//===- Dominators.cpp - Dominator Calculation -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators. Postdominators are available in libanalysis, but are not // included in libvmcore, because it's not needed. Forward dominators are // needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/IR/Dominators.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GenericDomTreeConstruction.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; bool llvm::VerifyDomInfo = false; static cl::opt VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, cl::desc("Verify dominator info (time consuming)")); #ifdef EXPENSIVE_CHECKS static constexpr bool ExpensiveChecksEnabled = true; #else static constexpr bool ExpensiveChecksEnabled = false; #endif bool BasicBlockEdge::isSingleEdge() const { const TerminatorInst *TI = Start->getTerminator(); unsigned NumEdgesToEnd = 0; for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { if (TI->getSuccessor(i) == End) ++NumEdgesToEnd; if (NumEdgesToEnd >= 2) return false; } assert(NumEdgesToEnd == 1); return true; } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// // // Provide public access to DominatorTree information. Implementation details // can be found in Dominators.h, GenericDomTree.h, and // GenericDomTreeConstruction.h. // //===----------------------------------------------------------------------===// template class llvm::DomTreeNodeBase; template class llvm::DominatorTreeBase; // DomTreeBase template class llvm::DominatorTreeBase; // PostDomTreeBase template struct llvm::DomTreeBuilder::Update; template void llvm::DomTreeBuilder::Calculate( DomTreeBuilder::BBDomTree &DT); template void llvm::DomTreeBuilder::Calculate( DomTreeBuilder::BBPostDomTree &DT); template void llvm::DomTreeBuilder::InsertEdge( DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); template void llvm::DomTreeBuilder::InsertEdge( DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); template void llvm::DomTreeBuilder::DeleteEdge( DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); template void llvm::DomTreeBuilder::DeleteEdge( DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); template void llvm::DomTreeBuilder::ApplyUpdates( DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates); template void llvm::DomTreeBuilder::ApplyUpdates( DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates); template bool llvm::DomTreeBuilder::Verify( const DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTree::VerificationLevel VL); template bool llvm::DomTreeBuilder::Verify( const DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTree::VerificationLevel VL); bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &) { // Check whether the analysis, all analyses on functions, or the function's // CFG have been preserved. auto PAC = PA.getChecker(); return !(PAC.preserved() || PAC.preservedSet>() || PAC.preservedSet()); } // dominates - Return true if Def dominates a use in User. This performs // the special checks necessary if Def and User are in the same basic block. // Note that Def doesn't dominate a use in Def itself! bool DominatorTree::dominates(const Instruction *Def, const Instruction *User) const { const BasicBlock *UseBB = User->getParent(); const BasicBlock *DefBB = Def->getParent(); // Any unreachable use is dominated, even if Def == User. if (!isReachableFromEntry(UseBB)) return true; // Unreachable definitions don't dominate anything. if (!isReachableFromEntry(DefBB)) return false; // An instruction doesn't dominate a use in itself. if (Def == User) return false; // The value defined by an invoke dominates an instruction only if it // dominates every instruction in UseBB. // A PHI is dominated only if the instruction dominates every possible use in // the UseBB. if (isa(Def) || isa(User)) return dominates(Def, UseBB); if (DefBB != UseBB) return dominates(DefBB, UseBB); // Loop through the basic block until we find Def or User. BasicBlock::const_iterator I = DefBB->begin(); for (; &*I != Def && &*I != User; ++I) /*empty*/; return &*I == Def; } // true if Def would dominate a use in any instruction in UseBB. // note that dominates(Def, Def->getParent()) is false. bool DominatorTree::dominates(const Instruction *Def, const BasicBlock *UseBB) const { const BasicBlock *DefBB = Def->getParent(); // Any unreachable use is dominated, even if DefBB == UseBB. if (!isReachableFromEntry(UseBB)) return true; // Unreachable definitions don't dominate anything. if (!isReachableFromEntry(DefBB)) return false; if (DefBB == UseBB) return false; // Invoke results are only usable in the normal destination, not in the // exceptional destination. if (const auto *II = dyn_cast(Def)) { BasicBlock *NormalDest = II->getNormalDest(); BasicBlockEdge E(DefBB, NormalDest); return dominates(E, UseBB); } return dominates(DefBB, UseBB); } bool DominatorTree::dominates(const BasicBlockEdge &BBE, const BasicBlock *UseBB) const { // If the BB the edge ends in doesn't dominate the use BB, then the // edge also doesn't. const BasicBlock *Start = BBE.getStart(); const BasicBlock *End = BBE.getEnd(); if (!dominates(End, UseBB)) return false; // Simple case: if the end BB has a single predecessor, the fact that it // dominates the use block implies that the edge also does. if (End->getSinglePredecessor()) return true; // The normal edge from the invoke is critical. Conceptually, what we would // like to do is split it and check if the new block dominates the use. // With X being the new block, the graph would look like: // // DefBB // /\ . . // / \ . . // / \ . . // / \ | | // A X B C // | \ | / // . \|/ // . NormalDest // . // // Given the definition of dominance, NormalDest is dominated by X iff X // dominates all of NormalDest's predecessors (X, B, C in the example). X // trivially dominates itself, so we only have to find if it dominates the // other predecessors. Since the only way out of X is via NormalDest, X can // only properly dominate a node if NormalDest dominates that node too. int IsDuplicateEdge = 0; for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); PI != E; ++PI) { const BasicBlock *BB = *PI; if (BB == Start) { // If there are multiple edges between Start and End, by definition they // can't dominate anything. if (IsDuplicateEdge++) return false; continue; } if (!dominates(End, BB)) return false; } return true; } bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { Instruction *UserInst = cast(U.getUser()); // A PHI in the end of the edge is dominated by it. PHINode *PN = dyn_cast(UserInst); if (PN && PN->getParent() == BBE.getEnd() && PN->getIncomingBlock(U) == BBE.getStart()) return true; // Otherwise use the edge-dominates-block query, which // handles the crazy critical edge cases properly. const BasicBlock *UseBB; if (PN) UseBB = PN->getIncomingBlock(U); else UseBB = UserInst->getParent(); return dominates(BBE, UseBB); } bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { Instruction *UserInst = cast(U.getUser()); const BasicBlock *DefBB = Def->getParent(); // Determine the block in which the use happens. PHI nodes use // their operands on edges; simulate this by thinking of the use // happening at the end of the predecessor block. const BasicBlock *UseBB; if (PHINode *PN = dyn_cast(UserInst)) UseBB = PN->getIncomingBlock(U); else UseBB = UserInst->getParent(); // Any unreachable use is dominated, even if Def == User. if (!isReachableFromEntry(UseBB)) return true; // Unreachable definitions don't dominate anything. if (!isReachableFromEntry(DefBB)) return false; // Invoke instructions define their return values on the edges to their normal // successors, so we have to handle them specially. // Among other things, this means they don't dominate anything in // their own block, except possibly a phi, so we don't need to // walk the block in any case. if (const InvokeInst *II = dyn_cast(Def)) { BasicBlock *NormalDest = II->getNormalDest(); BasicBlockEdge E(DefBB, NormalDest); return dominates(E, U); } // If the def and use are in different blocks, do a simple CFG dominator // tree query. if (DefBB != UseBB) return dominates(DefBB, UseBB); // Ok, def and use are in the same block. If the def is an invoke, it // doesn't dominate anything in the block. If it's a PHI, it dominates // everything in the block. if (isa(UserInst)) return true; // Otherwise, just loop through the basic block until we find Def or User. BasicBlock::const_iterator I = DefBB->begin(); for (; &*I != Def && &*I != UserInst; ++I) /*empty*/; return &*I != UserInst; } bool DominatorTree::isReachableFromEntry(const Use &U) const { Instruction *I = dyn_cast(U.getUser()); // ConstantExprs aren't really reachable from the entry block, but they // don't need to be treated like unreachable code either. if (!I) return true; // PHI nodes use their operands on their incoming edges. if (PHINode *PN = dyn_cast(I)) return isReachableFromEntry(PN->getIncomingBlock(U)); // Everything else uses their operands in their own block. return isReachableFromEntry(I->getParent()); } //===----------------------------------------------------------------------===// // DominatorTreeAnalysis and related pass implementations //===----------------------------------------------------------------------===// // // This implements the DominatorTreeAnalysis which is used with the new pass // manager. It also implements some methods from utility passes. // //===----------------------------------------------------------------------===// DominatorTree DominatorTreeAnalysis::run(Function &F, FunctionAnalysisManager &) { DominatorTree DT; DT.recalculate(F); return DT; } AnalysisKey DominatorTreeAnalysis::Key; DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses DominatorTreePrinterPass::run(Function &F, FunctionAnalysisManager &AM) { OS << "DominatorTree for function: " << F.getName() << "\n"; AM.getResult(F).print(OS); return PreservedAnalyses::all(); } PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); assert(DT.verify()); (void)DT; return PreservedAnalyses::all(); } //===----------------------------------------------------------------------===// // DominatorTreeWrapperPass Implementation //===----------------------------------------------------------------------===// // // The implementation details of the wrapper pass that holds a DominatorTree // suitable for use with the legacy pass manager. // //===----------------------------------------------------------------------===// char DominatorTreeWrapperPass::ID = 0; INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", "Dominator Tree Construction", true, true) bool DominatorTreeWrapperPass::runOnFunction(Function &F) { DT.recalculate(F); return false; } void DominatorTreeWrapperPass::verifyAnalysis() const { if (VerifyDomInfo) assert(DT.verify(DominatorTree::VerificationLevel::Full)); else if (ExpensiveChecksEnabled) assert(DT.verify(DominatorTree::VerificationLevel::Basic)); } void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { DT.print(OS); } //===----------------------------------------------------------------------===// // DeferredDominance Implementation //===----------------------------------------------------------------------===// // // The implementation details of the DeferredDominance class which allows // one to queue updates to a DominatorTree. // //===----------------------------------------------------------------------===// /// Queues multiple updates and discards duplicates. void DeferredDominance::applyUpdates( ArrayRef Updates) { SmallVector Seen; for (auto U : Updates) // Avoid duplicates to applyUpdate() to save on analysis. if (std::none_of(Seen.begin(), Seen.end(), [U](DominatorTree::UpdateType S) { return S == U; })) { Seen.push_back(U); applyUpdate(U.getKind(), U.getFrom(), U.getTo()); } } /// Helper method for a single edge insertion. It's almost always better /// to batch updates and call applyUpdates to quickly remove duplicate edges. /// This is best used when there is only a single insertion needed to update /// Dominators. void DeferredDominance::insertEdge(BasicBlock *From, BasicBlock *To) { applyUpdate(DominatorTree::Insert, From, To); } /// Helper method for a single edge deletion. It's almost always better /// to batch updates and call applyUpdates to quickly remove duplicate edges. /// This is best used when there is only a single deletion needed to update /// Dominators. void DeferredDominance::deleteEdge(BasicBlock *From, BasicBlock *To) { applyUpdate(DominatorTree::Delete, From, To); } /// Delays the deletion of a basic block until a flush() event. void DeferredDominance::deleteBB(BasicBlock *DelBB) { assert(DelBB && "Invalid push_back of nullptr DelBB."); assert(pred_empty(DelBB) && "DelBB has one or more predecessors."); // DelBB is unreachable and all its instructions are dead. while (!DelBB->empty()) { Instruction &I = DelBB->back(); // Replace used instructions with an arbitrary value (undef). if (!I.use_empty()) I.replaceAllUsesWith(llvm::UndefValue::get(I.getType())); DelBB->getInstList().pop_back(); } // Make sure DelBB has a valid terminator instruction. As long as DelBB is a // Child of Function F it must contain valid