//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the debug info Metadata classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/DebugInfoMetadata.h" #include "LLVMContextImpl.h" #include "MetadataImpl.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" using namespace llvm; DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line, unsigned Column, ArrayRef MDs) : MDNode(C, DILocationKind, Storage, MDs) { assert((MDs.size() == 1 || MDs.size() == 2) && "Expected a scope and optional inlined-at"); // Set line and column. assert(Column < (1u << 16) && "Expected 16-bit column"); SubclassData32 = Line; SubclassData16 = Column; } static void adjustColumn(unsigned &Column) { // Set to unknown on overflow. We only have 16 bits to play with here. if (Column >= (1u << 16)) Column = 0; } DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line, unsigned Column, Metadata *Scope, Metadata *InlinedAt, StorageType Storage, bool ShouldCreate) { // Fixup column. adjustColumn(Column); if (Storage == Uniqued) { if (auto *N = getUniqued(Context.pImpl->DILocations, DILocationInfo::KeyTy(Line, Column, Scope, InlinedAt))) return N; if (!ShouldCreate) return nullptr; } else { assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); } SmallVector Ops; Ops.push_back(Scope); if (InlinedAt) Ops.push_back(InlinedAt); return storeImpl(new (Ops.size()) DILocation(Context, Storage, Line, Column, Ops), Storage, Context.pImpl->DILocations); } const DILocation *DILocation::getMergedLocation(const DILocation *LocA, const DILocation *LocB, bool GenerateLocation) { if (!LocA || !LocB) return nullptr; if (LocA == LocB || !LocA->canDiscriminate(*LocB)) return LocA; if (!GenerateLocation) return nullptr; SmallPtrSet InlinedLocationsA; for (DILocation *L = LocA->getInlinedAt(); L; L = L->getInlinedAt()) InlinedLocationsA.insert(L); const DILocation *Result = LocB; for (DILocation *L = LocB->getInlinedAt(); L; L = L->getInlinedAt()) { Result = L; if (InlinedLocationsA.count(L)) break; } return DILocation::get(Result->getContext(), 0, 0, Result->getScope(), Result->getInlinedAt()); } DINode::DIFlags DINode::getFlag(StringRef Flag) { return StringSwitch(Flag) #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME) #include "llvm/IR/DebugInfoFlags.def" .Default(DINode::FlagZero); } StringRef DINode::getFlagString(DIFlags Flag) { switch (Flag) { #define HANDLE_DI_FLAG(ID, NAME) \ case Flag##NAME: \ return "DIFlag" #NAME; #include "llvm/IR/DebugInfoFlags.def" } return ""; } DINode::DIFlags DINode::splitFlags(DIFlags Flags, SmallVectorImpl &SplitFlags) { // Flags that are packed together need to be specially handled, so // that, for example, we emit "DIFlagPublic" and not // "DIFlagPrivate | DIFlagProtected". if (DIFlags A = Flags & FlagAccessibility) { if (A == FlagPrivate) SplitFlags.push_back(FlagPrivate); else if (A == FlagProtected) SplitFlags.push_back(FlagProtected); else SplitFlags.push_back(FlagPublic); Flags &= ~A; } if (DIFlags R = Flags & FlagPtrToMemberRep) { if (R == FlagSingleInheritance) SplitFlags.push_back(FlagSingleInheritance); else if (R == FlagMultipleInheritance) SplitFlags.push_back(FlagMultipleInheritance); else SplitFlags.push_back(FlagVirtualInheritance); Flags &= ~R; } if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) { Flags &= ~FlagIndirectVirtualBase; SplitFlags.push_back(FlagIndirectVirtualBase); } #define HANDLE_DI_FLAG(ID, NAME) \ if (DIFlags Bit = Flags & Flag##NAME) { \ SplitFlags.push_back(Bit); \ Flags &= ~Bit; \ } #include "llvm/IR/DebugInfoFlags.def" return Flags; } DIScopeRef DIScope::getScope() const { if (auto *T = dyn_cast(this)) return T->getScope(); if (auto *SP = dyn_cast(this)) return SP->getScope(); if (auto *LB = dyn_cast(this)) return LB->getScope(); if (auto *NS = dyn_cast(this)) return NS->getScope(); if (auto *M = dyn_cast(this)) return M->getScope(); assert((isa(this) || isa(this)) && "Unhandled type of scope."); return nullptr; } StringRef DIScope::getName() const { if (auto *T = dyn_cast(this)) return T->getName(); if (auto *SP = dyn_cast(this)) return SP->getName(); if (auto *NS = dyn_cast(this)) return NS->getName(); if (auto *M = dyn_cast(this)) return M->getName(); assert((isa(this) || isa(this) || isa(this)) && "Unhandled type of scope."); return ""; } #ifndef NDEBUG static bool isCanonical(const MDString *S) { return !S || !S->getString().empty(); } #endif GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag, MDString *Header, ArrayRef DwarfOps, StorageType Storage, bool ShouldCreate) { unsigned Hash = 0; if (Storage == Uniqued) { GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps); if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key)) return