//===- AMDGPUInstructionSelector.cpp ----------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the InstructionSelector class for /// AMDGPU. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AMDGPUInstructionSelector.h" #include "AMDGPUInstrInfo.h" #include "AMDGPURegisterBankInfo.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUSubtarget.h" #include "AMDGPUTargetMachine.h" #include "SIMachineFunctionInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "amdgpu-isel" using namespace llvm; #define GET_GLOBALISEL_IMPL #define AMDGPUSubtarget GCNSubtarget #include "AMDGPUGenGlobalISel.inc" #undef GET_GLOBALISEL_IMPL #undef AMDGPUSubtarget AMDGPUInstructionSelector::AMDGPUInstructionSelector( const GCNSubtarget &STI, const AMDGPURegisterBankInfo &RBI, const AMDGPUTargetMachine &TM) : InstructionSelector(), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()), RBI(RBI), TM(TM), STI(STI), EnableLateStructurizeCFG(AMDGPUTargetMachine::EnableLateStructurizeCFG), #define GET_GLOBALISEL_PREDICATES_INIT #include "AMDGPUGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_INIT #define GET_GLOBALISEL_TEMPORARIES_INIT #include "AMDGPUGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_INIT ,AMDGPUASI(STI.getAMDGPUAS()) { } const char *AMDGPUInstructionSelector::getName() { return DEBUG_TYPE; } bool AMDGPUInstructionSelector::selectCOPY(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); I.setDesc(TII.get(TargetOpcode::COPY)); for (const MachineOperand &MO : I.operands()) { if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) continue; const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(MO, MRI); if (!RC) continue; RBI.constrainGenericRegister(MO.getReg(), *RC, MRI); } return true; } MachineOperand AMDGPUInstructionSelector::getSubOperand64(MachineOperand &MO, unsigned SubIdx) const { MachineInstr *MI = MO.getParent(); MachineBasicBlock *BB = MO.getParent()->getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned DstReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); if (MO.isReg()) { unsigned ComposedSubIdx = TRI.composeSubRegIndices(MO.getSubReg(), SubIdx); unsigned Reg = MO.getReg(); BuildMI(*BB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), DstReg) .addReg(Reg, 0, ComposedSubIdx); return MachineOperand::CreateReg(DstReg, MO.isDef(), MO.isImplicit(), MO.isKill(), MO.isDead(), MO.isUndef(), MO.isEarlyClobber(), 0, MO.isDebug(), MO.isInternalRead()); } assert(MO.isImm()); APInt Imm(64, MO.getImm()); switch (SubIdx) { default: llvm_unreachable("do not know to split immediate with this sub index."); case AMDGPU::sub0: return MachineOperand::CreateImm(Imm.getLoBits(32).getSExtValue()); case AMDGPU::sub1: return MachineOperand::CreateImm(Imm.getHiBits(32).getSExtValue()); } } static int64_t getConstant(const MachineInstr *MI) { return MI->getOperand(1).getCImm()->getSExtValue(); } bool AMDGPUInstructionSelector::selectG_ADD(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned Size = RBI.getSizeInBits(I.getOperand(0).getReg(), MRI, TRI); unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); if (Size != 64) return false; DebugLoc DL = I.getDebugLoc(); MachineOperand Lo1(getSubOperand64(I.getOperand(1), AMDGPU::sub0)); MachineOperand Lo2(getSubOperand64(I.getOperand(2), AMDGPU::sub0)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADD_U32), DstLo) .add(Lo1) .add(Lo2); MachineOperand Hi1(getSubOperand64(I.getOperand(1), AMDGPU::sub1)); MachineOperand