//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief The AMDGPU target machine contains all of the hardware specific /// information needed to emit code for R600 and SI GPUs. // //===----------------------------------------------------------------------===// #include "AMDGPUTargetMachine.h" #include "AMDGPU.h" #include "AMDGPUAliasAnalysis.h" #include "AMDGPUCallLowering.h" #include "AMDGPUInstructionSelector.h" #include "AMDGPULegalizerInfo.h" #include "AMDGPUMacroFusion.h" #include "AMDGPUTargetObjectFile.h" #include "AMDGPUTargetTransformInfo.h" #include "GCNIterativeScheduler.h" #include "GCNSchedStrategy.h" #include "R600MachineScheduler.h" #include "SIMachineScheduler.h" #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" #include "llvm/CodeGen/GlobalISel/Legalizer.h" #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetLoweringObjectFile.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/AlwaysInliner.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Vectorize.h" #include using namespace llvm; static cl::opt EnableR600StructurizeCFG( "r600-ir-structurize", cl::desc("Use StructurizeCFG IR pass"), cl::init(true)); static cl::opt EnableSROA( "amdgpu-sroa", cl::desc("Run SROA after promote alloca pass"), cl::ReallyHidden, cl::init(true)); static cl::opt EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, cl::desc("Run early if-conversion"), cl::init(false)); static cl::opt EnableR600IfConvert( "r600-if-convert", cl::desc("Use if conversion pass"), cl::ReallyHidden, cl::init(true)); // Option to disable vectorizer for tests. static cl::opt EnableLoadStoreVectorizer( "amdgpu-load-store-vectorizer", cl::desc("Enable load store vectorizer"), cl::init(true), cl::Hidden); // Option to to control global loads scalarization static cl::opt ScalarizeGlobal( "amdgpu-scalarize-global-loads", cl::desc("Enable global load scalarization"), cl::init(true), cl::Hidden); // Option to run internalize pass. static cl::opt InternalizeSymbols( "amdgpu-internalize-symbols", cl::desc("Enable elimination of non-kernel functions and unused globals"), cl::init(false), cl::Hidden); // Option to inline all early. static cl::opt EarlyInlineAll( "amdgpu-early-inline-all", cl::desc("Inline all functions early"), cl::init(false), cl::Hidden); static cl::opt EnableSDWAPeephole( "amdgpu-sdwa-peephole", cl::desc("Enable SDWA peepholer"), cl::init(true)); // Enable address space based alias analysis static cl::opt EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, cl::desc("Enable AMDGPU Alias Analysis"), cl::init(true)); // Option to enable new waitcnt insertion pass. static cl::opt EnableSIInsertWaitcntsPass( "enable-si-insert-waitcnts", cl::desc("Use new waitcnt insertion pass"), cl::init(true)); // Option to run late CFG structurizer static cl::opt LateCFGStructurize( "amdgpu-late-structurize", cl::desc("Enable late CFG structurization"), cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), cl::Hidden); static cl::opt EnableAMDGPUFunctionCalls( "amdgpu-function-calls", cl::Hidden, cl::desc("Enable AMDGPU function call support"), cl::init(false)); // Enable lib calls simplifications static cl::opt EnableLibCallSimplify( "amdgpu-simplify-libcall", cl::desc("Enable mdgpu library simplifications"), cl::init(true), cl::Hidden); extern "C" void LLVMInitializeAMDGPUTarget() { // Register the target RegisterTargetMachine X(getTheAMDGPUTarget()); RegisterTargetMachine Y(getTheGCNTarget()); PassRegistry *PR = PassRegistry::getPassRegistry(); initializeR600ClauseMergePassPass(*PR); initializeR600ControlFlowFinalizerPass(*PR); initializeR600PacketizerPass(*PR); initializeR600ExpandSpecialInstrsPassPass(*PR); initializeR600VectorRegMergerPass(*PR); initializeGlobalISel(*PR); initializeAMDGPUDAGToDAGISelPass(*PR); initializeSILowerI1CopiesPass(*PR); initializeSIFixSGPRCopiesPass(*PR); initializeSIFixVGPRCopiesPass(*PR); initializeSIFoldOperandsPass(*PR); initializeSIPeepholeSDWAPass(*PR); initializeSIShrinkInstructionsPass(*PR); initializeSIOptimizeExecMaskingPreRAPass(*PR); initializeSILoadStoreOptimizerPass(*PR); initializeAMDGPUAlwaysInlinePass(*PR); initializeAMDGPUAnnotateKernelFeaturesPass(*PR); initializeAMDGPUAnnotateUniformValuesPass(*PR); initializeAMDGPUArgumentUsageInfoPass(*PR); initializeAMDGPULowerIntrinsicsPass(*PR); initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); initializeAMDGPUPromoteAllocaPass(*PR); initializeAMDGPUCodeGenPreparePass(*PR); initializeAMDGPURewriteOutArgumentsPass(*PR); initializeAMDGPUUnifyMetadataPass(*PR); initializeSIAnnotateControlFlowPass(*PR); initializeSIInsertWaitsPass(*PR); initializeSIInsertWaitcntsPass(*PR); initializeSIWholeQuadModePass(*PR); initializeSILowerControlFlowPass(*PR); initializeSIInsertSkipsPass(*PR); initializeSIMemoryLegalizerPass(*PR); initializeSIDebuggerInsertNopsPass(*PR); initializeSIOptimizeExecMaskingPass(*PR); initializeSIFixWWMLivenessPass(*PR); initializeAMDGPUUnifyDivergentExitNodesPass(*PR); initializeAMDGPUAAWrapperPassPass(*PR); initializeAMDGPUUseNativeCallsPass(*PR); initializeAMDGPUSimplifyLibCallsPass(*PR); initializeAMDGPUInlinerPass(*PR); } static std::unique_ptr createTLOF(const Triple &TT) { return llvm::make_unique(); } static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { return new ScheduleDAGMILive(C, llvm::make_unique()); } static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { return new SIScheduleDAGMI(C); } static ScheduleDAGInstrs * createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { ScheduleDAGMILive *DAG = new GCNScheduleDAGMILive(C, make_unique(C)); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); return DAG; } static ScheduleDAGInstrs * createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { auto DAG = new GCNIterativeScheduler(C, GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); return DAG; } static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { return new GCNIterativeScheduler(C, GCNIterativeScheduler::SCHEDULE_MINREGFORCED); } static ScheduleDAGInstrs * createIterativeILPMachineScheduler(MachineSchedContext *C) { auto DAG = new GCNIterativeScheduler(C, GCNIterativeScheduler::SCHEDULE_ILP); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); return DAG; } static MachineSchedRegistry R600SchedRegistry("r600", "Run R600's custom scheduler", createR600MachineScheduler); static MachineSchedRegistry SISchedRegistry("si", "Run SI's custom scheduler", createSIMachineScheduler); static MachineSchedRegistry GCNMaxOccupancySchedRegistry("gcn-max-occupancy", "Run GCN scheduler to maximize occupancy", createGCNMaxOccupancyMachineScheduler); static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", "Run GCN scheduler to maximize occupancy (experimental)", createIterativeGCNMaxOccupancyMachineScheduler); static MachineSchedRegistry GCNMinRegSchedRegistry("gcn-minreg", "Run GCN iterative scheduler for minimal register usage (experimental)", createMinRegScheduler); static MachineSchedRegistry GCNILPSchedRegistry("gcn-ilp", "Run GCN iterative scheduler for ILP scheduling (experimental)", createIterativeILPMachineScheduler); static StringRef computeDataLayout(const Triple &TT) { if (TT.getArch() == Triple::r600) { // 32-bit pointers. if (TT.getEnvironmentName() == "amdgiz" || TT.getEnvironmentName() == "amdgizcl") return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; } // 32-bit private, local, and region pointers. 64-bit global, constant and // flat. if (TT.getEnvironmentName() == "amdgiz" || TT.getEnvironmentName() == "amdgizcl") return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; } LLVM_READNONE static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { if (!GPU.empty()) return GPU; if (TT.getArch() == Triple::amdgcn) return "generic"; return "r600"; } static Reloc::Model getEffectiveRelocModel(Optional RM) { // The AMDGPU toolchain only supports generating shared objects, so we // must always use PIC. return Reloc::PIC_; } static CodeModel::Model getEffectiveCodeModel(Optional CM) { if (CM) return *CM; return CodeModel::Small; } AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, Optional RM, Optional CM, CodeGenOpt::Level