N; if (!ShouldCreate) return nullptr; Hash = Key.getHash(); } else { assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); } // Use a nullptr for empty headers. assert(isCanonical(Header) && "Expected canonical MDString"); Metadata *PreOps[] = {Header}; return storeImpl(new (DwarfOps.size() + 1) GenericDINode( Context, Storage, Hash, Tag, PreOps, DwarfOps), Storage, Context.pImpl->GenericDINodes); } void GenericDINode::recalculateHash() { setHash(GenericDINodeInfo::KeyTy::calculateHash(this)); } #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__ #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \ do { \ if (Storage == Uniqued) { \ if (auto *N = getUniqued(Context.pImpl->CLASS##s, \ CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \ return N; \ if (!ShouldCreate) \ return nullptr; \ } else { \ assert(ShouldCreate && \ "Expected non-uniqued nodes to always be created"); \ } \ } while (false) #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \ return storeImpl(new (array_lengthof(OPS)) \ CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ Storage, Context.pImpl->CLASS##s) #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \ return storeImpl(new (0u) CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \ Storage, Context.pImpl->CLASS##s) #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \ return storeImpl(new (array_lengthof(OPS)) CLASS(Context, Storage, OPS), \ Storage, Context.pImpl->CLASS##s) #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \ return storeImpl(new (NUM_OPS) \ CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ Storage, Context.pImpl->CLASS##s) DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo, StorageType Storage, bool ShouldCreate) { auto *CountNode = ConstantAsMetadata::get( ConstantInt::getSigned(Type::getInt64Ty(Context), Count)); return getImpl(Context, CountNode, Lo, Storage, ShouldCreate); } DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, int64_t Lo, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, Lo)); Metadata *Ops[] = { CountNode }; DEFINE_GETIMPL_STORE(DISubrange, (CountNode, Lo), Ops); } DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, int64_t Value, bool IsUnsigned, MDString *Name, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name)); Metadata *Ops[] = {Name}; DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops); } DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIBasicType, (Tag, Name, SizeInBits, AlignInBits, Encoding)); Metadata *Ops[] = {nullptr, nullptr, Name}; DEFINE_GETIMPL_STORE(DIBasicType, (Tag, SizeInBits, AlignInBits, Encoding), Ops); } Optional DIBasicType::getSignedness() const { switch (getEncoding()) { case dwarf::DW_ATE_signed: case dwarf::DW_ATE_signed_char: return Signedness::Signed; case dwarf::DW_ATE_unsigned: case dwarf::DW_ATE_unsigned_char: return Signedness::Unsigned; default: return None; } } DIDerivedType *DIDerivedType::getImpl( LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, Optional DWARFAddressSpace, DIFlags Flags, Metadata *ExtraData, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIDerivedType, (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, DWARFAddressSpace, Flags, ExtraData)); Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData}; DEFINE_GETIMPL_STORE( DIDerivedType, (Tag, Line, SizeInBits, AlignInBits, OffsetInBits, DWARFAddressSpace, Flags), Ops); } DICompositeType *DICompositeType::getImpl( LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); // Keep this in sync with buildODRType. DEFINE_GETIMPL_LOOKUP( DICompositeType, (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, Identifier, Discriminator)); Metadata *Ops[] = {File, Scope, Name, BaseType, Elements, VTableHolder, TemplateParams, Identifier, Discriminator}; DEFINE_GETIMPL_STORE(DICompositeType, (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags), Ops); } DICompositeType *DICompositeType::buildODRType( LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator) { assert(!Identifier.getString().empty() && "Expected valid identifier"); if (!Context.isODRUniquingDebugTypes()) return nullptr; auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; if (!CT) return CT = DICompositeType::getDistinct( Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, &Identifier, Discriminator); // Only mutate CT if it's a forward declaration and the new operands aren't. assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?"); if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl)) return CT; // Mutate CT in place. Keep this in sync with