//===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Wasm object file writer information. // //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/BinaryFormat/Wasm.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionWasm.h" #include "llvm/MC/MCSymbolWasm.h" #include "llvm/MC/MCValue.h" #include "llvm/MC/MCWasmObjectWriter.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/StringSaver.h" #include using namespace llvm; #undef DEBUG_TYPE #define DEBUG_TYPE "reloc-info" namespace { // For patching purposes, we need to remember where each section starts, both // for patching up the section size field, and for patching up references to // locations within the section. struct SectionBookkeeping { // Where the size of the section is written. uint64_t SizeOffset; // Where the contents of the section starts (after the header). uint64_t ContentsOffset; }; // The signature of a wasm function, in a struct capable of being used as a // DenseMap key. struct WasmFunctionType { // Support empty and tombstone instances, needed by DenseMap. enum { Plain, Empty, Tombstone } State; // The return types of the function. SmallVector Returns; // The parameter types of the function. SmallVector Params; WasmFunctionType() : State(Plain) {} bool operator==(const WasmFunctionType &Other) const { return State == Other.State && Returns == Other.Returns && Params == Other.Params; } }; // Traits for using WasmFunctionType in a DenseMap. struct WasmFunctionTypeDenseMapInfo { static WasmFunctionType getEmptyKey() { WasmFunctionType FuncTy; FuncTy.State = WasmFunctionType::Empty; return FuncTy; } static WasmFunctionType getTombstoneKey() { WasmFunctionType FuncTy; FuncTy.State = WasmFunctionType::Tombstone; return FuncTy; } static unsigned getHashValue(const WasmFunctionType &FuncTy) { uintptr_t Value = FuncTy.State; for (wasm::ValType Ret : FuncTy.Returns) Value += DenseMapInfo::getHashValue(int32_t(Ret)); for (wasm::ValType Param : FuncTy.Params) Value += DenseMapInfo::getHashValue(int32_t(Param)); return Value; } static bool isEqual(const WasmFunctionType &LHS, const WasmFunctionType &RHS) { return LHS == RHS; } }; // A wasm import to be written into the import section. struct WasmImport { StringRef ModuleName; StringRef FieldName; unsigned Kind; int32_t Type; }; // A wasm function to be written into the function section. struct WasmFunction { int32_t Type; const MCSymbolWasm *Sym; }; // A wasm export to be written into the export section. struct WasmExport { StringRef FieldName; unsigned Kind; uint32_t Index; }; // A wasm global to be written into the global section. struct WasmGlobal { wasm::ValType Type; bool IsMutable; bool HasImport; uint64_t InitialValue; uint32_t ImportIndex; }; // Information about a single relocation. struct WasmRelocationEntry { uint64_t Offset; // Where is the relocation. const MCSymbolWasm *Symbol; // The symbol to relocate with. int64_t Addend; // A value to add to the symbol. unsigned Type; // The type of the relocation. MCSectionWasm *FixupSection;// The section the relocation is targeting. WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, int64_t Addend, unsigned Type, MCSectionWasm *FixupSection) : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), FixupSection(FixupSection) {} bool hasAddend() const { switch (Type) { case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_LEB: case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_SLEB: case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_I32: return true; default: return false; } } void print(raw_ostream &Out) const { Out << "Off=" << Offset << ", Sym=" << Symbol << ", Addend=" << Addend << ", Type=" << Type << ", FixupSection=" << FixupSection; } void dump() const { print(errs()); } }; class WasmObjectWriter : public MCObjectWriter { /// Helper struct for containing some precomputed information on symbols. struct WasmSymbolData { const MCSymbolWasm *Symbol; StringRef Name; // Support lexicographic sorting. bool operator<(const WasmSymbolData &RHS) const { return Name < RHS.Name; } }; /// The target specific Wasm writer instance. std::unique_ptr TargetObjectWriter; // Relocations for fixing up references in the code section. std::vector