OptLevel) : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), FS, Options, getEffectiveRelocModel(RM), getEffectiveCodeModel(CM), OptLevel), TLOF(createTLOF(getTargetTriple())) { AS = AMDGPU::getAMDGPUAS(TT); initAsmInfo(); } AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { Attribute GPUAttr = F.getFnAttribute("target-cpu"); return GPUAttr.hasAttribute(Attribute::None) ? getTargetCPU() : GPUAttr.getValueAsString(); } StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { Attribute FSAttr = F.getFnAttribute("target-features"); return FSAttr.hasAttribute(Attribute::None) ? getTargetFeatureString() : FSAttr.getValueAsString(); } static ImmutablePass *createAMDGPUExternalAAWrapperPass() { return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { if (auto *WrapperPass = P.getAnalysisIfAvailable()) AAR.addAAResult(WrapperPass->getResult()); }); } /// Predicate for Internalize pass. static bool mustPreserveGV(const GlobalValue &GV) { if (const Function *F = dyn_cast(&GV)) return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); return !GV.use_empty(); } void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { Builder.DivergentTarget = true; bool EnableOpt = getOptLevel() > CodeGenOpt::None; bool Internalize = InternalizeSymbols; bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; if (EnableAMDGPUFunctionCalls) { delete Builder.Inliner; Builder.Inliner = createAMDGPUFunctionInliningPass(); } if (Internalize) { // If we're generating code, we always have the whole program available. The // relocations expected for externally visible functions aren't supported, // so make sure every non-entry function is hidden. Builder.addExtension( PassManagerBuilder::EP_EnabledOnOptLevel0, [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { PM.add(createInternalizePass(mustPreserveGV)); }); } Builder.addExtension( PassManagerBuilder::EP_ModuleOptimizerEarly, [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, legacy::PassManagerBase &PM) { if (AMDGPUAA) { PM.add(createAMDGPUAAWrapperPass()); PM.add(createAMDGPUExternalAAWrapperPass()); } PM.add(createAMDGPUUnifyMetadataPass()); if (Internalize) { PM.add(createInternalizePass(mustPreserveGV)); PM.add(createGlobalDCEPass()); } if (EarlyInline) PM.add(createAMDGPUAlwaysInlinePass(false)); }); const auto &Opt = Options; Builder.addExtension( PassManagerBuilder::EP_EarlyAsPossible, [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { if (AMDGPUAA) { PM.add(createAMDGPUAAWrapperPass()); PM.add(createAMDGPUExternalAAWrapperPass()); } PM.add(llvm::createAMDGPUUseNativeCallsPass()); if (LibCallSimplify) PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); }); Builder.addExtension( PassManagerBuilder::EP_CGSCCOptimizerLate, [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { // Add infer address spaces pass to the opt pipeline after inlining // but before SROA to increase SROA opportunities. PM.add(createInferAddressSpacesPass()); }); } //===----------------------------------------------------------------------===// // R600 Target Machine (R600 -> Cayman) //===----------------------------------------------------------------------===// R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT) : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { setRequiresStructuredCFG(true); } const R600Subtarget *R600TargetMachine::getSubtargetImpl( const Function &F) const { StringRef GPU = getGPUName(F); StringRef FS = getFeatureString(F); SmallString<128> SubtargetKey(GPU); SubtargetKey.append(FS); auto &I = SubtargetMap[SubtargetKey]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique(TargetTriple, GPU, FS, *this); } return I.get(); } //===----------------------------------------------------------------------===// // GCN Target Machine (SI+) //===----------------------------------------------------------------------===// GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT) : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { StringRef GPU = getGPUName(F); StringRef FS = getFeatureString(F); SmallString<128> SubtargetKey(GPU); SubtargetKey.append(FS); auto &I = SubtargetMap[SubtargetKey]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique(TargetTriple, GPU, FS, *this); } I->setScalarizeGlobalBehavior(ScalarizeGlobal); return I.get(); } //===----------------------------------------------------------------------===// // AMDGPU Pass Setup //===----------------------------------------------------------------------===// namespace { class AMDGPUPassConfig : public TargetPassConfig { public: AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) { // Exceptions and StackMaps are not supported, so these passes will never do // anything. disablePass(&StackMapLivenessID); disablePass(&FuncletLayoutID); } AMDGPUTargetMachine &getAMDGPUTargetMachine() const { return getTM(); } ScheduleDAGInstrs * createMachineScheduler(MachineSchedContext *C) const override { ScheduleDAGMILive *DAG = createGenericSchedLive(C); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); return DAG; } void addEarlyCSEOrGVNPass(); void addStraightLineScalarOptimizationPasses(); void addIRPasses() override; void addCodeGenPrepare() override; bool addPreISel() override; bool addInstSelector() override; bool addGCPasses() override; }; class R600PassConfig final : public AMDGPUPassConfig { public: R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) : AMDGPUPassConfig(TM, PM) {} ScheduleDAGInstrs *createMachineScheduler( MachineSchedContext *C) const override { return createR600MachineScheduler(C); } bool addPreISel() override; bool addInstSelector() override; void addPreRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; }; class GCNPassConfig final : public AMDGPUPassConfig { public: GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) : AMDGPUPassConfig(TM, PM) { // It is necessary to know the register usage of the entire call graph. We // allow calls without EnableAMDGPUFunctionCalls if they are marked // noinline, so this is always required. setRequiresCodeGenSCCOrder(true); } GCNTargetMachine &getGCNTargetMachine() const { return getTM(); } ScheduleDAGInstrs * createMachineScheduler(MachineSchedContext *C) const override; bool addPreISel() override; void addMachineSSAOptimization() override; bool addILPOpts() override; bool addInstSelector() override; bool addIRTranslator() override; bool addLegalizeMachineIR() override; bool addRegBankSelect() override; bool addGlobalInstructionSelect() override; void addFastRegAlloc(FunctionPass *RegAllocPass) override; void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; void addPreRegAlloc() override; void addPostRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; }; } // end anonymous namespace TargetTransformInfo AMDGPUTargetMachine::getTargetTransformInfo(const Function &F) { return TargetTransformInfo(AMDGPUTTIImpl(this, F)); } void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { if (getOptLevel() == CodeGenOpt::Aggressive) addPass(createGVNPass()); else addPass(createEarlyCSEPass()); } void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { addPass(createSeparateConstOffsetFromGEPPass()); addPass(createSpeculativeExecutionPass()); // ReassociateGEPs exposes more opportunites for SLSR. See // the example in reassociate-geps-and-slsr.ll. addPass(createStraightLineStrengthReducePass()); // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or // EarlyCSE can reuse. addEarlyCSEOrGVNPass(); // Run NaryReassociate after EarlyCSE/GVN to be more effective. addPass(createNaryReassociatePass()); // NaryReassociate on GEPs creates redundant common expressions, so run // EarlyCSE after it. addPass(createEarlyCSEPass()); } void AMDGPUPassConfig::addIRPasses() { const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); // There is no reason to run these. disablePass(&StackMapLivenessID); disablePass(&FuncletLayoutID); disablePass(&PatchableFunctionID); addPass(createAMDGPULowerIntrinsicsPass()); if (TM.getTargetTriple().getArch() == Triple::r600 || !EnableAMDGPUFunctionCalls) { // Function calls are not supported, so make sure we inline everything. addPass(createAMDGPUAlwaysInlinePass()); addPass(createAlwaysInlinerLegacyPass()); // We