getImpl. CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags); Metadata *Ops[] = {File, Scope, Name, BaseType, Elements, VTableHolder, TemplateParams, &Identifier, Discriminator}; assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() && "Mismatched number of operands"); for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I) if (Ops[I] != CT->getOperand(I)) CT->setOperand(I, Ops[I]); return CT; } DICompositeType *DICompositeType::getODRType( LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator) { assert(!Identifier.getString().empty() && "Expected valid identifier"); if (!Context.isODRUniquingDebugTypes()) return nullptr; auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; if (!CT) CT = DICompositeType::getDistinct( Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, &Identifier, Discriminator); return CT; } DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context, MDString &Identifier) { assert(!Identifier.getString().empty() && "Expected valid identifier"); if (!Context.isODRUniquingDebugTypes()) return nullptr; return Context.pImpl->DITypeMap->lookup(&Identifier); } DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags, uint8_t CC, Metadata *TypeArray, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray)); Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray}; DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops); } // FIXME: Implement this string-enum correspondence with a .def file and macros, // so that the association is explicit rather than implied. static const char *ChecksumKindName[DIFile::CSK_Last] = { "CSK_MD5", "CSK_SHA1" }; StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) { assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind"); // The first space was originally the CSK_None variant, which is now // obsolete, but the space is still reserved in ChecksumKind, so we account // for it here. return ChecksumKindName[CSKind - 1]; } Optional DIFile::getChecksumKind(StringRef CSKindStr) { return StringSwitch>(CSKindStr) .Case("CSK_MD5", DIFile::CSK_MD5) .Case("CSK_SHA1", DIFile::CSK_SHA1) .Default(None); } DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename, MDString *Directory, Optional> CS, Optional Source, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Filename) && "Expected canonical MDString"); assert(isCanonical(Directory) && "Expected canonical MDString"); assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString"); assert((!Source || isCanonical(*Source)) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source)); Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source.getValueOr(nullptr)}; DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops); } DICompileUnit *DICompileUnit::getImpl( LLVMContext &Context, unsigned SourceLanguage, Metadata *File, MDString *Producer, bool IsOptimized, MDString *Flags, unsigned RuntimeVersion, MDString *SplitDebugFilename, unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, bool GnuPubnames, StorageType Storage, bool ShouldCreate) { assert(Storage != Uniqued && "Cannot unique DICompileUnit"); assert(isCanonical(Producer) && "Expected canonical MDString"); assert(isCanonical(Flags) && "Expected canonical MDString"); assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString"); Metadata *Ops[] = { File, Producer, Flags, SplitDebugFilename, EnumTypes, RetainedTypes, GlobalVariables, ImportedEntities, Macros}; return storeImpl(new (array_lengthof(Ops)) DICompileUnit( Context, Storage, SourceLanguage, IsOptimized, RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining, DebugInfoForProfiling, GnuPubnames, Ops), Storage); } Optional DICompileUnit::getEmissionKind(StringRef Str) { return StringSwitch>(Str) .Case("NoDebug", NoDebug) .Case("FullDebug", FullDebug) .Case("LineTablesOnly", LineTablesOnly) .Default(None); } const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) { switch (EK) { case NoDebug: return "NoDebug"; case FullDebug: return "FullDebug"; case LineTablesOnly: return "LineTablesOnly"; } return nullptr; } DISubprogram *DILocalScope::getSubprogram() const { if (auto *Block = dyn_cast(this)) return Block->getScope()->getSubprogram(); return const_cast(cast(this)); } DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const { if (auto *File = dyn_cast(this)) return File->getScope()->getNonLexicalBlockFileScope(); return const_cast(this); } DISubprogram *DISubprogram::getImpl( LLVMContext &Context, Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, unsigned ScopeLine, Metadata *ContainingType, unsigned Virtuality, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, bool IsOptimized, Metadata *Unit, Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, Metadata *ThrownTypes, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); assert(isCanonical(LinkageName) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP( DISubprogram, (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, ScopeLine, ContainingType, Virtuality, VirtualIndex, ThisAdjustment, Flags, IsOptimized, Unit, TemplateParams, Declaration, RetainedNodes, ThrownTypes)); SmallVector Ops = { File, Scope, Name, LinkageName, Type, Unit, Declaration, RetainedNodes, ContainingType, TemplateParams, ThrownTypes}; if (!ThrownTypes) { Ops.pop_back(); if (!TemplateParams) { Ops.pop_back(); if (!ContainingType) Ops.pop_back(); } } DEFINE_GETIMPL_STORE_N(DISubprogram, (Line, ScopeLine, Virtuality, VirtualIndex, ThisAdjustment, Flags, IsLocalToUnit, IsDefinition, IsOptimized), Ops, Ops.size()); } bool DISubprogram::describes(const Function *F) const { assert(F && "Invalid function"); if (F->getSubprogram() == this) return true; StringRef Name = getLinkageName(); if (Name.empty()) Name = getName(); return F->getName() == Name; } DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope, Metadata *File, unsigned Line, unsigned Column, StorageType Storage, bool ShouldCreate) { // Fixup column. adjustColumn(Column); assert(Scope && "Expected scope"); DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column)); Metadata *Ops[] = {File, Scope}; DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops); } DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context, Metadata *Scope, Metadata *File, unsigned Discriminator, StorageType Storage, bool ShouldCreate) { assert(Scope && "Expected scope"); DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator)); Metadata *Ops[] = {File, Scope}; DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops); } DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, bool ExportSymbols, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols)); // The nullptr is for DIScope's File operand. This should be refactored. Metadata *Ops[] = {nullptr, Scope, Name}; DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops); } DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, MDString *ConfigurationMacros, MDString *IncludePath, MDString *ISysRoot, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP( DIModule, (Scope, Name, ConfigurationMacros, IncludePath, ISysRoot)); Metadata *Ops[] = {Scope, Name, ConfigurationMacros, IncludePath, ISysRoot}; DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIModule, Ops); } DITemplateTypeParameter *DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name, Metadata *Type, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type)); Metadata *Ops[] = {Name, Type}; DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DITemplateTypeParameter, Ops); } DITemplateValueParameter *DITemplateValueParameter::getImpl( LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type, Metadata *Value, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter, (Tag, Name, Type, Value)); Metadata *Ops[] = {Name, Type, Value}; DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag), Ops); } DIGlobalVariable * DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, Metadata *StaticDataMemberDeclaration, uint32_t AlignInBits, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); assert(isCanonical(LinkageName) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIGlobalVariable, (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, StaticDataMemberDeclaration, AlignInBits)); Metadata *Ops[] = { Scope, Name, File, Type, Name, LinkageName, StaticDataMemberDeclaration}; DEFINE_GETIMPL_STORE(DIGlobalVariable, (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops); } DILocalVariable *DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, Metadata *Type, unsigned Arg, DIFlags Flags, uint32_t AlignInBits, StorageType Storage, bool ShouldCreate) { // 64K ought to be enough for any frontend. assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits"); assert(Scope && "Expected scope"); assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg, Flags, AlignInBits)); Metadata *Ops[] = {Scope, Name, File, Type}; DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops); } Optional DIVariable::getSizeInBits() const { // This is used by the Verifier so be mindful of broken types. const Metadata *RawType = getRawType(); while (RawType) { // Try to get the size directly. if (auto *T = dyn_cast(RawType)) if (uint64_t Size = T->getSizeInBits()) return Size; if (auto *DT = dyn_cast(RawType)) { // Look at the base type. RawType = DT->getRawBaseType(); continue; } // Missing type