Hi2(getSubOperand64(I.getOperand(2), AMDGPU::sub1)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADDC_U32), DstHi) .add(Hi1) .add(Hi2); BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), I.getOperand(0).getReg()) .addReg(DstLo) .addImm(AMDGPU::sub0) .addReg(DstHi) .addImm(AMDGPU::sub1); for (MachineOperand &MO : I.explicit_operands()) { if (!MO.isReg() || TargetRegisterInfo::isPhysicalRegister(MO.getReg())) continue; RBI.constrainGenericRegister(MO.getReg(), AMDGPU::SReg_64RegClass, MRI); } I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectG_GEP(MachineInstr &I) const { return selectG_ADD(I); } bool AMDGPUInstructionSelector::selectG_IMPLICIT_DEF(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const MachineOperand &MO = I.getOperand(0); const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(MO, MRI); if (RC) RBI.constrainGenericRegister(MO.getReg(), *RC, MRI); I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF)); return true; } bool AMDGPUInstructionSelector::selectG_INTRINSIC(MachineInstr &I, CodeGenCoverage &CoverageInfo) const { unsigned IntrinsicID = I.getOperand(1).getIntrinsicID(); switch (IntrinsicID) { default: break; case Intrinsic::maxnum: case Intrinsic::minnum: case Intrinsic::amdgcn_cvt_pkrtz: return selectImpl(I, CoverageInfo); case Intrinsic::amdgcn_kernarg_segment_ptr: { MachineFunction *MF = I.getParent()->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const SIMachineFunctionInfo *MFI = MF->getInfo(); const ArgDescriptor *InputPtrReg; const TargetRegisterClass *RC; const DebugLoc &DL = I.getDebugLoc(); std::tie(InputPtrReg, RC) = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); if (!InputPtrReg) report_fatal_error("missing kernarg segment ptr"); BuildMI(*I.getParent(), &I, DL, TII.get(AMDGPU::COPY)) .add(I.getOperand(0)) .addReg(MRI.getLiveInVirtReg(InputPtrReg->getRegister())); I.eraseFromParent(); return true; } } return false; } static MachineInstr * buildEXP(const TargetInstrInfo &TII, MachineInstr *Insert, unsigned Tgt, unsigned Reg0, unsigned Reg1, unsigned Reg2, unsigned Reg3, unsigned VM, bool Compr, unsigned Enabled, bool Done) { const DebugLoc &DL = Insert->getDebugLoc(); MachineBasicBlock &BB = *Insert->getParent(); unsigned Opcode = Done ? AMDGPU::EXP_DONE : AMDGPU::EXP; return BuildMI(BB, Insert, DL, TII.get(Opcode)) .addImm(Tgt) .addReg(Reg0) .addReg(Reg1) .addReg(Reg2) .addReg(Reg3) .addImm(VM) .addImm(Compr) .addImm(Enabled); } bool AMDGPUInstructionSelector::selectG_INTRINSIC_W_SIDE_EFFECTS( MachineInstr &I, CodeGenCoverage &CoverageInfo) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned IntrinsicID = I.getOperand(0).getIntrinsicID(); switch (IntrinsicID) { case Intrinsic::amdgcn_exp: { int64_t Tgt = getConstant(MRI.getVRegDef(I.getOperand(1).getReg())); int64_t Enabled = getConstant(MRI.getVRegDef(I.getOperand(2).getReg())); int64_t Done = getConstant(MRI.getVRegDef(I.getOperand(7).getReg())); int64_t VM = getConstant(MRI.getVRegDef(I.getOperand(8).getReg())); MachineInstr *Exp = buildEXP(TII, &I, Tgt, I.getOperand(3).getReg(), I.getOperand(4).getReg(), I.getOperand(5).getReg(), I.getOperand(6).getReg(), VM, false, Enabled, Done); I.eraseFromParent(); return constrainSelectedInstRegOperands(*Exp, TII, TRI, RBI); } case Intrinsic::amdgcn_exp_compr: { const DebugLoc &DL = I.getDebugLoc(); int64_t Tgt = getConstant(MRI.getVRegDef(I.getOperand(1).getReg())); int64_t Enabled = getConstant(MRI.getVRegDef(I.getOperand(2).getReg())); unsigned Reg0 = I.getOperand(3).getReg(); unsigned Reg1 = I.getOperand(4).getReg(); unsigned Undef = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); int64_t Done = getConstant(MRI.getVRegDef(I.getOperand(5).getReg())); int64_t