IR. new UnreachableInst(DelBB->getContext(), DelBB); DeletedBBs.insert(DelBB); } /// Returns true if DelBB is awaiting deletion at a flush() event. bool DeferredDominance::pendingDeletedBB(BasicBlock *DelBB) { if (DeletedBBs.empty()) return false; return DeletedBBs.count(DelBB) != 0; } /// Returns true if pending DT updates are queued for a flush() event. bool DeferredDominance::pending() { return !PendUpdates.empty(); } /// Flushes all pending updates and block deletions. Returns a /// correct DominatorTree reference to be used by the caller for analysis. DominatorTree &DeferredDominance::flush() { // Updates to DT must happen before blocks are deleted below. Otherwise the // DT traversal will encounter badref blocks and assert. if (!PendUpdates.empty()) { DT.applyUpdates(PendUpdates); PendUpdates.clear(); } flushDelBB(); return DT; } /// Drops all internal state and forces a (slow) recalculation of the /// DominatorTree based on the current state of the LLVM IR in F. This should /// only be used in corner cases such as the Entry block of F being deleted. void DeferredDominance::recalculate(Function &F) { // flushDelBB must be flushed before the recalculation. The state of the IR // must be consistent before the DT traversal algorithm determines the // actual DT. if (flushDelBB() || !PendUpdates.empty()) { DT.recalculate(F); PendUpdates.clear(); } } /// Debug method to help view the state of pending updates. #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void DeferredDominance::dump() const { raw_ostream &OS = llvm::dbgs(); OS << "PendUpdates:\n"; int I = 0; for (auto U : PendUpdates) { OS << " " << I << " : "; ++I; if (U.getKind() == DominatorTree::Insert) OS << "Insert, "; else OS << "Delete, "; BasicBlock *From = U.getFrom(); if (From) { auto S = From->getName(); if (!From->hasName()) S = "(no name)"; OS << S << "(" << From << "), "; } else { OS << "(badref), "; } BasicBlock *To = U.getTo(); if (To) { auto S = To->getName(); if (!To->hasName()) S = "(no_name)"; OS << S << "(" << To << ")\n"; } else { OS << "(badref)\n"; } } OS << "DeletedBBs:\n"; I = 0; for (auto BB : DeletedBBs) { OS << " " << I << " : "; ++I; if (BB->hasName()) OS << BB->getName() << "("; else OS << "(no_name)("; OS << BB << ")\n"; } } #endif /// Apply an update (Kind, From, To) to the internal queued updates. The /// update is only added when determined to be necessary. Checks for /// self-domination, unnecessary updates, duplicate requests, and balanced /// pairs of requests are all performed. Returns true if the update is /// queued and false if it is discarded. bool DeferredDominance::applyUpdate(DominatorTree::UpdateKind Kind, BasicBlock *From, BasicBlock *To) { if (From == To) return false; // Cannot dominate self; discard update. // Discard updates by inspecting the current state of successors of From. // Since applyUpdate() must be called *after* the Terminator of From is // altered we can determine if the update is unnecessary. bool HasEdge = std::any_of(succ_begin(From), succ_end(From), [To](BasicBlock *B) { return B == To; }); if (Kind == DominatorTree::Insert && !HasEdge) return false; // Unnecessary Insert: edge does not exist in IR. if (Kind == DominatorTree::Delete && HasEdge) return false; // Unnecessary Delete: edge still exists in IR. // Analyze pending updates to determine if the update is unnecessary. DominatorTree::UpdateType Update = {Kind, From, To}; DominatorTree::UpdateType Invert = {Kind != DominatorTree::Insert ? DominatorTree::Insert : DominatorTree::Delete, From, To}; for (auto I = PendUpdates.begin(), E = PendUpdates.end(); I != E; ++I) { if (Update == *I) return false; // Discard duplicate updates. if (Invert == *I) { // Update and Invert are both valid (equivalent to a no-op). Remove // Invert from PendUpdates and discard the Update. PendUpdates.erase(I); return false; } } PendUpdates.push_back(Update); // Save the valid update. return true; } /// Performs all pending basic block deletions. We have to defer the deletion /// of these blocks until after the DominatorTree updates are applied. The /// internal workings of the DominatorTree code expect every update's From /// and To blocks to exist and to be a member of the same Function. bool DeferredDominance::flushDelBB() { if (DeletedBBs.empty()) return false; for (auto *BB : DeletedBBs) BB->eraseFromParent(); DeletedBBs.clear(); return true; }