CodeRelocations; // Relocations for fixing up references in the data section. std::vector DataRelocations; // Index values to use for fixing up call_indirect type indices. // Maps function symbols to the index of the type of the function DenseMap TypeIndices; DenseMap SymbolIndices; DenseMap FunctionTypeIndices; // TargetObjectWriter wrappers. bool is64Bit() const { return TargetObjectWriter->is64Bit(); } unsigned getRelocType(MCContext &Ctx, const MCValue &Target, const MCFixup &Fixup, bool IsPCRel) const { return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); } void startSection(SectionBookkeeping &Section, unsigned SectionId, const char *Name = nullptr); void endSection(SectionBookkeeping &Section); public: WasmObjectWriter(MCWasmObjectTargetWriter *MOTW, raw_pwrite_stream &OS) : MCObjectWriter(OS, /*IsLittleEndian=*/true), TargetObjectWriter(MOTW) {} private: ~WasmObjectWriter() override; void reset() override { CodeRelocations.clear(); DataRelocations.clear(); TypeIndices.clear(); SymbolIndices.clear(); FunctionTypeIndices.clear(); MCObjectWriter::reset(); } void writeHeader(const MCAssembler &Asm); void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, bool &IsPCRel, uint64_t &FixedValue) override; void executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) override; void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; void writeValueType(wasm::ValType Ty) { encodeSLEB128(int32_t(Ty), getStream()); } void writeTypeSection(const SmallVector &FunctionTypes); void writeImportSection(const SmallVector &Imports); void writeFunctionSection(const SmallVector &Functions); void writeTableSection(const SmallVector &TableElems); void writeMemorySection(const SmallVector &DataBytes); void writeGlobalSection(const SmallVector &Globals); void writeExportSection(const SmallVector &Exports); void writeElemSection(const SmallVector &TableElems); void writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, const SmallVector &Functions); uint64_t writeDataSection(const SmallVector &DataBytes); void writeNameSection(const SmallVector &Functions, const SmallVector &Imports, uint32_t NumFuncImports); void writeCodeRelocSection(); void writeDataRelocSection(uint64_t DataSectionHeaderSize); void writeLinkingMetaDataSection(bool HasStackPointer, uint32_t StackPointerGlobal); void applyRelocations(ArrayRef Relocations, uint64_t ContentsOffset); void writeRelocations(ArrayRef Relocations, uint64_t HeaderSize); uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); }; } // end anonymous namespace WasmObjectWriter::~WasmObjectWriter() {} // Return the padding size to write a 32-bit value into a 5-byte ULEB128. static unsigned PaddingFor5ByteULEB128(uint32_t X) { return X == 0 ? 4 : (4u - (31u - countLeadingZeros(X)) / 7u); } // Return the padding size to write a 32-bit value into a 5-byte SLEB128. static unsigned PaddingFor5ByteSLEB128(int32_t X) { return 5 - getSLEB128Size(X); } // Write out a section header and a patchable section size field. void WasmObjectWriter::startSection(SectionBookkeeping &Section, unsigned SectionId, const char *Name) { assert((Name != nullptr) == (SectionId == wasm::WASM_SEC_CUSTOM) && "Only custom sections can have names"); encodeULEB128(SectionId, getStream()); Section.SizeOffset = getStream().tell(); // The section size. We don't know the size yet, so reserve enough space // for any 32-bit value; we'll patch it later. encodeULEB128(UINT32_MAX, getStream()); // The position where the section starts, for measuring its size. Section.ContentsOffset = getStream().tell(); // Custom sections in wasm also have a string identifier. if (SectionId == wasm::WASM_SEC_CUSTOM) { encodeULEB128(strlen(Name), getStream()); writeBytes(Name); } } // Now that the section is complete and we know how big it is, patch up the // section size field at the start of the section. void WasmObjectWriter::endSection(SectionBookkeeping &Section) { uint64_t Size = getStream().tell() - Section.ContentsOffset; if (uint32_t(Size) != Size) report_fatal_error("section size does not fit in a uint32_t"); unsigned Padding = PaddingFor5ByteULEB128(Size); // Write the final section size to the payload_len field, which follows // the section id byte. uint8_t Buffer[16]; unsigned SizeLen = encodeULEB128(Size, Buffer, Padding); assert(SizeLen == 5); getStream().pwrite((char *)Buffer, SizeLen, Section.SizeOffset); } // Emit the Wasm header. void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { writeBytes(StringRef(wasm::WasmMagic, sizeof(wasm::WasmMagic))); writeLE32(wasm::WasmVersion); } void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) { } void WasmObjectWriter::recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, bool &IsPCRel, uint64_t &FixedValue) { MCSectionWasm &FixupSection = cast(*Fragment->getParent()); uint64_t C = Target.getConstant(); uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); MCContext &Ctx = Asm.getContext(); if (const MCSymbolRefExpr *RefB = Target.getSymB()) { assert(RefB->getKind() == MCSymbolRefExpr::VK_None && "Should not have constructed this"); // Let A, B and C being the components of Target and R be the location of // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). // If it is pcrel, we want to compute (A - B + C - R). // In general, Wasm has no relocations for -B. It can only represent (A + C) // or (A + C - R). If B = R + K and the relocation is not pcrel, we can // replace B to implement it: (A - R - K + C) if (IsPCRel) { Ctx.reportError( Fixup.getLoc(), "No relocation available to represent this relative expression"); return; } const auto &SymB = cast(RefB->getSymbol()); if (SymB.isUndefined()) { Ctx.reportError(Fixup.getLoc(), Twine("symbol '") + SymB.getName() + "' can not be undefined in a subtraction expression"); return; } assert(!SymB.isAbsolute() && "Should have been folded"); const MCSection &SecB = SymB.getSection(); if (&SecB != &FixupSection) { Ctx.reportError(Fixup.getLoc(), "Cannot represent a difference across sections"); return; } uint64_t SymBOffset = Layout.getSymbolOffset(SymB); uint64_t K = SymBOffset - FixupOffset; IsPCRel = true; C -= K; } // We either rejected the fixup or folded B into C at this point. const MCSymbolRefExpr *RefA = Target.getSymA(); const auto *SymA = RefA ? cast(&RefA->getSymbol()) : nullptr; bool ViaWeakRef = false; if (SymA && SymA->isVariable()) { const MCExpr *Expr = SymA->getVariableValue(); if (const auto *Inner = dyn_cast(Expr)) { if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { SymA = cast(&Inner->getSymbol()); ViaWeakRef = true; } } } // Put any constant offset in an addend. Offsets can be negative, and // LLVM expects wrapping, in contrast to wasm's immediates which can't // be negative and don't wrap. FixedValue = 0; if (SymA) { if (ViaWeakRef) llvm_unreachable("weakref used in reloc not yet implemented"); else SymA->setUsedInReloc(); } unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel); WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); if (FixupSection.hasInstructions()) CodeRelocations.push_back(Rec); else DataRelocations.push_back(Rec); } // Write X as an (unsigned) LEB value at offset Offset in Stream, padded // to allow patching. static void WritePatchableLEB(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { uint8_t Buffer[5]; unsigned Padding = PaddingFor5ByteULEB128(X); unsigned SizeLen = encodeULEB128(X, Buffer, Padding); assert(SizeLen == 5); Stream.pwrite((char *)Buffer, SizeLen, Offset); } // Write X as an signed LEB value at offset Offset in Stream, padded // to allow patching. static void WritePatchableSLEB(raw_pwrite_stream &Stream, int32_t X, uint64_t Offset) { uint8_t Buffer[5]; unsigned Padding = PaddingFor5ByteSLEB128(X); unsigned SizeLen = encodeSLEB128(X, Buffer, Padding); assert(SizeLen == 5); Stream.pwrite((char *)Buffer, SizeLen, Offset); } // Write X as a plain integer value at offset Offset in Stream. static void WriteI32(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { uint8_t Buffer[4]; support::endian::write32le(Buffer, X); Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); } // Compute a value to write into the code at the location covered // by RelEntry. This value isn't used by the static linker, since // we have addends; it just serves to make the code more readable // and to make standalone wasm modules directly usable. static uint32_t ProvisionalValue(const