or size. break; } // Fail gracefully. return None; } DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, StorageType Storage, bool ShouldCreate) { assert(Scope && "Expected scope"); assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line)); Metadata *Ops[] = {Scope, Name, File}; DEFINE_GETIMPL_STORE(DILabel, (Line), Ops); } DIExpression *DIExpression::getImpl(LLVMContext &Context, ArrayRef Elements, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements)); DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements)); } unsigned DIExpression::ExprOperand::getSize() const { switch (getOp()) { case dwarf::DW_OP_LLVM_fragment: return 3; case dwarf::DW_OP_constu: case dwarf::DW_OP_plus_uconst: return 2; default: return 1; } } bool DIExpression::isValid() const { for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) { // Check that there's space for the operand. if (I->get() + I->getSize() > E->get()) return false; // Check that the operand is valid. switch (I->getOp()) { default: return false; case dwarf::DW_OP_LLVM_fragment: // A fragment operator must appear at the end. return I->get() + I->getSize() == E->get(); case dwarf::DW_OP_stack_value: { // Must be the last one or followed by a DW_OP_LLVM_fragment. if (I->get() + I->getSize() == E->get()) break; auto J = I; if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment) return false; break; } case dwarf::DW_OP_swap: { // Must be more than one implicit element on the stack. // FIXME: A better way to implement this would be to add a local variable // that keeps track of the stack depth and introduce something like a // DW_LLVM_OP_implicit_location as a placeholder for the location this // DIExpression is attached to, or else pass the number of implicit stack // elements into isValid. if (getNumElements() == 1) return false; break; } case dwarf::DW_OP_constu: case dwarf::DW_OP_plus_uconst: case dwarf::DW_OP_plus: case dwarf::DW_OP_minus: case dwarf::DW_OP_mul: case dwarf::DW_OP_div: case dwarf::DW_OP_mod: case dwarf::DW_OP_or: case dwarf::DW_OP_and: case dwarf::DW_OP_xor: case dwarf::DW_OP_shl: case dwarf::DW_OP_shr: case dwarf::DW_OP_shra: case dwarf::DW_OP_deref: case dwarf::DW_OP_xderef: case dwarf::DW_OP_lit0: case dwarf::DW_OP_not: case dwarf::DW_OP_dup: break; } } return true; } Optional DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) { for (auto I = Start; I != End; ++I) if (I->getOp() == dwarf::DW_OP_LLVM_fragment) { DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)}; return Info; } return None; } void DIExpression::appendOffset(SmallVectorImpl &Ops, int64_t Offset) { if (Offset > 0) { Ops.push_back(dwarf::DW_OP_plus_uconst); Ops.push_back(Offset); } else if (Offset < 0) { Ops.push_back(dwarf::DW_OP_constu); Ops.push_back(-Offset); Ops.push_back(dwarf::DW_OP_minus); } } bool DIExpression::extractIfOffset(int64_t &Offset) const { if (getNumElements() == 0) { Offset = 0; return true; } if (getNumElements() == 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { Offset = Elements[1]; return true; } if (getNumElements() == 3 && Elements[0] == dwarf::DW_OP_constu) { if (Elements[2] == dwarf::DW_OP_plus) { Offset = Elements[1]; return true; } if (Elements[2] == dwarf::DW_OP_minus) { Offset = -Elements[1]; return true; } } return false; } DIExpression *DIExpression::prepend(const DIExpression *Expr, bool DerefBefore, int64_t Offset, bool DerefAfter, bool StackValue) { SmallVector Ops; if (DerefBefore) Ops.push_back(dwarf::DW_OP_deref); appendOffset(Ops, Offset); if (DerefAfter) Ops.push_back(dwarf::DW_OP_deref); return prependOpcodes(Expr, Ops, StackValue); } DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr, SmallVectorImpl &Ops, bool StackValue) { assert(Expr && "Can't prepend ops to this expression"); // If there are no ops to prepend, do not even add the DW_OP_stack_value. if (Ops.empty()) StackValue = false; for (auto Op : Expr->expr_ops()) { // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. if (StackValue) { if (Op.getOp() == dwarf::DW_OP_stack_value) StackValue = false; else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { Ops.push_back(dwarf::DW_OP_stack_value); StackValue = false; } } Op.appendToVector(Ops); } if (StackValue) Ops.push_back(dwarf::DW_OP_stack_value); return DIExpression::get(Expr->getContext(), Ops); } DIExpression *DIExpression::append(const DIExpression *Expr, ArrayRef Ops) { assert(Expr && !Ops.empty() && "Can't append ops to this expression"); // Copy Expr's current op list. SmallVector NewOps; for (auto Op : Expr->expr_ops()) { // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}. if (Op.getOp() == dwarf::DW_OP_stack_value || Op.getOp() == dwarf::DW_OP_LLVM_fragment) { NewOps.append(Ops.begin(), Ops.end()); // Ensure that the new opcodes are only appended once. Ops = None; } Op.appendToVector(NewOps); } NewOps.append(Ops.begin(), Ops.end()); return DIExpression::get(Expr->getContext(), NewOps); } DIExpression *DIExpression::appendToStack(const DIExpression *Expr, ArrayRef Ops) { assert(Expr && !Ops.empty() && "Can't append ops to this expression"); assert(none_of(Ops, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value || Op == dwarf::DW_OP_LLVM_fragment; }) && "Can't append this op"); // Append a DW_OP_deref after Expr's current op list if it's non-empty and // has no DW_OP_stack_value. // // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?. Optional FI = Expr->getFragmentInfo(); unsigned DropUntilStackValue = FI.hasValue() ? 3 : 0; ArrayRef ExprOpsBeforeFragment = Expr->getElements().drop_back(DropUntilStackValue); bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) && (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value); bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty(); // Append a DW_OP_deref after Expr's current op list if needed, then append // the new ops, and finally ensure that a single DW_OP_stack_value is present. SmallVector NewOps; if (NeedsDeref) NewOps.push_back(dwarf::DW_OP_deref); NewOps.append(Ops.begin(), Ops.end()); if (NeedsStackValue) NewOps.push_back(dwarf::DW_OP_stack_value); return DIExpression::append(Expr, NewOps); } Optional DIExpression::createFragmentExpression( const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) { SmallVector Ops; // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment. if (Expr) { for (auto Op : Expr->expr_ops()) { switch (Op.getOp()) { default: break; case dwarf::DW_OP_plus: case dwarf::DW_OP_minus: // We can't safely split arithmetic into multiple fragments because we // can't express carry-over between fragments. // // FIXME: We *could* preserve the lowest fragment of a constant offset // operation if the offset fits into SizeInBits. return None; case dwarf::DW_OP_LLVM_fragment: { // Make the new offset point into the existing fragment. uint64_t FragmentOffsetInBits = Op.getArg(0); uint64_t FragmentSizeInBits = Op.getArg(1); (void)FragmentSizeInBits; assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) && "new fragment outside of original fragment"); OffsetInBits += FragmentOffsetInBits; continue; } } Op.appendToVector(Ops); } } Ops.push_back(dwarf::DW_OP_LLVM_fragment); Ops.push_back(OffsetInBits); Ops.push_back(SizeInBits); return DIExpression::get(Expr->getContext(), Ops); } bool DIExpression::isConstant() const { // Recognize DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment Len Ofs)?. if (getNumElements() != 3 && getNumElements() != 6) return false; if (getElement(0) != dwarf::DW_OP_constu || getElement(2) != dwarf::DW_OP_stack_value) return false; if (getNumElements() == 6 && getElement(3) != dwarf::DW_OP_LLVM_fragment) return false; return true; } DIGlobalVariableExpression * DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable, Metadata *Expression, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression)); Metadata *Ops[] = {Variable, Expression}; DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops); } DIObjCProperty *DIObjCProperty::getImpl( LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, MDString *GetterName, MDString *SetterName, unsigned Attributes, Metadata *Type, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); assert(isCanonical(GetterName) && "Expected canonical MDString"); assert(isCanonical(SetterName) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName, SetterName, Attributes, Type)); Metadata *Ops[] = {Name, File, GetterName, SetterName, Type}; DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops); } DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File, unsigned Line, MDString *Name, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIImportedEntity, (Tag, Scope, Entity, File, Line, Name)); Metadata *Ops[] = {Scope, Entity, Name, File}; DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops); } DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, MDString *Name, MDString *Value, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value)); Metadata *Ops[] = { Name, Value }; DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops); } DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, Metadata *File, Metadata *Elements, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements)); Metadata *Ops[] = { File, Elements }; DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops); }