//===- AMDGPUInstructionSelector.cpp ----------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the InstructionSelector class for /// AMDGPU. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AMDGPUInstructionSelector.h" #include "AMDGPUInstrInfo.h" #include "AMDGPURegisterBankInfo.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUSubtarget.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "amdgpu-isel" using namespace llvm; AMDGPUInstructionSelector::AMDGPUInstructionSelector( const SISubtarget &STI, const AMDGPURegisterBankInfo &RBI) : InstructionSelector(), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()), RBI(RBI), AMDGPUASI(STI.getAMDGPUAS()) {} MachineOperand AMDGPUInstructionSelector::getSubOperand64(MachineOperand &MO, unsigned SubIdx) const { MachineInstr *MI = MO.getParent(); MachineBasicBlock *BB = MO.getParent()->getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned DstReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); if (MO.isReg()) { unsigned ComposedSubIdx = TRI.composeSubRegIndices(MO.getSubReg(), SubIdx); unsigned Reg = MO.getReg(); BuildMI(*BB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), DstReg) .addReg(Reg, 0, ComposedSubIdx); return MachineOperand::CreateReg(DstReg, MO.isDef(), MO.isImplicit(), MO.isKill(), MO.isDead(), MO.isUndef(), MO.isEarlyClobber(), 0, MO.isDebug(), MO.isInternalRead()); } assert(MO.isImm()); APInt Imm(64, MO.getImm()); switch (SubIdx) { default: llvm_unreachable("do not know to split immediate with this sub index."); case AMDGPU::sub0: return MachineOperand::CreateImm(Imm.getLoBits(32).getSExtValue()); case AMDGPU::sub1: return MachineOperand::CreateImm(Imm.getHiBits(32).getSExtValue()); } } bool AMDGPUInstructionSelector::selectG_ADD(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned Size = RBI.getSizeInBits(I.getOperand(0).getReg(), MRI, TRI); unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); if (Size != 64) return false; DebugLoc DL = I.getDebugLoc(); MachineOperand Lo1(getSubOperand64(I.getOperand(1), AMDGPU::sub0)); MachineOperand Lo2(getSubOperand64(I.getOperand(2), AMDGPU::sub0)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADD_U32), DstLo) .add(Lo1) .add(Lo2); MachineOperand Hi1(getSubOperand64(I.getOperand(1), AMDGPU::sub1)); MachineOperand Hi2(getSubOperand64(I.getOperand(2), AMDGPU::sub1)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADDC_U32), DstHi) .add(Hi1) .add(Hi2); BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), I.getOperand(0).getReg()) .addReg(DstLo) .addImm(AMDGPU::sub0) .addReg(DstHi) .addImm(AMDGPU::sub1); for (MachineOperand &MO : I.explicit_operands()) { if (!MO.isReg() || TargetRegisterInfo::isPhysicalRegister(MO.getReg())) continue; RBI.constrainGenericRegister(MO.getReg(), AMDGPU::SReg_64RegClass, MRI); } I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectG_GEP(MachineInstr &I) const { return selectG_ADD(I); } bool AMDGPUInstructionSelector::selectG_STORE(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); DebugLoc DL = I.getDebugLoc(); // FIXME: Select store instruction based on address space MachineInstr *Flat = BuildMI(*BB, &I, DL, TII.get(AMDGPU::FLAT_STORE_DWORD)) .add(I.getOperand(1)) .add(I.getOperand(0)) .addImm(0) // offset .addImm(0) // glc .addImm(0); // slc // Now that we selected an opcode, we need to constrain the register // operands to use appropriate classes. bool Ret = constrainSelectedInstRegOperands(*Flat, TII, TRI, RBI); I.eraseFromParent(); return Ret; } bool