WasmRelocationEntry &RelEntry) { const MCSymbolWasm *Sym = RelEntry.Symbol; // For undefined symbols, use a hopefully invalid value. if (!Sym->isDefined(false)) return UINT32_MAX; MCSectionWasm &Section = cast(RelEntry.Symbol->getSection(false)); uint64_t Address = Section.getSectionOffset() + RelEntry.Addend; // Ignore overflow. LLVM allows address arithmetic to silently wrap. uint32_t Value = Address; return Value; } uint32_t WasmObjectWriter::getRelocationIndexValue( const WasmRelocationEntry &RelEntry) { switch (RelEntry.Type) { case wasm::R_WEBASSEMBLY_FUNCTION_INDEX_LEB: case wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB: case wasm::R_WEBASSEMBLY_TABLE_INDEX_I32: case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_LEB: case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_SLEB: case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_I32: assert(SymbolIndices.count(RelEntry.Symbol)); return SymbolIndices[RelEntry.Symbol]; case wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB: assert(TypeIndices.count(RelEntry.Symbol)); return TypeIndices[RelEntry.Symbol]; default: llvm_unreachable("invalid relocation type"); } } // Apply the portions of the relocation records that we can handle ourselves // directly. void WasmObjectWriter::applyRelocations( ArrayRef Relocations, uint64_t ContentsOffset) { raw_pwrite_stream &Stream = getStream(); for (const WasmRelocationEntry &RelEntry : Relocations) { uint64_t Offset = ContentsOffset + RelEntry.FixupSection->getSectionOffset() + RelEntry.Offset; switch (RelEntry.Type) { case wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB: case wasm::R_WEBASSEMBLY_FUNCTION_INDEX_LEB: case wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB: { uint32_t Index = getRelocationIndexValue(RelEntry); WritePatchableSLEB(Stream, Index, Offset); break; } case wasm::R_WEBASSEMBLY_TABLE_INDEX_I32: { uint32_t Index = getRelocationIndexValue(RelEntry); WriteI32(Stream, Index, Offset); break; } case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_SLEB: { uint32_t Value = ProvisionalValue(RelEntry); WritePatchableSLEB(Stream, Value, Offset); break; } case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_LEB: { uint32_t Value = ProvisionalValue(RelEntry); WritePatchableLEB(Stream, Value, Offset); break; } case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_I32: { uint32_t Value = ProvisionalValue(RelEntry); WriteI32(Stream, Value, Offset); break; } default: llvm_unreachable("unsupported relocation type"); } } } // Write out the portions of the relocation records that the linker will // need to handle. void WasmObjectWriter::writeRelocations( ArrayRef Relocations, uint64_t HeaderSize) { raw_pwrite_stream &Stream = getStream(); for (const WasmRelocationEntry& RelEntry : Relocations) { uint64_t Offset = RelEntry.Offset + RelEntry.FixupSection->getSectionOffset() + HeaderSize; uint32_t Index = getRelocationIndexValue(RelEntry); encodeULEB128(RelEntry.Type, Stream); encodeULEB128(Offset, Stream); encodeULEB128(Index, Stream); if (RelEntry.hasAddend()) encodeSLEB128(RelEntry.Addend, Stream); } } void WasmObjectWriter::writeTypeSection( const SmallVector &FunctionTypes) { if (FunctionTypes.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_TYPE); encodeULEB128(FunctionTypes.size(), getStream()); for (const WasmFunctionType &FuncTy : FunctionTypes) { encodeSLEB128(wasm::WASM_TYPE_FUNC, getStream()); encodeULEB128(FuncTy.Params.size(), getStream()); for (wasm::ValType Ty : FuncTy.Params) writeValueType(Ty); encodeULEB128(FuncTy.Returns.size(), getStream()); for (wasm::ValType Ty : FuncTy.Returns) writeValueType(Ty); } endSection(Section); } void WasmObjectWriter::writeImportSection( const SmallVector &Imports) { if (Imports.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_IMPORT); encodeULEB128(Imports.size(), getStream()); for (const WasmImport &Import : Imports) { StringRef ModuleName = Import.ModuleName; encodeULEB128(ModuleName.size(), getStream()); writeBytes(ModuleName); StringRef FieldName = Import.FieldName; encodeULEB128(FieldName.size(), getStream()); writeBytes(FieldName); encodeULEB128(Import.Kind, getStream()); switch (Import.Kind) { case wasm::WASM_EXTERNAL_FUNCTION: encodeULEB128(Import.Type, getStream()); break; case wasm::WASM_EXTERNAL_GLOBAL: encodeSLEB128(int32_t(Import.Type), getStream()); encodeULEB128(0, getStream()); // mutability break; default: llvm_unreachable("unsupported import kind"); } } endSection(Section); } void WasmObjectWriter::writeFunctionSection( const SmallVector &Functions) { if (Functions.