//===-- WindowsResource.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the .res file class. // //===----------------------------------------------------------------------===// #include "llvm/Object/WindowsResource.h" #include "llvm/Object/COFF.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MathExtras.h" #include #include #include using namespace llvm; using namespace object; namespace llvm { namespace object { #define RETURN_IF_ERROR(X) \ if (auto EC = X) \ return EC; const uint32_t MIN_HEADER_SIZE = 7 * sizeof(uint32_t) + 2 * sizeof(uint16_t); // COFF files seem to be inconsistent with alignment between sections, just use // 8-byte because it makes everyone happy. const uint32_t SECTION_ALIGNMENT = sizeof(uint64_t); uint32_t WindowsResourceParser::TreeNode::StringCount = 0; uint32_t WindowsResourceParser::TreeNode::DataCount = 0; WindowsResource::WindowsResource(MemoryBufferRef Source) : Binary(Binary::ID_WinRes, Source) { size_t LeadingSize = WIN_RES_MAGIC_SIZE + WIN_RES_NULL_ENTRY_SIZE; BBS = BinaryByteStream(Data.getBuffer().drop_front(LeadingSize), support::little); } Expected> WindowsResource::createWindowsResource(MemoryBufferRef Source) { if (Source.getBufferSize() < WIN_RES_MAGIC_SIZE + WIN_RES_NULL_ENTRY_SIZE) return make_error( "File too small to be a resource file", object_error::invalid_file_type); std::unique_ptr Ret(new WindowsResource(Source)); return std::move(Ret); } Expected WindowsResource::getHeadEntry() { if (BBS.getLength() < sizeof(WinResHeaderPrefix) + sizeof(WinResHeaderSuffix)) return make_error(".res contains no entries", object_error::unexpected_eof); return ResourceEntryRef::create(BinaryStreamRef(BBS), this); } ResourceEntryRef::ResourceEntryRef(BinaryStreamRef Ref, const WindowsResource *Owner) : Reader(Ref) {} Expected ResourceEntryRef::create(BinaryStreamRef BSR, const WindowsResource *Owner) { auto Ref = ResourceEntryRef(BSR, Owner); if (auto E = Ref.loadNext()) return std::move(E); return Ref; } Error ResourceEntryRef::moveNext(bool &End) { // Reached end of all the entries. if (Reader.bytesRemaining() == 0) { End = true; return Error::success(); } RETURN_IF_ERROR(loadNext()); return Error::success(); } static Error readStringOrId(BinaryStreamReader &Reader, uint16_t &ID, ArrayRef &Str, bool &IsString) { uint16_t IDFlag; RETURN_IF_ERROR(Reader.readInteger(IDFlag)); IsString = IDFlag != 0xffff; if (IsString) { Reader.setOffset( Reader.getOffset() - sizeof(uint16_t)); // Re-read the bytes which we used to check the flag. RETURN_IF_ERROR(Reader.readWideString(Str)); } else RETURN_IF_ERROR(Reader.readInteger(ID)); return Error::success(); } Error ResourceEntryRef::loadNext() { const WinResHeaderPrefix *Prefix; RETURN_IF_ERROR(Reader.readObject(Prefix)); if (Prefix->HeaderSize < MIN_HEADER_SIZE) return make_error("Header size is too small.", object_error::parse_failed); RETURN_IF_ERROR(readStringOrId(Reader, TypeID, Type, IsStringType)); RETURN_IF_ERROR(readStringOrId(Reader, NameID, Name, IsStringName)); RETURN_IF_ERROR(Reader.padToAlignment(WIN_RES_HEADER_ALIGNMENT)); RETURN_IF_ERROR(Reader.readObject(Suffix)); RETURN_IF_ERROR(Reader.readArray(Data, Prefix->DataSize)); RETURN_IF_ERROR(Reader.padToAlignment(WIN_RES_DATA_ALIGNMENT)); return Error::success(); } WindowsResourceParser::WindowsResourceParser() : Root(false) {} Error WindowsResourceParser::parse(WindowsResource *WR) { auto EntryOrErr = WR->getHeadEntry(); if (!EntryOrErr) { auto E = EntryOrErr.takeError(); if (E.isA()) { // Check if the .res file contains no entries. In this case we don't have // to throw an error but can rather just return without parsing anything. // This applies for files which have a valid PE header magic and the // mandatory empty null resource entry. Files which do not fit