AMDGPUInstructionSelector::selectG_CONSTANT(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned DstReg = I.getOperand(0).getReg(); unsigned Size = RBI.getSizeInBits(DstReg, MRI, TRI); if (Size == 32) { I.setDesc(TII.get(AMDGPU::S_MOV_B32)); return constrainSelectedInstRegOperands(I, TII, TRI, RBI); } assert(Size == 64); DebugLoc DL = I.getDebugLoc(); unsigned LoReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); unsigned HiReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); const APInt &Imm = I.getOperand(1).getCImm()->getValue(); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_MOV_B32), LoReg) .addImm(Imm.trunc(32).getZExtValue()); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_MOV_B32), HiReg) .addImm(Imm.ashr(32).getZExtValue()); BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg) .addReg(LoReg) .addImm(AMDGPU::sub0) .addReg(HiReg) .addImm(AMDGPU::sub1); // We can't call constrainSelectedInstRegOperands here, because it doesn't // work for target independent opcodes I.eraseFromParent(); return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_64RegClass, MRI); } static bool isConstant(const MachineInstr &MI) { return MI.getOpcode() == TargetOpcode::G_CONSTANT; } void AMDGPUInstructionSelector::getAddrModeInfo(const MachineInstr &Load, const MachineRegisterInfo &MRI, SmallVectorImpl &AddrInfo) const { const MachineInstr *PtrMI = MRI.getUniqueVRegDef(Load.getOperand(1).getReg()); assert(PtrMI); if (PtrMI->getOpcode() != TargetOpcode::G_GEP) return; GEPInfo GEPInfo(*PtrMI); for (unsigned i = 1, e = 3; i < e; ++i) { const MachineOperand &GEPOp = PtrMI->getOperand(i); const MachineInstr *OpDef = MRI.getUniqueVRegDef(GEPOp.getReg()); assert(OpDef); if (isConstant(*OpDef)) { // FIXME: Is it possible to have multiple Imm parts? Maybe if we // are lacking other optimizations. assert(GEPInfo.Imm == 0); GEPInfo.Imm = OpDef->getOperand(1).getCImm()->getSExtValue(); continue; } const RegisterBank *OpBank = RBI.getRegBank(GEPOp.getReg(), MRI, TRI); if (OpBank->getID() == AMDGPU::SGPRRegBankID) GEPInfo.SgprParts.push_back(GEPOp.getReg()); else GEPInfo.VgprParts.push_back(GEPOp.getReg()); } AddrInfo.push_back(GEPInfo); getAddrModeInfo(*PtrMI, MRI, AddrInfo); } static bool isInstrUniform(const MachineInstr &MI) { if (!MI.hasOneMemOperand()) return false; const MachineMemOperand *MMO = *MI.memoperands_begin(); const Value *Ptr = MMO->getValue(); // UndefValue means this is a load of a kernel input. These are uniform. // Sometimes LDS instructions have constant pointers. // If Ptr is null, then that means this mem operand contains a // PseudoSourceValue like GOT. if (!Ptr || isa(Ptr) || isa(Ptr) || isa(Ptr) || isa(Ptr)) return true; const Instruction *I = dyn_cast(Ptr); return I && I->getMetadata("amdgpu.uniform"); } static unsigned getSmrdOpcode(unsigned BaseOpcode, unsigned LoadSize) { if (LoadSize == 32) return BaseOpcode; switch (BaseOpcode) { case AMDGPU::S_LOAD_DWORD_IMM: switch (LoadSize) { case 64: return AMDGPU::S_LOAD_DWORDX2_IMM; case 128: return AMDGPU::S_LOAD_DWORDX4_IMM; case 256: return AMDGPU::S_LOAD_DWORDX8_IMM; case 512: return AMDGPU::S_LOAD_DWORDX16_IMM; } break; case AMDGPU::S_LOAD_DWORD_IMM_ci: switch (LoadSize) { case 64: return AMDGPU::S_LOAD_DWORDX2_IMM_ci; case 128: return AMDGPU::S_LOAD_DWORDX4_IMM_ci; case 256: return AMDGPU::S_LOAD_DWORDX8_IMM_ci; case 512: return AMDGPU::S_LOAD_DWORDX16_IMM_ci; } break; case AMDGPU::S_LOAD_DWORD_SGPR: switch (LoadSize) { case 64: return AMDGPU::S_LOAD_DWORDX2_SGPR; case 128: return AMDGPU::S_LOAD_DWORDX4_SGPR; case 256: return