from // s_mov_fed_b32. int MovFedWaitStates = 1; int WaitStatesNeeded = 0; for (const MachineOperand &Use : MI->uses()) { if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) continue; auto IsHazardFn = [] (MachineInstr *MI) { return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; }; int WaitStatesNeededForUse = MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn); WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); } return WaitStatesNeeded; } int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { const SIInstrInfo *TII = ST.getInstrInfo(); const int SMovRelWaitStates = 1; auto IsHazardFn = [TII] (MachineInstr *MI) { return TII->isSALU(*MI); }; return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn); }