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_FUNCTION); encodeULEB128(Functions.size(), getStream()); for (const WasmFunction &Func : Functions) encodeULEB128(Func.Type, getStream()); endSection(Section); } void WasmObjectWriter::writeTableSection( const SmallVector &TableElems) { // For now, always emit the table section, since indirect calls are not // valid without it. In the future, we could perhaps be more clever and omit // it if there are no indirect calls. SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_TABLE); // The number of tables, fixed to 1 for now. encodeULEB128(1, getStream()); encodeSLEB128(wasm::WASM_TYPE_ANYFUNC, getStream()); encodeULEB128(0, getStream()); // flags encodeULEB128(TableElems.size(), getStream()); // initial endSection(Section); } void WasmObjectWriter::writeMemorySection( const SmallVector &DataBytes) { // For now, always emit the memory section, since loads and stores are not // valid without it. In the future, we could perhaps be more clever and omit // it if there are no loads or stores. SectionBookkeeping Section; uint32_t NumPages = (DataBytes.size() + wasm::WasmPageSize - 1) / wasm::WasmPageSize; startSection(Section, wasm::WASM_SEC_MEMORY); encodeULEB128(1, getStream()); // number of memory spaces encodeULEB128(0, getStream()); // flags encodeULEB128(NumPages, getStream()); // initial endSection(Section); } void WasmObjectWriter::writeGlobalSection( const SmallVector &Globals) { if (Globals.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_GLOBAL); encodeULEB128(Globals.size(), getStream()); for (const WasmGlobal &Global : Globals) { writeValueType(Global.Type); write8(Global.IsMutable); if (Global.HasImport) { assert(Global.InitialValue == 0); write8(wasm::WASM_OPCODE_GET_GLOBAL); encodeULEB128(Global.ImportIndex, getStream()); } else { assert(Global.ImportIndex == 0); write8(wasm::WASM_OPCODE_I32_CONST); encodeSLEB128(Global.InitialValue, getStream()); // offset } write8(wasm::WASM_OPCODE_END); } endSection(Section); } void WasmObjectWriter::writeExportSection( const SmallVector &Exports) { if (Exports.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_EXPORT); encodeULEB128(Exports.size(), getStream()); for (const WasmExport &Export : Exports) { encodeULEB128(Export.FieldName.size(), getStream()); writeBytes(Export.FieldName); encodeSLEB128(Export.Kind, getStream()); encodeULEB128(Export.Index, getStream()); } endSection(Section); } void WasmObjectWriter::writeElemSection( const SmallVector &TableElems) { if (TableElems.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_ELEM); encodeULEB128(1, getStream()); // number of "segments" encodeULEB128(0, getStream()); // the table index // init expr for starting offset write8(wasm::WASM_OPCODE_I32_CONST); encodeSLEB128(0, getStream()); write8(wasm::WASM_OPCODE_END); encodeULEB128(TableElems.size(), getStream()); for (uint32_t Elem : TableElems) encodeULEB128(Elem, getStream()); endSection(Section); } void WasmObjectWriter::writeCodeSection( const MCAssembler &Asm, const MCAsmLayout &Layout, const SmallVector &Functions) { if (Functions.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CODE); encodeULEB128(Functions.size(), getStream()); for (const WasmFunction &Func : Functions) { MCSectionWasm &FuncSection = static_cast(Func.Sym->getSection()); if (Func.Sym->isVariable()) report_fatal_error("weak symbols not supported yet"); if (Func.Sym->getOffset() != 0) report_fatal_error("function sections must contain one function each"); if (!Func.Sym->getSize()) report_fatal_error("function symbols must have a size set with .size"); int64_t Size = 0; if (!Func.Sym->getSize()->evaluateAsAbsolute(Size, Layout)) report_fatal_error(".size expression must be evaluatable"); encodeULEB128(Size, getStream()); FuncSection.setSectionOffset(getStream().tell() - Section.ContentsOffset); Asm.writeSectionData(&FuncSection, Layout); } // Apply