need to add the barrier noop pass, otherwise adding the function // inlining pass will cause all of the PassConfigs passes to be run // one function at a time, which means if we have a nodule with two // functions, then we will generate code for the first function // without ever running any passes on the second. addPass(createBarrierNoopPass()); } if (TM.getTargetTriple().getArch() == Triple::amdgcn) { // TODO: May want to move later or split into an early and late one. addPass(createAMDGPUCodeGenPreparePass()); } // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. addPass(createAMDGPUOpenCLImageTypeLoweringPass()); // Replace OpenCL enqueued block function pointers with global variables. addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); if (TM.getOptLevel() > CodeGenOpt::None) { addPass(createInferAddressSpacesPass()); addPass(createAMDGPUPromoteAlloca()); if (EnableSROA) addPass(createSROAPass()); addStraightLineScalarOptimizationPasses(); if (EnableAMDGPUAliasAnalysis) { addPass(createAMDGPUAAWrapperPass()); addPass(createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { if (auto *WrapperPass = P.getAnalysisIfAvailable()) AAR.addAAResult(WrapperPass->getResult()); })); } } TargetPassConfig::addIRPasses(); // EarlyCSE is not always strong enough to clean up what LSR produces. For // example, GVN can combine // // %0 = add %a, %b // %1 = add %b, %a // // and // // %0 = shl nsw %a, 2 // %1 = shl %a, 2 // // but EarlyCSE can do neither of them. if (getOptLevel() != CodeGenOpt::None) addEarlyCSEOrGVNPass(); } void AMDGPUPassConfig::addCodeGenPrepare() { TargetPassConfig::addCodeGenPrepare(); if (EnableLoadStoreVectorizer) addPass(createLoadStoreVectorizerPass()); } bool AMDGPUPassConfig::addPreISel() { addPass(createFlattenCFGPass()); return false; } bool AMDGPUPassConfig::addInstSelector() { addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); return false; } bool AMDGPUPassConfig::addGCPasses() { // Do nothing. GC is not supported. return false; } //===----------------------------------------------------------------------===// // R600 Pass Setup //===----------------------------------------------------------------------===// bool R600PassConfig::addPreISel() { AMDGPUPassConfig::addPreISel(); if (EnableR600StructurizeCFG) addPass(createStructurizeCFGPass()); return false; } bool R600PassConfig::addInstSelector() { addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); return false; } void R600PassConfig::addPreRegAlloc() { addPass(createR600VectorRegMerger()); } void R600PassConfig::addPreSched2() { addPass(createR600EmitClauseMarkers(), false); if (EnableR600IfConvert) addPass(&IfConverterID, false); addPass(createR600ClauseMergePass(), false); } void R600PassConfig::addPreEmitPass() { addPass(createAMDGPUCFGStructurizerPass(), false); addPass(createR600ExpandSpecialInstrsPass(), false); addPass(&FinalizeMachineBundlesID, false); addPass(createR600Packetizer(), false); addPass(createR600ControlFlowFinalizer(), false); } TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { return new R600PassConfig(*this, PM); } //===----------------------------------------------------------------------===// // GCN Pass Setup //===----------------------------------------------------------------------===// ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( MachineSchedContext *C) const { const SISubtarget &ST = C->MF->getSubtarget(); if (ST.enableSIScheduler()) return createSIMachineScheduler(C); return createGCNMaxOccupancyMachineScheduler(C); } bool GCNPassConfig::addPreISel() { AMDGPUPassConfig::addPreISel(); // FIXME: We need to run a pass to propagate the attributes when calls are // supported. addPass(createAMDGPUAnnotateKernelFeaturesPass()); // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit // regions formed by them. addPass(&AMDGPUUnifyDivergentExitNodesID); if (!LateCFGStructurize) { addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions } addPass(createSinkingPass()); addPass(createAMDGPUAnnotateUniformValues()); if (!LateCFGStructurize) { addPass(createSIAnnotateControlFlowPass()); } return false; } void GCNPassConfig::addMachineSSAOptimization() { TargetPassConfig::addMachineSSAOptimization(); // We want to fold operands after PeepholeOptimizer has run (or as part of // it), because it will eliminate extra copies making it easier to fold the // real source operand. We want to eliminate dead instructions after, so that // we see fewer uses of the copies. We then need to clean up the dead // instructions leftover after the operands are folded as well. // // XXX - Can we get away without running DeadMachineInstructionElim again? addPass(&SIFoldOperandsID); addPass(&DeadMachineInstructionElimID); addPass(&SILoadStoreOptimizerID); if (EnableSDWAPeephole) { addPass(&SIPeepholeSDWAID); addPass(&MachineLICMID); addPass(&MachineCSEID); addPass(&SIFoldOperandsID); addPass(&DeadMachineInstructionElimID); } addPass(createSIShrinkInstructionsPass()); } bool GCNPassConfig::addILPOpts() { if (EnableEarlyIfConversion) addPass(&EarlyIfConverterID); TargetPassConfig::addILPOpts(); return false; } bool GCNPassConfig::addInstSelector() { AMDGPUPassConfig::addInstSelector(); addPass(createSILowerI1CopiesPass()); addPass(&SIFixSGPRCopiesID); return false; } bool GCNPassConfig::addIRTranslator() { addPass(new IRTranslator()); return false; } bool GCNPassConfig::addLegalizeMachineIR() { addPass(new Legalizer()); return false; } bool GCNPassConfig::addRegBankSelect() { addPass(new RegBankSelect()); return false; } bool GCNPassConfig::addGlobalInstructionSelect() { addPass(new InstructionSelect()); return false; } void GCNPassConfig::addPreRegAlloc() { if (LateCFGStructurize) { addPass(createAMDGPUMachineCFGStructurizerPass()); } addPass(createSIWholeQuadModePass()); } void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { // FIXME: We have to disable the verifier here because of PHIElimination + // TwoAddressInstructions disabling it. // This must be run immediately after phi elimination and before // TwoAddressInstructions, otherwise the processing of the tied operand of // SI_ELSE will introduce a copy of the tied operand source after the else. insertPass(&PHIEliminationID, &SILowerControlFlowID, false); // This must be run after SILowerControlFlow, since it needs to use the // machine-level CFG, but before register allocation. insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); TargetPassConfig::addFastRegAlloc(RegAllocPass); } void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); // This must be run immediately after phi elimination and before // TwoAddressInstructions, otherwise the processing of the tied operand of // SI_ELSE will introduce a copy of the tied operand source after the else. insertPass(&PHIEliminationID, &SILowerControlFlowID, false); // This must be run after SILowerControlFlow, since it needs to use the // machine-level CFG, but before register allocation. insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); } void GCNPassConfig::addPostRegAlloc() { addPass(&SIFixVGPRCopiesID); addPass(&SIOptimizeExecMaskingID); TargetPassConfig::addPostRegAlloc(); } void GCNPassConfig::addPreSched2() { } void GCNPassConfig::addPreEmitPass() { // The hazard recognizer that runs as part of the post-ra scheduler does not // guarantee to be able handle all hazards correctly. This is because if there // are multiple scheduling regions in a basic block, the regions are scheduled // bottom up, so when we begin to schedule a region we don't know what // instructions were emitted directly before it. // // Here we add a stand-alone hazard recognizer pass which can handle all // cases. addPass(&PostRAHazardRecognizerID); if (EnableSIInsertWaitcntsPass) addPass(createSIInsertWaitcntsPass()); else addPass(createSIInsertWaitsPass()); addPass(createSIShrinkInstructionsPass()); addPass(&SIInsertSkipsPassID); addPass(createSIMemoryLegalizerPass()); addPass(createSIDebuggerInsertNopsPass()); addPass(&BranchRelaxationPassID); } TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { return new GCNPassConfig(*this, PM); }