//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the section-based memory manager used by the MCJIT // execution engine and RuntimeDyld // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/Config/config.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Process.h" namespace llvm { uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) { if (IsReadOnly) return allocateSection(SectionMemoryManager::AllocationPurpose::ROData, Size, Alignment); return allocateSection(SectionMemoryManager::AllocationPurpose::RWData, Size, Alignment); } uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) { return allocateSection(SectionMemoryManager::AllocationPurpose::Code, Size, Alignment); } uint8_t *SectionMemoryManager::allocateSection( SectionMemoryManager::AllocationPurpose Purpose, uintptr_t Size, unsigned Alignment) { if (!Alignment) Alignment = 16; assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two."); uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1) / Alignment + 1); uintptr_t Addr = 0; MemoryGroup &MemGroup = [&]() -> MemoryGroup & { switch (Purpose) { case AllocationPurpose::Code: return CodeMem; case AllocationPurpose::ROData: return RODataMem; case AllocationPurpose::RWData: return RWDataMem; } llvm_unreachable("Unknown SectionMemoryManager::AllocationPurpose"); }(); // Look in the list of free memory regions and use a block there if one // is available. for (FreeMemBlock &FreeMB : MemGroup.FreeMem) { if (FreeMB.Free.size() >= RequiredSize) { Addr = (uintptr_t)FreeMB.Free.base(); uintptr_t EndOfBlock = Addr + FreeMB.Free.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); if (FreeMB.PendingPrefixIndex == (unsigned)-1) { // The part of the block we're giving out to the user is now pending MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size)); // Remember this pending block, such that future allocations can just // modify it rather than creating a new one FreeMB.PendingPrefixIndex = MemGroup.PendingMem.size() - 1; } else { sys::MemoryBlock &PendingMB = MemGroup.PendingMem[FreeMB.PendingPrefixIndex]; PendingMB = sys::MemoryBlock(PendingMB.base(), Addr + Size - (uintptr_t)PendingMB.base()); } // Remember how much free space is now left in this block FreeMB.Free = sys::MemoryBlock((void *)(Addr + Size), EndOfBlock - Addr - Size); return (uint8_t *)Addr; } } // No pre-allocated free block was large enough. Allocate a new memory region. // Note that all sections get allocated as read-write. The permissions will // be updated later based on memory group. // // FIXME: It would be useful to define a default allocation size (or add // it as a constructor parameter) to minimize the number of allocations. // // FIXME: Initialize the Near member for each memory group to avoid // interleaving. std::error_code ec; sys::MemoryBlock MB = MMapper.allocateMappedMemory( Purpose, RequiredSize, &MemGroup.Near, sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec); if (ec) { // FIXME: Add error propagation to the interface. return nullptr; } // Save this address as the basis for our next request MemGroup.Near = MB; // Remember that we allocated this memory MemGroup.AllocatedMem.push_back(MB); Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // The part of the block we're giving out to the user is now pending MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size)); // The allocateMappedMemory may allocate much more memory than we need. In // this case, we store the unused memory as a free memory block. unsigned FreeSize = EndOfBlock - Addr - Size; if (FreeSize > 16) { FreeMemBlock FreeMB; FreeMB.Free = sys::MemoryBlock((void *)(Addr + Size), FreeSize); FreeMB.PendingPrefixIndex = (unsigned)-1; MemGroup.FreeMem.push_back(FreeMB); } // Return aligned address return (uint8_t *)Addr; } bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) { // FIXME: Should in-progress permissions be reverted if an error occurs? std::error_code ec; // Make code memory executable. ec = applyMemoryGroupPermissions(CodeMem, sys::Memory::MF_READ | sys::Memory::MF_EXEC); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Make read-only data memory read-only. ec = applyMemoryGroupPermissions(RODataMem, sys::Memory::MF_READ | sys::Memory::MF_EXEC); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Read-write data memory already has the correct permissions // Some platforms with separate data cache and instruction cache require // explicit cache flush, otherwise JIT code manipulations (like resolved // relocations) will get to the data cache but not to the instruction cache. invalidateInstructionCache(); return false; } static sys::MemoryBlock trimBlockToPageSize(sys::MemoryBlock M) { static const size_t PageSize = sys::Process::getPageSize(); size_t StartOverlap = (PageSize - ((uintptr_t)M.base() % PageSize)) % PageSize; size_t TrimmedSize = M.size(); TrimmedSize -= StartOverlap; TrimmedSize -= TrimmedSize % PageSize; sys::MemoryBlock Trimmed((void *)((uintptr_t)M.base() + StartOverlap), TrimmedSize); assert(((uintptr_t)Trimmed.base() % PageSize) == 0); assert((Trimmed.size() % PageSize) == 0); assert(M.base() <= Trimmed.base() && Trimmed.size() <= M.size()); return Trimmed; } std::error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup, unsigned Permissions) { for (sys::MemoryBlock &MB : MemGroup.PendingMem) if (std::error_code EC = MMapper.protectMappedMemory(MB, Permissions)) return EC; MemGroup.PendingMem.clear(); // Now go through free blocks and trim any of them that don't span the entire // page because one of the pending blocks may have overlapped it. for (FreeMemBlock &FreeMB : MemGroup.FreeMem) { FreeMB.Free = trimBlockToPageSize(FreeMB.Free); // We cleared the PendingMem list, so all these pointers are now invalid FreeMB.PendingPrefixIndex = (unsigned)-1; } // Remove all blocks which are now empty MemGroup.FreeMem.erase( remove_if(MemGroup.FreeMem, [](FreeMemBlock &FreeMB) { return FreeMB.Free.size() == 0; }), MemGroup.FreeMem.end()); return std::error_code(); } void SectionMemoryManager::invalidateInstructionCache() { for (sys::MemoryBlock &Block : CodeMem.PendingMem) sys::Memory::InvalidateInstructionCache(Block.base(), Block.size()); } SectionMemoryManager::~SectionMemoryManager() { for (MemoryGroup *Group : {&CodeMem, &RWDataMem, &RODataMem}) { for (sys::MemoryBlock &Block : Group->AllocatedMem) MMapper.releaseMappedMemory(Block); } } SectionMemoryManager::MemoryMapper::~MemoryMapper() {} namespace { // Trivial implementation of SectionMemoryManager::MemoryMapper that just calls // into sys::Memory. class DefaultMMapper final : public SectionMemoryManager::MemoryMapper { public: sys::MemoryBlock allocateMappedMemory(SectionMemoryManager::AllocationPurpose Purpose, size_t NumBytes, const sys::MemoryBlock *const NearBlock, unsigned Flags, std::error_code &EC) override { return sys::Memory::allocateMappedMemory(NumBytes, NearBlock, Flags, EC); } std::error_code protectMappedMemory(const sys::MemoryBlock &Block, unsigned Flags) override { return sys::Memory::protectMappedMemory(Block, Flags); } std::error_code releaseMappedMemory(sys::MemoryBlock &M) override { return sys::Memory::releaseMappedMemory(M); } }; DefaultMMapper DefaultMMapperInstance; } // namespace SectionMemoryManager::SectionMemoryManager(MemoryMapper *MM) : MMapper(MM ? *MM : DefaultMMapperInstance) {} } // namespace llvm