fixups. applyRelocations(CodeRelocations, Section.ContentsOffset); endSection(Section); } uint64_t WasmObjectWriter::writeDataSection( const SmallVector &DataBytes) { if (DataBytes.empty()) return 0; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_DATA); encodeULEB128(1, getStream()); // count encodeULEB128(0, getStream()); // memory index write8(wasm::WASM_OPCODE_I32_CONST); encodeSLEB128(0, getStream()); // offset write8(wasm::WASM_OPCODE_END); encodeULEB128(DataBytes.size(), getStream()); // size uint32_t HeaderSize = getStream().tell() - Section.ContentsOffset; writeBytes(DataBytes); // data // Apply fixups. applyRelocations(DataRelocations, Section.ContentsOffset + HeaderSize); endSection(Section); return HeaderSize; } void WasmObjectWriter::writeNameSection( const SmallVector &Functions, const SmallVector &Imports, unsigned NumFuncImports) { uint32_t TotalFunctions = NumFuncImports + Functions.size(); if (TotalFunctions == 0) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CUSTOM, "name"); SectionBookkeeping SubSection; startSection(SubSection, wasm::WASM_NAMES_FUNCTION); encodeULEB128(TotalFunctions, getStream()); uint32_t Index = 0; for (const WasmImport &Import : Imports) { if (Import.Kind == wasm::WASM_EXTERNAL_FUNCTION) { encodeULEB128(Index, getStream()); encodeULEB128(Import.FieldName.size(), getStream()); writeBytes(Import.FieldName); ++Index; } } for (const WasmFunction &Func : Functions) { encodeULEB128(Index, getStream()); encodeULEB128(Func.Sym->getName().size(), getStream()); writeBytes(Func.Sym->getName()); ++Index; } endSection(SubSection); endSection(Section); } void WasmObjectWriter::writeCodeRelocSection() { // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md // for descriptions of the reloc sections. if (CodeRelocations.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CUSTOM, "reloc.CODE"); encodeULEB128(wasm::WASM_SEC_CODE, getStream()); encodeULEB128(CodeRelocations.size(), getStream()); writeRelocations(CodeRelocations, 0); endSection(Section); } void WasmObjectWriter::writeDataRelocSection(uint64_t DataSectionHeaderSize) { // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md // for descriptions of the reloc sections. if (DataRelocations.empty()) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CUSTOM, "reloc.DATA"); encodeULEB128(wasm::WASM_SEC_DATA, getStream()); encodeULEB128(DataRelocations.size(), getStream()); writeRelocations(DataRelocations, DataSectionHeaderSize); endSection(Section); } void WasmObjectWriter::writeLinkingMetaDataSection( bool HasStackPointer, uint32_t StackPointerGlobal) { if (!HasStackPointer) return; SectionBookkeeping Section; startSection(Section, wasm::WASM_SEC_CUSTOM, "linking"); encodeULEB128(1, getStream()); // count encodeULEB128(wasm::WASM_STACK_POINTER, getStream()); // type encodeULEB128(StackPointerGlobal, getStream()); // id endSection(Section); } void WasmObjectWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { MCContext &Ctx = Asm.getContext(); wasm::ValType PtrType = is64Bit() ? wasm::ValType::I64 : wasm::ValType::I32; // Collect information from the available symbols. SmallVector FunctionTypes; SmallVector Functions; SmallVector TableElems; SmallVector Globals; SmallVector Imports; SmallVector Exports; SmallPtrSet IsAddressTaken; unsigned NumFuncImports = 0; unsigned NumGlobalImports = 0; SmallVector DataBytes; uint32_t StackPointerGlobal = 0; bool HasStackPointer = false; // Populate the IsAddressTaken set. for (WasmRelocationEntry RelEntry : CodeRelocations) { switch (RelEntry.Type) { case wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB: case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_SLEB: IsAddressTaken.insert(RelEntry.Symbol); break; default: break; } } for (WasmRelocationEntry RelEntry : DataRelocations) { switch (RelEntry.Type) { case wasm::R_WEBASSEMBLY_TABLE_INDEX_I32: case wasm::R_WEBASSEMBLY_GLOBAL_ADDR_I32: IsAddressTaken.insert(RelEntry.Symbol); break; default: break; } } // Populate the Imports set. for (const MCSymbol &S : Asm.symbols()) { const auto &WS = static_cast(S); int32_t Type; if (WS.isFunction()) { // Prepare