this // criteria would have already been filtered out by // WindowsResource::createWindowsResource(). consumeError(std::move(E)); return Error::success(); } return E; } ResourceEntryRef Entry = EntryOrErr.get(); bool End = false; while (!End) { Data.push_back(Entry.getData()); bool IsNewTypeString = false; bool IsNewNameString = false; Root.addEntry(Entry, IsNewTypeString, IsNewNameString); if (IsNewTypeString) StringTable.push_back(Entry.getTypeString()); if (IsNewNameString) StringTable.push_back(Entry.getNameString()); RETURN_IF_ERROR(Entry.moveNext(End)); } return Error::success(); } void WindowsResourceParser::printTree(raw_ostream &OS) const { ScopedPrinter Writer(OS); Root.print(Writer, "Resource Tree"); } void WindowsResourceParser::TreeNode::addEntry(const ResourceEntryRef &Entry, bool &IsNewTypeString, bool &IsNewNameString) { TreeNode &TypeNode = addTypeNode(Entry, IsNewTypeString); TreeNode &NameNode = TypeNode.addNameNode(Entry, IsNewNameString); NameNode.addLanguageNode(Entry); } WindowsResourceParser::TreeNode::TreeNode(bool IsStringNode) { if (IsStringNode) StringIndex = StringCount++; } WindowsResourceParser::TreeNode::TreeNode(uint16_t MajorVersion, uint16_t MinorVersion, uint32_t Characteristics) : IsDataNode(true), MajorVersion(MajorVersion), MinorVersion(MinorVersion), Characteristics(Characteristics) { DataIndex = DataCount++; } std::unique_ptr WindowsResourceParser::TreeNode::createStringNode() { return std::unique_ptr(new TreeNode(true)); } std::unique_ptr WindowsResourceParser::TreeNode::createIDNode() { return std::unique_ptr(new TreeNode(false)); } std::unique_ptr WindowsResourceParser::TreeNode::createDataNode(uint16_t MajorVersion, uint16_t MinorVersion, uint32_t Characteristics) { return std::unique_ptr( new TreeNode(MajorVersion, MinorVersion, Characteristics)); } WindowsResourceParser::TreeNode & WindowsResourceParser::TreeNode::addTypeNode(const ResourceEntryRef &Entry, bool &IsNewTypeString) { if (Entry.checkTypeString()) return addChild(Entry.getTypeString(), IsNewTypeString); else return addChild(Entry.getTypeID()); } WindowsResourceParser::TreeNode & WindowsResourceParser::TreeNode::addNameNode(const ResourceEntryRef &Entry, bool &IsNewNameString) { if (Entry.checkNameString()) return addChild(Entry.getNameString(), IsNewNameString); else return addChild(Entry.getNameID()); } WindowsResourceParser::TreeNode & WindowsResourceParser::TreeNode::addLanguageNode( const ResourceEntryRef &Entry) { return addChild(Entry.getLanguage(), true, Entry.getMajorVersion(), Entry.getMinorVersion(), Entry.getCharacteristics()); } WindowsResourceParser::TreeNode &WindowsResourceParser::TreeNode::addChild( uint32_t ID, bool IsDataNode, uint16_t MajorVersion, uint16_t MinorVersion, uint32_t Characteristics) { auto Child = IDChildren.find(ID); if (Child == IDChildren.end()) { auto NewChild = IsDataNode ? createDataNode(MajorVersion, MinorVersion, Characteristics) : createIDNode(); WindowsResourceParser::TreeNode &Node = *NewChild; IDChildren.emplace(ID, std::move(NewChild)); return Node; } else return *(Child->second); } WindowsResourceParser::TreeNode & WindowsResourceParser::TreeNode::addChild(ArrayRef NameRef, bool &IsNewString) { std::string NameString; ArrayRef CorrectedName; std::vector EndianCorrectedName; if (sys::IsBigEndianHost) { EndianCorrectedName.resize(NameRef.size() + 1); std::copy(NameRef.begin(), NameRef.end(), EndianCorrectedName.begin() + 1); EndianCorrectedName[0] = UNI_UTF16_BYTE_ORDER_MARK_SWAPPED; CorrectedName = makeArrayRef(EndianCorrectedName); } else CorrectedName = NameRef; convertUTF16ToUTF8String(CorrectedName, NameString); auto Child = StringChildren.find(NameString); if (Child == StringChildren.end()) { auto NewChild = createStringNode(); IsNewString = true; WindowsResourceParser::TreeNode &Node = *NewChild; StringChildren.emplace(NameString, std::move(NewChild)); return Node; } else return *(Child->second); } void WindowsResourceParser::TreeNode::print(ScopedPrinter &Writer, StringRef Name) const { ListScope NodeScope(Writer, Name); for (auto const &Child : StringChildren) { Child.second->print(Writer, Child.first); } for (auto const &Child : IDChildren) { Child.second->print(Writer, to_string(Child.first)); } } // This function returns the size of the entire resource tree, including // directory tables, directory entries, and data entries. It does not include // the directory strings or the relocations of the .rsrc section. uint32_t WindowsResourceParser::TreeNode::getTreeSize() const { uint32_t Size = (IDChildren.size() + StringChildren.size()) * sizeof(coff_resource_dir_entry); // Reached a node pointing to a data entry. if (IsDataNode) { Size += sizeof(coff_resource_data_entry); return Size; } // If the node does not point to data, it must have a directory table pointing // to other nodes. Size += sizeof(coff_resource_dir_table); for (auto const &Child : StringChildren) { Size += Child.second->getTreeSize(); } for (auto const &Child : IDChildren) { Size += Child.second->getTreeSize(); } return Size; } class WindowsResourceCOFFWriter { public: WindowsResourceCOFFWriter(COFF::MachineTypes MachineType, const WindowsResourceParser &Parser, Error &E); std::unique_ptr write(); private: void performFileLayout(); void performSectionOneLayout(); void performSectionTwoLayout(); void writeCOFFHeader(); void writeFirstSectionHeader(); void writeSecondSectionHeader(); void writeFirstSection(); void writeSecondSection(); void writeSymbolTable(); void writeStringTable(); void writeDirectoryTree(); void writeDirectoryStringTable(); void writeFirstSectionRelocations(); std::unique_ptr OutputBuffer; char *BufferStart; uint64_t CurrentOffset = 0; COFF::MachineTypes MachineType; const WindowsResourceParser::TreeNode &Resources; const ArrayRef> Data; uint64_t FileSize; uint32_t SymbolTableOffset; uint32_t SectionOneSize; uint32_t SectionOneOffset; uint32_t SectionOneRelocations; uint32_t SectionTwoSize; uint32_t SectionTwoOffset; const ArrayRef> StringTable; std::vector StringTableOffsets; std::vector DataOffsets; std::vector RelocationAddresses; }; WindowsResourceCOFFWriter::WindowsResourceCOFFWriter( COFF::MachineTypes MachineType, const WindowsResourceParser &Parser, Error &E) : MachineType(MachineType), Resources(Parser.getTree()), Data(Parser.getData()), StringTable(Parser.getStringTable()) { performFileLayout(); OutputBuffer = MemoryBuffer::getNewMemBuffer(FileSize); } void WindowsResourceCOFFWriter::performFileLayout() { // Add size of COFF header. FileSize = COFF::Header16Size; // one .rsrc section header for directory tree, another for resource data. FileSize += 2 * COFF::SectionSize; performSectionOneLayout(); performSectionTwoLayout(); // We have reached the address of the symbol table. SymbolTableOffset = FileSize; FileSize += COFF::Symbol16Size; // size of the @feat.00 symbol. FileSize += 4 * COFF::Symbol16Size; // symbol + aux for each section. FileSize += Data.size() * COFF::Symbol16Size; // 1 symbol per resource. FileSize += 4; // four null bytes for the string table. } void WindowsResourceCOFFWriter::performSectionOneLayout() { SectionOneOffset = FileSize; SectionOneSize = Resources.getTreeSize(); uint32_t CurrentStringOffset = SectionOneSize; uint32_t TotalStringTableSize = 0; for (auto const &String : StringTable) { StringTableOffsets.push_back(CurrentStringOffset); uint32_t StringSize = String.size() * sizeof(UTF16) + sizeof(uint16_t); CurrentStringOffset += StringSize; TotalStringTableSize += StringSize; } SectionOneSize += alignTo(TotalStringTableSize, sizeof(uint32_t)); // account for the relocations of section one. SectionOneRelocations = FileSize + SectionOneSize; FileSize += SectionOneSize; FileSize += Data.size() * COFF::RelocationSize; // one relocation for each resource. FileSize = alignTo(FileSize, SECTION_ALIGNMENT); } void WindowsResourceCOFFWriter::performSectionTwoLayout() { // add size of .rsrc$2 section, which contains all resource data on 8-byte // alignment. SectionTwoOffset = FileSize; SectionTwoSize = 0; for (auto const &Entry : Data) { DataOffsets.push_back(SectionTwoSize); SectionTwoSize += alignTo(Entry.size(), sizeof(uint64_t)); } FileSize += SectionTwoSize; FileSize = alignTo(FileSize, SECTION_ALIGNMENT); } static std::time_t getTime() { std::time_t Now = time(nullptr); if (Now < 0 || !isUInt<32>(Now)) return UINT32_MAX; return Now; } std::unique_ptr WindowsResourceCOFFWriter::write() { BufferStart = const_cast(OutputBuffer->getBufferStart()); writeCOFFHeader(); writeFirstSectionHeader(); writeSecondSectionHeader(); writeFirstSection(); writeSecondSection(); writeSymbolTable(); writeStringTable(); return std::move(OutputBuffer); } void WindowsResourceCOFFWriter::writeCOFFHeader() { // Write the COFF header. auto *Header = reinterpret_cast(BufferStart); Header->Machine = MachineType; Header->NumberOfSections = 2; Header->TimeDateStamp = getTime(); Header->PointerToSymbolTable = SymbolTableOffset; // One symbol for every resource plus 2 for each section and @feat.00 Header->NumberOfSymbols = Data.size() + 5; Header->SizeOfOptionalHeader = 0; Header->Characteristics = COFF::IMAGE_FILE_32BIT_MACHINE; } void WindowsResourceCOFFWriter::writeFirstSectionHeader() { // Write the first section header. CurrentOffset += sizeof(coff_file_header); auto *SectionOneHeader = reinterpret_cast(BufferStart + CurrentOffset); strncpy(SectionOneHeader->Name, ".rsrc$01", (size_t)COFF::NameSize); SectionOneHeader->VirtualSize = 0; SectionOneHeader->VirtualAddress = 0; SectionOneHeader->SizeOfRawData = SectionOneSize; SectionOneHeader->PointerToRawData = SectionOneOffset; SectionOneHeader->PointerToRelocations = SectionOneRelocations; SectionOneHeader->PointerToLinenumbers = 0; SectionOneHeader->NumberOfRelocations = Data.size(); SectionOneHeader->NumberOfLinenumbers = 0; SectionOneHeader->Characteristics += COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; SectionOneHeader->Characteristics += COFF::IMAGE_SCN_MEM_READ; } void WindowsResourceCOFFWriter::writeSecondSectionHeader() { // Write the second section header. CurrentOffset += sizeof(coff_section); auto *SectionTwoHeader = reinterpret_cast(BufferStart + CurrentOffset); strncpy(SectionTwoHeader->Name, ".rsrc$02", (size_t)COFF::NameSize); SectionTwoHeader->VirtualSize = 0; SectionTwoHeader->VirtualAddress = 0; SectionTwoHeader->SizeOfRawData = SectionTwoSize; SectionTwoHeader->PointerToRawData = SectionTwoOffset; SectionTwoHeader->PointerToRelocations = 0; SectionTwoHeader->PointerToLinenumbers = 0; SectionTwoHeader->NumberOfRelocations = 0; SectionTwoHeader->NumberOfLinenumbers = 0; SectionTwoHeader->Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; SectionTwoHeader->Characteristics += COFF::IMAGE_SCN_MEM_READ; } void WindowsResourceCOFFWriter::writeFirstSection() { // Write section one. CurrentOffset += sizeof(coff_section); writeDirectoryTree(); writeDirectoryStringTable(); writeFirstSectionRelocations(); CurrentOffset = alignTo(CurrentOffset, SECTION_ALIGNMENT); } void WindowsResourceCOFFWriter::writeSecondSection() { // Now write the .rsrc$02 section. for (auto const &RawDataEntry : Data) { std::copy(RawDataEntry.begin(), RawDataEntry.end(), BufferStart + CurrentOffset); CurrentOffset += alignTo(RawDataEntry.size(), sizeof(uint64_t)); } CurrentOffset = alignTo(CurrentOffset, SECTION_ALIGNMENT); } void WindowsResourceCOFFWriter::writeSymbolTable() { // Now write the symbol table. // First, the feat symbol. auto *Symbol = reinterpret_cast(BufferStart + CurrentOffset); strncpy(Symbol->Name.ShortName, "@feat.00", (size_t)COFF::NameSize); Symbol->Value = 0x11; Symbol->SectionNumber = 0xffff; Symbol->Type = COFF::IMAGE_SYM_DTYPE_NULL; Symbol->StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; Symbol->NumberOfAuxSymbols = 0; CurrentOffset += sizeof(coff_symbol16); // Now write the .rsrc1 symbol + aux. Symbol = reinterpret_cast(BufferStart + CurrentOffset); strncpy(Symbol->Name.ShortName, ".rsrc$01", (size_t)COFF::NameSize); Symbol->Value = 0; Symbol->SectionNumber = 1; Symbol->Type = COFF::IMAGE_SYM_DTYPE_NULL; Symbol->StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; Symbol->NumberOfAuxSymbols = 1; CurrentOffset += sizeof(coff_symbol16); auto *Aux = reinterpret_cast(BufferStart + CurrentOffset); Aux->Length = SectionOneSize; Aux->NumberOfRelocations = Data.size(); Aux->NumberOfLinenumbers = 0; Aux->CheckSum = 0; Aux->NumberLowPart = 0; Aux->Selection = 0; CurrentOffset += sizeof(coff_aux_section_definition); // Now write the .rsrc2 symbol + aux. Symbol = reinterpret_cast(BufferStart + CurrentOffset); strncpy(Symbol->Name.ShortName, ".rsrc$02", (size_t)COFF::NameSize); Symbol->Value = 0; Symbol->SectionNumber = 2; Symbol->Type = COFF::IMAGE_SYM_DTYPE_NULL; Symbol->StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; Symbol->NumberOfAuxSymbols = 1; CurrentOffset += sizeof(coff_symbol16); Aux = reinterpret_cast(BufferStart + CurrentOffset); Aux->Length = SectionTwoSize; Aux->NumberOfRelocations = 0; Aux->NumberOfLinenumbers = 0; Aux->CheckSum = 0; Aux->NumberLowPart = 0; Aux->Selection = 0; CurrentOffset += sizeof(coff_aux_section_definition); // Now write a symbol for each relocation. for (unsigned i = 0; i < Data.size(); i++) { auto RelocationName = formatv("$R{0:X-6}", i & 0xffffff).sstr(); Symbol = reinterpret_cast(BufferStart + CurrentOffset); memcpy(Symbol->Name.ShortName, RelocationName.data(), (size_t) COFF::NameSize); Symbol->Value = DataOffsets[i]; Symbol->SectionNumber = 2; Symbol->Type = COFF::IMAGE_SYM_DTYPE_NULL; Symbol->StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; Symbol->NumberOfAuxSymbols = 0; CurrentOffset += sizeof(coff_symbol16); } } void WindowsResourceCOFFWriter::writeStringTable() { // Just 4 null bytes for the string table. auto COFFStringTable = reinterpret_cast(BufferStart + CurrentOffset); memset(COFFStringTable, 0, 4); } void WindowsResourceCOFFWriter::writeDirectoryTree() { // Traverse parsed resource tree breadth-first and write the corresponding // COFF objects. std::queue Queue; Queue.push(&Resources); uint32_t NextLevelOffset = sizeof(coff_resource_dir_table) + (Resources.getStringChildren().size() + Resources.getIDChildren().size()) * sizeof(coff_resource_dir_entry); std::vector DataEntriesTreeOrder; uint32_t CurrentRelativeOffset = 0; while (!Queue.empty()) { auto CurrentNode = Queue.front(); Queue.pop(); auto *Table = reinterpret_cast(BufferStart + CurrentOffset); Table->Characteristics = CurrentNode->getCharacteristics(); Table->TimeDateStamp = 0; Table->MajorVersion = CurrentNode->getMajorVersion(); Table->MinorVersion = CurrentNode->getMinorVersion(); auto &IDChildren = CurrentNode->getIDChildren(); auto &StringChildren = CurrentNode->getStringChildren(); Table->NumberOfNameEntries = StringChildren.size(); Table->NumberOfIDEntries = IDChildren.size(); CurrentOffset += sizeof(coff_resource_dir_table); CurrentRelativeOffset += sizeof(coff_resource_dir_table); // Write the directory entries immediately following each directory table. for (auto const &Child : StringChildren) { auto *Entry = reinterpret_cast(BufferStart + CurrentOffset); Entry->Identifier.setNameOffset( StringTableOffsets[Child.second->getStringIndex()]); if (Child.second->checkIsDataNode()) { Entry->Offset.DataEntryOffset = NextLevelOffset; NextLevelOffset += sizeof(coff_resource_data_entry); DataEntriesTreeOrder.push_back(Child.second.get()); } else { Entry->Offset.SubdirOffset = NextLevelOffset + (1 << 31); NextLevelOffset += sizeof(coff_resource_dir_table) + (Child.second->getStringChildren().size() + Child.second->getIDChildren().size()) * sizeof(coff_resource_dir_entry); Queue.push(Child.second.get()); } CurrentOffset += sizeof(coff_resource_dir_entry); CurrentRelativeOffset += sizeof(coff_resource_dir_entry); } for (auto const &Child : IDChildren) { auto *Entry = reinterpret_cast(BufferStart + CurrentOffset); Entry->Identifier.ID = Child.first; if (Child.second->checkIsDataNode()) { Entry->Offset.DataEntryOffset = NextLevelOffset; NextLevelOffset += sizeof(coff_resource_data_entry); DataEntriesTreeOrder.push_back(Child.second.get()); } else { Entry->Offset.SubdirOffset = NextLevelOffset + (1 << 31); NextLevelOffset += sizeof(coff_resource_dir_table) + (Child.second->getStringChildren().size() + Child.second->getIDChildren().size()) * sizeof(coff_resource_dir_entry); Queue.push(Child.second.get()); } CurrentOffset += sizeof(coff_resource_dir_entry); CurrentRelativeOffset += sizeof(coff_resource_dir_entry); } } RelocationAddresses.resize(Data.size()); // Now write all the resource data entries. for (auto DataNodes : DataEntriesTreeOrder) { auto *Entry = reinterpret_cast(BufferStart + CurrentOffset); RelocationAddresses[DataNodes->getDataIndex()] = CurrentRelativeOffset; Entry->DataRVA = 0; // Set to zero because it is a relocation. Entry->DataSize = Data[DataNodes->getDataIndex()].size(); Entry->Codepage = 0; Entry->Reserved = 0; CurrentOffset += sizeof(coff_resource_data_entry); CurrentRelativeOffset += sizeof(coff_resource_data_entry); } } void WindowsResourceCOFFWriter::writeDirectoryStringTable() { // Now write the directory string table for .rsrc$01 uint32_t TotalStringTableSize = 0; for (auto &String : StringTable) { uint16_t Length = String.size(); support::endian::write16le(BufferStart + CurrentOffset, Length); CurrentOffset += sizeof(uint16_t); auto *Start = reinterpret_cast(BufferStart + CurrentOffset); std::copy(String.begin(), String.end(), Start); CurrentOffset += Length * sizeof(UTF16); TotalStringTableSize += Length * sizeof(UTF16) + sizeof(uint16_t); } CurrentOffset += alignTo(TotalStringTableSize, sizeof(uint32_t)) - TotalStringTableSize; } void WindowsResourceCOFFWriter::writeFirstSectionRelocations() { // Now write the relocations for .rsrc$01 // Five symbols already in table before we start, @feat.00 and 2 for each // .rsrc section. uint32_t NextSymbolIndex = 5; for (unsigned i = 0; i < Data.size(); i++) { auto *Reloc = reinterpret_cast(BufferStart + CurrentOffset); Reloc->VirtualAddress = RelocationAddresses[i]; Reloc->SymbolTableIndex = NextSymbolIndex++; switch (MachineType) { case COFF::IMAGE_FILE_MACHINE_ARMNT: Reloc->Type = COFF::IMAGE_REL_ARM_ADDR32NB; break; case COFF::IMAGE_FILE_MACHINE_AMD64: Reloc->Type = COFF::IMAGE_REL_AMD64_ADDR32NB; break; case COFF::IMAGE_FILE_MACHINE_I386: Reloc->Type = COFF::IMAGE_REL_I386_DIR32NB; break; case COFF::IMAGE_FILE_MACHINE_ARM64: Reloc->Type = COFF::IMAGE_REL_ARM64_ADDR32NB; break; default: llvm_unreachable("unknown machine type"); } CurrentOffset += sizeof(coff_relocation); } } Expected> writeWindowsResourceCOFF(COFF::MachineTypes MachineType, const WindowsResourceParser &Parser) { Error E = Error::success(); WindowsResourceCOFFWriter Writer(MachineType, Parser, E); if (E) return std::move(E); return Writer.write(); } } // namespace object } // namespace llvm