VM = getConstant(MRI.getVRegDef(I.getOperand(6).getReg())); BuildMI(*BB, &I, DL, TII.get(AMDGPU::IMPLICIT_DEF), Undef); MachineInstr *Exp = buildEXP(TII, &I, Tgt, Reg0, Reg1, Undef, Undef, VM, true, Enabled, Done); I.eraseFromParent(); return constrainSelectedInstRegOperands(*Exp, TII, TRI, RBI); } } return false; } bool AMDGPUInstructionSelector::selectG_STORE(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); DebugLoc DL = I.getDebugLoc(); unsigned StoreSize = RBI.getSizeInBits(I.getOperand(0).getReg(), MRI, TRI); unsigned Opcode; // FIXME: Select store instruction based on address space switch (StoreSize) { default: return false; case 32: Opcode = AMDGPU::FLAT_STORE_DWORD; break; case 64: Opcode = AMDGPU::FLAT_STORE_DWORDX2; break; case 96: Opcode = AMDGPU::FLAT_STORE_DWORDX3; break; case 128: Opcode = AMDGPU::FLAT_STORE_DWORDX4; break; } MachineInstr *Flat = BuildMI(*BB, &I, DL, TII.get(Opcode)) .add(I.getOperand(1)) .add(I.getOperand(0)) .addImm(0) // offset .addImm(0) // glc .addImm(0); // slc // Now that we selected an opcode, we need to constrain the register // operands to use appropriate classes. bool Ret = constrainSelectedInstRegOperands(*Flat, TII, TRI, RBI); I.eraseFromParent(); return Ret; } bool AMDGPUInstructionSelector::selectG_CONSTANT(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); MachineOperand &ImmOp = I.getOperand(1); // The AMDGPU backend only supports Imm operands and not CImm or FPImm. if (ImmOp.isFPImm()) { const APInt &Imm = ImmOp.getFPImm()->getValueAPF().bitcastToAPInt(); ImmOp.ChangeToImmediate(Imm.getZExtValue()); } else if (ImmOp.isCImm()) { ImmOp.ChangeToImmediate(ImmOp.getCImm()->getZExtValue()); } unsigned DstReg = I.getOperand(0).getReg(); unsigned Size; bool IsSgpr; const RegisterBank *RB = MRI.getRegBankOrNull(I.getOperand(0).getReg()); if (RB) { IsSgpr = RB->getID() == AMDGPU::SGPRRegBankID; Size = MRI.getType(DstReg).getSizeInBits(); } else { const TargetRegisterClass *RC = TRI.getRegClassForReg(MRI, DstReg); IsSgpr = TRI.isSGPRClass(RC); Size = TRI.getRegSizeInBits(*RC); } if (Size != 32 && Size != 64) return false; unsigned Opcode = IsSgpr ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; if (Size == 32) { I.setDesc(TII.get(Opcode)); I.addImplicitDefUseOperands(*MF); return constrainSelectedInstRegOperands(I, TII, TRI, RBI); } DebugLoc DL = I.getDebugLoc(); const TargetRegisterClass *RC = IsSgpr ? &AMDGPU::SReg_32_XM0RegClass : &AMDGPU::VGPR_32RegClass; unsigned LoReg = MRI.createVirtualRegister(RC); unsigned HiReg = MRI.createVirtualRegister(RC); const APInt &Imm = APInt(Size, I.getOperand(1).getImm()); BuildMI(*BB, &I, DL, TII.get(Opcode), LoReg) .addImm(Imm.trunc(32).getZExtValue()); BuildMI(*BB, &I, DL, TII.get(Opcode), HiReg) .addImm(Imm.ashr(32).getZExtValue()); const MachineInstr *RS = BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg) .addReg(LoReg) .addImm(AMDGPU::sub0) .addReg(HiReg) .addImm(AMDGPU::sub1); // We can't call constrainSelectedInstRegOperands here, because it doesn't // work for target independent opcodes I.eraseFromParent(); const TargetRegisterClass *DstRC = TRI.getConstrainedRegClassForOperand(RS->getOperand(0), MRI); if (!DstRC) return true; return RBI.constrainGenericRegister(DstReg, *DstRC, MRI); } static bool isConstant(const MachineInstr &MI) { return MI.getOpcode() == TargetOpcode::G_CONSTANT; } void AMDGPUInstructionSelector::getAddrModeInfo(const MachineInstr &Load, const MachineRegisterInfo &MRI, SmallVectorImpl &AddrInfo) const { const MachineInstr *PtrMI = MRI.getUniqueVRegDef(Load.getOperand(1).getReg()); assert(PtrMI); if (PtrMI->getOpcode() != TargetOpcode::G_GEP) return; GEPInfo GEPInfo(*PtrMI); for (unsigned i = 1, e = 3; i < e; ++i) { const MachineOperand &GEPOp = PtrMI->getOperand(i); const MachineInstr *OpDef = MRI.getUniqueVRegDef(GEPOp.getReg()); assert(OpDef); if (isConstant(*OpDef)) { // FIXME: Is it possible to have multiple Imm parts? Maybe if we // are lacking other optimizations. assert(GEPInfo.Imm == 0); GEPInfo.Imm = OpDef->getOperand(1).getCImm()->getSExtValue(); continue; } const RegisterBank *OpBank = RBI.getRegBank(GEPOp.getReg(), MRI, TRI); if (OpBank->getID() == AMDGPU::SGPRRegBankID) GEPInfo.SgprParts.push_back(GEPOp.getReg()); else GEPInfo.VgprParts.push_back(GEPOp.getReg()); } AddrInfo.push_back(GEPInfo); getAddrModeInfo(*PtrMI, MRI, AddrInfo); } static bool isInstrUniform(const MachineInstr &MI) { if (!MI.hasOneMemOperand()) return false; const MachineMemOperand *MMO = *MI.memoperands_begin(); const Value *Ptr = MMO->getValue(); // UndefValue means this is a load of a kernel input. These are uniform. // Sometimes LDS instructions have constant pointers. // If Ptr is null, then that means this mem operand contains a // PseudoSourceValue like GOT. if (!Ptr || isa(Ptr) || isa(Ptr) || isa(Ptr) || isa(Ptr)) return true; if (MMO->getAddrSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) return true; const Instruction *I = dyn_cast(Ptr); return I && I->getMetadata("amdgpu.uniform"); } static unsigned getSmrdOpcode(unsigned BaseOpcode, unsigned LoadSize) { if (LoadSize == 32) return BaseOpcode; switch (BaseOpcode) { case AMDGPU::S_LOAD_DWORD_IMM: switch (LoadSize) { case 64: return AMDGPU::S_LOAD_DWORDX2_IMM; case 128: return AMDGPU::S_LOAD_DWORDX4_IMM; case 256: return AMDGPU::S_LOAD_DWORDX8_IMM; case 512: return AMDGPU::S_LOAD_DWORDX16_IMM; } break; case AMDGPU::S_LOAD_DWORD_IMM_ci: switch (LoadSize) { case 64: return AMDGPU::S_LOAD_DWORDX2_IMM_ci; case 128: return AMDGPU::S_LOAD_DWORDX4_IMM_ci; case 256: return AMDGPU::S_LOAD_DWORDX8_IMM_ci; case 512: return AMDGPU::S_LOAD_DWORDX16_IMM_ci; } break; case AMDGPU::S_LOAD_DWORD_SGPR: switch (LoadSize) { case 64: return AMDGPU::S_LOAD_DWORDX2_SGPR; case 128: return AMDGPU::S_LOAD_DWORDX4_SGPR; case 256: return AMDGPU::S_LOAD_DWORDX8_SGPR; case 512: return AMDGPU::S_LOAD_DWORDX16_SGPR; } break; } llvm_unreachable("Invalid base smrd opcode or size"); } bool AMDGPUInstructionSelector::hasVgprParts(ArrayRef AddrInfo) const { for (const GEPInfo &GEPInfo : AddrInfo) { if (!GEPInfo.VgprParts.empty()) return true; } return false; } bool AMDGPUInstructionSelector::selectSMRD(MachineInstr &I, ArrayRef AddrInfo) const { if (!I.hasOneMemOperand()) return false; if ((*I.memoperands_begin())->getAddrSpace() != AMDGPUASI.CONSTANT_ADDRESS && (*I.memoperands_begin())->getAddrSpace() != AMDGPUASI.CONSTANT_ADDRESS_32BIT) return false; if (!isInstrUniform(I)) return false; if (hasVgprParts(AddrInfo)) return false; MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); const GCNSubtarget &Subtarget = MF->getSubtarget(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned DstReg = I.getOperand(0).getReg(); const DebugLoc &DL = I.getDebugLoc(); unsigned Opcode; unsigned LoadSize = RBI.getSizeInBits(DstReg, MRI, TRI); if (!AddrInfo.empty() && AddrInfo[0].SgprParts.size() == 1) { const GEPInfo &GEPInfo = AddrInfo[0]; unsigned PtrReg = GEPInfo.SgprParts[0]; int64_t EncodedImm = AMDGPU::getSMRDEncodedOffset(Subtarget, GEPInfo.Imm); if (AMDGPU::isLegalSMRDImmOffset(Subtarget, GEPInfo.Imm)) { Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_IMM, LoadSize); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addImm(EncodedImm) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } if (Subtarget.getGeneration() == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedImm)) { Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_IMM_ci, LoadSize); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addImm(EncodedImm) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } if (isUInt<32>(GEPInfo.Imm)) { Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_SGPR, LoadSize); unsigned OffsetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_MOV_B32), OffsetReg) .addImm(GEPInfo.Imm); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addReg(OffsetReg) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } } unsigned PtrReg = I.getOperand(1).getReg(); Opcode = getSmrdOpcode(AMDGPU::S_LOAD_DWORD_IMM, LoadSize); MachineInstr *SMRD = BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg) .addReg(PtrReg) .addImm(0) .addImm(0); // glc return constrainSelectedInstRegOperands(*SMRD, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectG_LOAD(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); DebugLoc DL = I.getDebugLoc(); unsigned DstReg = I.getOperand(0).getReg(); unsigned PtrReg = I.getOperand(1).getReg(); unsigned LoadSize = RBI.getSizeInBits(DstReg, MRI, TRI); unsigned Opcode; SmallVector AddrInfo; getAddrModeInfo(I, MRI, AddrInfo); if (selectSMRD(I, AddrInfo)) { I.eraseFromParent(); return true; } switch (LoadSize) { default: llvm_unreachable("Load size not supported\n"); case 32: Opcode = AMDGPU::FLAT_LOAD_DWORD; break; case 64: Opcode = AMDGPU::FLAT_LOAD_DWORDX2; break; } MachineInstr *Flat = BuildMI(*BB, &I, DL, TII.get(Opcode)) .add(I.getOperand(0)) .addReg(PtrReg) .addImm(0) // offset .addImm(0) // glc .addImm(0); // slc bool Ret = constrainSelectedInstRegOperands(*Flat, TII, TRI, RBI); I.eraseFromParent(); return Ret; } bool AMDGPUInstructionSelector::select(MachineInstr &I, CodeGenCoverage &CoverageInfo) const { if (!isPreISelGenericOpcode(I.getOpcode())) { if (I.isCopy()) return selectCOPY(I); return true; } switch (I.getOpcode()) { default: return selectImpl(I, CoverageInfo); case TargetOpcode::G_ADD: return selectG_ADD(I); case TargetOpcode::G_BITCAST: return selectCOPY(I); case TargetOpcode::G_CONSTANT: case TargetOpcode::G_FCONSTANT: return selectG_CONSTANT(I); case TargetOpcode::G_GEP: return selectG_GEP(I); case TargetOpcode::G_IMPLICIT_DEF: return selectG_IMPLICIT_DEF(I); case TargetOpcode::G_INTRINSIC: return selectG_INTRINSIC(I, CoverageInfo); case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: return selectG_INTRINSIC_W_SIDE_EFFECTS(I, CoverageInfo); case TargetOpcode::G_LOAD: return selectG_LOAD(I); case TargetOpcode::G_STORE: return selectG_STORE(I); } return false; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVCSRC(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); } }}; } /// /// This will select either an SGPR or VGPR operand and will save us from /// having to write an extra tablegen pattern. InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVSRC0(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); } }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3Mods0(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // src0_mods [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp [=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3OMods(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp [=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3Mods(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // src_mods }}; }