the function's type, if we haven't seen it yet. WasmFunctionType F; F.Returns = WS.getReturns(); F.Params = WS.getParams(); auto Pair = FunctionTypeIndices.insert(std::make_pair(F, FunctionTypes.size())); if (Pair.second) FunctionTypes.push_back(F); Type = Pair.first->second; } else { Type = int32_t(PtrType); } // If the symbol is not defined in this translation unit, import it. if (!WS.isTemporary() && !WS.isDefined(/*SetUsed=*/false)) { WasmImport Import; Import.ModuleName = WS.getModuleName(); Import.FieldName = WS.getName(); if (WS.isFunction()) { Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; Import.Type = Type; SymbolIndices[&WS] = NumFuncImports; ++NumFuncImports; } else { Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; Import.Type = Type; SymbolIndices[&WS] = NumGlobalImports; ++NumGlobalImports; } Imports.push_back(Import); } } // In the special .global_variables section, we've encoded global // variables used by the function. Translate them into the Globals // list. MCSectionWasm *GlobalVars = Ctx.getWasmSection(".global_variables", 0, 0); if (!GlobalVars->getFragmentList().empty()) { if (GlobalVars->getFragmentList().size() != 1) report_fatal_error("only one .global_variables fragment supported"); const MCFragment &Frag = *GlobalVars->begin(); if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) report_fatal_error("only data supported in .global_variables"); const MCDataFragment &DataFrag = cast(Frag); if (!DataFrag.getFixups().empty()) report_fatal_error("fixups not supported in .global_variables"); const SmallVectorImpl &Contents = DataFrag.getContents(); for (const uint8_t *p = (const uint8_t *)Contents.data(), *end = (const uint8_t *)Contents.data() + Contents.size(); p != end; ) { WasmGlobal G; if (end - p < 3) report_fatal_error("truncated global variable encoding"); G.Type = wasm::ValType(int8_t(*p++)); G.IsMutable = bool(*p++); G.HasImport = bool(*p++); if (G.HasImport) { G.InitialValue = 0; WasmImport Import; Import.ModuleName = (const char *)p; const uint8_t *nul = (const uint8_t *)memchr(p, '\0', end - p); if (!nul) report_fatal_error("global module name must be nul-terminated"); p = nul + 1; nul = (const uint8_t *)memchr(p, '\0', end - p); if (!nul) report_fatal_error("global base name must be nul-terminated"); Import.FieldName = (const char *)p; p = nul + 1; Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; Import.Type = int32_t(G.Type); G.ImportIndex = NumGlobalImports; ++NumGlobalImports; Imports.push_back(Import); } else { unsigned n; G.InitialValue = decodeSLEB128(p, &n); G.ImportIndex = 0; if ((ptrdiff_t)n > end - p) report_fatal_error("global initial value must be valid SLEB128"); p += n; } Globals.push_back(G); } } // In the special .stack_pointer section, we've encoded the stack pointer // index. MCSectionWasm *StackPtr = Ctx.getWasmSection(".stack_pointer", 0, 0); if (!StackPtr->getFragmentList().empty()) { if (StackPtr->getFragmentList().size() != 1) report_fatal_error("only one .stack_pointer fragment supported"); const MCFragment &Frag = *StackPtr->begin(); if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) report_fatal_error("only data supported in .stack_pointer"); const MCDataFragment &DataFrag = cast(Frag); if (!DataFrag.getFixups().empty()) report_fatal_error("fixups not supported in .stack_pointer"); const SmallVectorImpl &Contents = DataFrag.getContents(); if (Contents.size() != 4) report_fatal_error("only one entry supported in .stack_pointer"); HasStackPointer = true; StackPointerGlobal = NumGlobalImports + *(const int32_t *)Contents.data(); } // Handle defined symbols. for (const MCSymbol &S : Asm.symbols()) { // Ignore unnamed temporary symbols, which aren't ever exported, imported, // or used in relocations. if (S.isTemporary() && S.getName().empty()) continue; const auto &WS = static_cast(S); unsigned Index; if (WS.isFunction()) { // Prepare the function's type, if we haven't seen it yet. WasmFunctionType F; F.Returns = WS.getReturns(); F.Params = WS.getParams(); auto Pair = FunctionTypeIndices.insert(std::make_pair(F, FunctionTypes.size())); if (Pair.second) FunctionTypes.push_back(F); int32_t Type = Pair.first->second; if (WS.isDefined(/*SetUsed=*/false)) { // A