//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements methods that make it really easy to deal with intrinsic // functions. // // All intrinsic function calls are instances of the call instruction, so these // are all subclasses of the CallInst class. Note that none of these classes // has state or virtual methods, which is an important part of this gross/neat // hack working. // // In some cases, arguments to intrinsics need to be generic and are defined as // type pointer to empty struct { }*. To access the real item of interest the // cast instruction needs to be stripped away. // //===----------------------------------------------------------------------===// #include "llvm/IR/IntrinsicInst.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/IR/Constants.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// /// DbgInfoIntrinsic - This is the common base class for debug info intrinsics /// Value *DbgInfoIntrinsic::getVariableLocation(bool AllowNullOp) const { Value *Op = getArgOperand(0); if (AllowNullOp && !Op) return nullptr; auto *MD = cast(Op)->getMetadata(); if (auto *V = dyn_cast(MD)) return V->getValue(); // When the value goes to null, it gets replaced by an empty MDNode. assert(!cast(MD)->getNumOperands() && "Expected an empty MDNode"); return nullptr; } int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef NameTable, StringRef Name) { assert(Name.startswith("llvm.")); // Do successive binary searches of the dotted name components. For // "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of // intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then // "llvm.gc.experimental.statepoint", and then we will stop as the range is // size 1. During the search, we can skip the prefix that we already know is // identical. By using strncmp we consider names with differing suffixes to // be part of the equal range. size_t CmpStart = 0; size_t CmpEnd = 4; // Skip the "llvm" component. const char *const *Low = NameTable.begin(); const char *const *High = NameTable.end(); const char *const *LastLow = Low; while (CmpEnd < Name.size() && High - Low > 0) { CmpStart = CmpEnd; CmpEnd = Name.find('.', CmpStart + 1); CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd; auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) { return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0; }; LastLow = Low; std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp); } if (High - Low > 0) LastLow = Low; if (LastLow == NameTable.end()) return -1; StringRef NameFound = *LastLow; if (Name == NameFound || (Name.startswith(NameFound) && Name[NameFound.size()] == '.')) return LastLow - NameTable.begin(); return -1; } Value *InstrProfIncrementInst::getStep() const { if (InstrProfIncrementInstStep::classof(this)) { return const_cast(getArgOperand(4)); } const Module *M = getModule(); LLVMContext &Context = M->getContext(); return ConstantInt::get(Type::getInt64Ty(Context), 1); } ConstrainedFPIntrinsic::RoundingMode ConstrainedFPIntrinsic::getRoundingMode() const { unsigned NumOperands = getNumArgOperands(); Metadata *MD = dyn_cast(getArgOperand(NumOperands - 2))->getMetadata(); if (!MD || !isa(MD)) return rmInvalid; StringRef RoundingArg = cast(MD)->getString(); // For dynamic rounding mode, we use round to nearest but we will set the // 'exact' SDNodeFlag so that the value will not be rounded. return StringSwitch(RoundingArg) .Case("round.dynamic", rmDynamic) .Case("round.tonearest", rmToNearest) .Case("round.downward", rmDownward) .Case("round.upward", rmUpward) .Case("round.towardzero", rmTowardZero) .Default(rmInvalid); } ConstrainedFPIntrinsic::ExceptionBehavior ConstrainedFPIntrinsic::getExceptionBehavior() const { unsigned NumOperands = getNumArgOperands(); Metadata *MD = dyn_cast(getArgOperand(NumOperands - 1))->getMetadata(); if (!MD || !isa(MD)) return ebInvalid; StringRef ExceptionArg = cast(MD)->getString(); return StringSwitch(ExceptionArg) .Case("fpexcept.ignore", ebIgnore) .Case("fpexcept.maytrap", ebMayTrap) .Case("fpexcept.strict", ebStrict) .Default(ebInvalid); } bool ConstrainedFPIntrinsic::isUnaryOp() const { switch (getIntrinsicID()) { default: return false; case Intrinsic::experimental_constrained_sqrt: case Intrinsic::experimental_constrained_sin: case Intrinsic::experimental_constrained_cos: case Intrinsic::experimental_constrained_exp: case Intrinsic::experimental_constrained_exp2: case Intrinsic::experimental_constrained_log: case Intrinsic::experimental_constrained_log10: case Intrinsic::experimental_constrained_log2: case Intrinsic::experimental_constrained_rint: case Intrinsic::experimental_constrained_nearbyint: return true; } } bool ConstrainedFPIntrinsic::isTernaryOp() const { switch (getIntrinsicID()) { default: return false; case Intrinsic::experimental_constrained_fma: return true; } }