AMDGPU::S_LOAD_DWORDX8_SGPR; case 512: return AMDGPU::S_LOAD_DWORDX16_SGPR; } break; } llvm_unreachable("Invalid base smrd opcode or size"); } bool AMDGPUInstructionSelector::hasVgprParts(ArrayRef AddrInfo) const { for (const GEPInfo &GEPInfo : AddrInfo) { if (!GEPInfo.VgprParts.empty()) return true; } return false; } bool AMDGPUInstructionSelector::selectSMRD(MachineInstr &I, ArrayRef AddrInfo) const { if (!I.hasOneMemOperand()) return false; if ((*I.memoperands_begin())->getAddrSpace() != AMDGPUASI.CONSTANT_ADDRESS) return false; if (!isInstrUniform(I)) return false; if (hasVgprParts(AddrInfo)) return false; MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); const SISubtarget &Subtarget = MF->getSubtarget(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned DstReg = I.getOperand(0).getReg(); const DebugLoc &DL = I.getDebugLoc(); unsigned Opcode; unsigned LoadSize = RBI.getSizeInBits(DstReg, MRI, TRI); if (!AddrInfo.empty() && AddrInfo[0].SgprParts.size() == 1) { const GEPInfo &GEPInfo = AddrInfo[0]; unsigned PtrReg = GEPInfo.SgprParts[0]; int64_t EncodedImm = AMDGPU::getSMRDEncodedOffset(Subtarget, GEPInfo.Imm); if (AMDGPU::isLegalSMRDImmOffset(Subtarget, GEPInfo.Imm)) { Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_IMM, LoadSize); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addImm(EncodedImm) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } if (Subtarget.getGeneration() == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedImm)) { Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_IMM_ci, LoadSize); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addImm(EncodedImm) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } if (isUInt<32>(GEPInfo.Imm)) { Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_SGPR, LoadSize); unsigned OffsetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_MOV_B32), OffsetReg) .addImm(GEPInfo.Imm); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addReg(OffsetReg) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } } unsigned PtrReg = I.getOperand(1).getReg(); Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_IMM, LoadSize); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addImm(0) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectG_LOAD(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); DebugLoc DL = I.getDebugLoc(); unsigned DstReg = I.getOperand(0).getReg(); unsigned PtrReg = I.getOperand(1).getReg(); unsigned LoadSize = RBI.getSizeInBits(DstReg, MRI, TRI); unsigned Opcode; SmallVector AddrInfo; getAddrModeInfo(I, MRI, AddrInfo); if (selectSMRD(I, AddrInfo)) { I.eraseFromParent(); return true; } switch (LoadSize) { default: llvm_unreachable("Load size not supported\n"); case 32: Opcode = AMDGPU::FLAT_LOAD_DWORD; break; case 64: Opcode = AMDGPU::FLAT_LOAD_DWORDX2; break; } MachineInstr *Flat = BuildMI(*BB, &I, DL, TII.get(Opcode)) .add(I.getOperand(0)) .addReg(PtrReg) .addImm(0) // offset .addImm(0) // glc .addImm(0); // slc bool Ret = constrainSelectedInstRegOperands(*Flat, TII, TRI, RBI); I.eraseFromParent(); return Ret; } bool AMDGPUInstructionSelector::select(MachineInstr &I, CodeGenCoverage &CoverageInfo) const { if (!isPreISelGenericOpcode(I.getOpcode())) return true; switch (I.getOpcode()) { default: break; case TargetOpcode::G_ADD: return selectG_ADD(I); case TargetOpcode::G_CONSTANT: return selectG_CONSTANT(I); case TargetOpcode::G_GEP: return selectG_GEP(I); case TargetOpcode::G_LOAD: return selectG_LOAD(I); case TargetOpcode::G_STORE: return selectG_STORE(I); } return false; }