definition. Take the next available index. Index = NumFuncImports + Functions.size(); // Prepare the function. WasmFunction Func; Func.Type = Type; Func.Sym = &WS; SymbolIndices[&WS] = Index; Functions.push_back(Func); } else { // An import; the index was assigned above. Index = SymbolIndices.find(&WS)->second; } // If needed, prepare the function to be called indirectly. if (IsAddressTaken.count(&WS)) TableElems.push_back(Index); } else { if (WS.isTemporary() && !WS.getSize()) continue; if (WS.isDefined(false)) { if (WS.getOffset() != 0) report_fatal_error("data sections must contain one variable each: " + WS.getName()); if (!WS.getSize()) report_fatal_error("data symbols must have a size set with .size: " + WS.getName()); int64_t Size = 0; if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) report_fatal_error(".size expression must be evaluatable"); MCSectionWasm &DataSection = static_cast(WS.getSection()); if (uint64_t(Size) != Layout.getSectionFileSize(&DataSection)) report_fatal_error("data sections must contain at most one variable"); DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlignment())); DataSection.setSectionOffset(DataBytes.size()); for (MCSection::iterator I = DataSection.begin(), E = DataSection.end(); I != E; ++I) { const MCFragment &Frag = *I; if (Frag.hasInstructions()) report_fatal_error("only data supported in data sections"); if (const MCAlignFragment *Align = dyn_cast(&Frag)) { if (Align->getValueSize() != 1) report_fatal_error("only byte values supported for alignment"); // If nops are requested, use zeros, as this is the data section. uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); uint64_t Size = std::min(alignTo(DataBytes.size(), Align->getAlignment()), DataBytes.size() + Align->getMaxBytesToEmit()); DataBytes.resize(Size, Value); } else if (const MCFillFragment *Fill = dyn_cast(&Frag)) { DataBytes.insert(DataBytes.end(), Size, Fill->getValue()); } else { const MCDataFragment &DataFrag = cast(Frag); const SmallVectorImpl &Contents = DataFrag.getContents(); DataBytes.insert(DataBytes.end(), Contents.begin(), Contents.end()); } } // For each global, prepare a corresponding wasm global holding its // address. For externals these will also be named exports. Index = NumGlobalImports + Globals.size(); WasmGlobal Global; Global.Type = PtrType; Global.IsMutable = false; Global.HasImport = false; Global.InitialValue = DataSection.getSectionOffset(); Global.ImportIndex = 0; SymbolIndices[&WS] = Index; Globals.push_back(Global); } } // If the symbol is visible outside this translation unit, export it. if (WS.isExternal()) { assert(WS.isDefined(false)); WasmExport Export; Export.FieldName = WS.getName(); Export.Index = Index; if (WS.isFunction()) Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; else Export.Kind = wasm::WASM_EXTERNAL_GLOBAL; Exports.push_back(Export); } } // Add types for indirect function calls. for (const WasmRelocationEntry &Fixup : CodeRelocations) { if (Fixup.Type != wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB) continue; WasmFunctionType F; F.Returns = Fixup.Symbol->getReturns(); F.Params = Fixup.Symbol->getParams(); auto Pair = FunctionTypeIndices.insert(std::make_pair(F, FunctionTypes.size())); if (Pair.second) FunctionTypes.push_back(F); TypeIndices[Fixup.Symbol] = Pair.first->second; } // Write out the Wasm header. writeHeader(Asm); writeTypeSection(FunctionTypes); writeImportSection(Imports); writeFunctionSection(Functions); writeTableSection(TableElems); writeMemorySection(DataBytes); writeGlobalSection(Globals); writeExportSection(Exports); // TODO: Start Section writeElemSection(TableElems); writeCodeSection(Asm, Layout, Functions); uint64_t DataSectionHeaderSize = writeDataSection(DataBytes); writeNameSection(Functions, Imports, NumFuncImports); writeCodeRelocSection(); writeDataRelocSection(DataSectionHeaderSize); writeLinkingMetaDataSection(HasStackPointer, StackPointerGlobal); // TODO: Translate the .comment section to the output. // TODO: Translate debug sections to the output. } MCObjectWriter *llvm::createWasmObjectWriter(MCWasmObjectTargetWriter *MOTW, raw_pwrite_stream &OS) { return new WasmObjectWriter(MOTW, OS); }