//===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the VirtRegMap class. // // It also contains implementations of the Spiller interface, which, given a // virtual register map and a machine function, eliminates all virtual // references by replacing them with physical register references - adding spill // code as necessary. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/VirtRegMap.h" #include "LiveDebugVariables.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveStacks.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/Pass.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(NumSpillSlots, "Number of spill slots allocated"); STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); //===----------------------------------------------------------------------===// // VirtRegMap implementation //===----------------------------------------------------------------------===// char VirtRegMap::ID = 0; INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { MRI = &mf.getRegInfo(); TII = mf.getSubtarget().getInstrInfo(); TRI = mf.getSubtarget().getRegisterInfo(); MF = &mf; Virt2PhysMap.clear(); Virt2StackSlotMap.clear(); Virt2SplitMap.clear(); grow(); return false; } void VirtRegMap::grow() { unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); Virt2PhysMap.resize(NumRegs); Virt2StackSlotMap.resize(NumRegs); Virt2SplitMap.resize(NumRegs); } void VirtRegMap::assignVirt2Phys(unsigned virtReg, MCPhysReg physReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg) && TargetRegisterInfo::isPhysicalRegister(physReg)); assert(Virt2PhysMap[virtReg] == NO_PHYS_REG && "attempt to assign physical register to already mapped " "virtual register"); assert(!getRegInfo().isReserved(physReg) && "Attempt to map virtReg to a reserved physReg"); Virt2PhysMap[virtReg] = physReg; } unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { unsigned Size = TRI->getSpillSize(*RC); unsigned Align = TRI->getSpillAlignment(*RC); int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align); ++NumSpillSlots; return SS; } bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { unsigned Hint = MRI->getSimpleHint(VirtReg); if (!Hint) return false; if (TargetRegisterInfo::isVirtualRegister(Hint)) Hint = getPhys(Hint); return getPhys(VirtReg) == Hint; } bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { std::pair Hint = MRI->getRegAllocationHint(VirtReg); if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) return true; if (TargetRegisterInfo::isVirtualRegister(Hint.second)) return hasPhys(Hint.second); return false; } int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); } void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); assert((SS >= 0 || (SS >= MF->getFrameInfo().getObjectIndexBegin())) && "illegal fixed frame index"); Virt2StackSlotMap[virtReg] = SS; } void VirtRegMap::print(raw_ostream &OS, const Module*) const { OS << "********** REGISTER MAP **********\n"; for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { OS << '[' << printReg(Reg, TRI) << " -> " << printReg(Virt2PhysMap[Reg], TRI) << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; } } for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; } } OS << '\n'; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void VirtRegMap::dump() const { print(dbgs()); } #endif //===----------------------------------------------------------------------===// // VirtRegRewriter //===----------------------------------------------------------------------===// // // The VirtRegRewriter is the last of the register allocator passes. // It rewrites virtual registers to physical registers as specified in the // VirtRegMap analysis. It also updates live-in information on basic blocks // according to LiveIntervals. // namespace { class VirtRegRewriter : public MachineFunctionPass { MachineFunction *MF; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; MachineRegisterInfo *MRI; SlotIndexes *Indexes; LiveIntervals *LIS; VirtRegMap *VRM; void rewrite(); void addMBBLiveIns(); bool readsUndefSubreg(const MachineOperand &MO) const; void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const; void handleIdentityCopy(MachineInstr &MI) const; void expandCopyBundle(MachineInstr &MI) const; bool subRegLiveThrough(const MachineInstr &MI, unsigned SuperPhysReg) const; public: static char ID; VirtRegRewriter() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnMachineFunction(MachineFunction&) override; MachineFunctionProperties getSetProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } }; } // end anonymous namespace char VirtRegRewriter::ID = 0; char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", "Virtual Register Rewriter", false, false) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) INITIALIZE_PASS_DEPENDENCY(LiveStacks) INITIALIZE_PASS_DEPENDENCY(VirtRegMap) INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", "Virtual Register Rewriter", false, false) void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { MF = &fn; TRI = MF->getSubtarget().getRegisterInfo(); TII = MF->getSubtarget().getInstrInfo(); MRI = &MF->getRegInfo(); Indexes = &getAnalysis(); LIS = &getAnalysis(); VRM = &getAnalysis(); LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" << "********** Function: " << MF->getName() << '\n'); LLVM_DEBUG(VRM->dump()); // Add kill flags while we still have virtual registers. LIS->addKillFlags(VRM); // Live-in lists on basic blocks are required for physregs. addMBBLiveIns(); // Rewrite virtual registers. rewrite(); // Write out new DBG_VALUE instructions. getAnalysis().emitDebugValues(VRM); // All machine operands and other references to virtual registers have been // replaced. Remove the virtual registers and release all the transient data. VRM->clearAllVirt(); MRI->clearVirtRegs(); return true; } void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const { assert(!LI.empty()); assert(LI.hasSubRanges()); using SubRangeIteratorPair = std::pair; SmallVector SubRanges; SlotIndex First; SlotIndex Last; for (const LiveInterval::SubRange &SR : LI.subranges()) { SubRanges.push_back(std::make_pair(&SR, SR.begin())); if (!First.isValid() || SR.segments.front().start < First) First = SR.segments.front().start; if (!Last.isValid() || SR.segments.back().end > Last) Last = SR.segments.back().end; } // Check all mbb start positions between First and Last while // simulatenously advancing an iterator for each subrange. for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First); MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { SlotIndex MBBBegin = MBBI->first; // Advance all subrange iterators so that their end position is just // behind MBBBegin (or the iterator is at the end). LaneBitmask LaneMask; for (auto &RangeIterPair : SubRanges) { const LiveInterval::SubRange *SR = RangeIterPair.first; LiveInterval::const_iterator &SRI = RangeIterPair.second; while (SRI != SR->end() && SRI->end <= MBBBegin) ++SRI; if (SRI == SR->end()) continue; if (SRI->start <= MBBBegin) LaneMask |= SR->LaneMask; } if (LaneMask.none()) continue; MachineBasicBlock *MBB = MBBI->second; MBB->addLiveIn(PhysReg, LaneMask); } } // Compute MBB live-in lists from virtual register live ranges and their // assignments. void VirtRegRewriter::addMBBLiveIns() { for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); if (MRI->reg_nodbg_empty(VirtReg)) continue; LiveInterval &LI = LIS->getInterval(VirtReg); if (LI.empty() || LIS->intervalIsInOneMBB(LI)) continue; // This is a virtual register that is live across basic blocks. Its // assigned PhysReg must be marked as live-in to those blocks. unsigned PhysReg = VRM->getPhys(VirtReg); assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); if (LI.hasSubRanges()) { addLiveInsForSubRanges(LI, PhysReg); } else { // Go over MBB begin positions and see if we have segments covering them. // The following works because segments and the MBBIndex list are both // sorted by slot indexes. SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); for (const auto &Seg : LI) { I = Indexes->advanceMBBIndex(I, Seg.start); for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { MachineBasicBlock *MBB = I->second; MBB->addLiveIn(PhysReg); } } } } // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in // each MBB's LiveIns set before calling addLiveIn on them. for (MachineBasicBlock &MBB : *MF) MBB.sortUniqueLiveIns(); } /// Returns true if the given machine operand \p MO only reads undefined lanes. /// The function only works for use operands with a subregister set. bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { // Shortcut if the operand is already marked undef. if (MO.isUndef()) return true; unsigned Reg = MO.getReg(); const LiveInterval &LI = LIS->getInterval(Reg); const MachineInstr &MI = *MO.getParent(); SlotIndex BaseIndex = LIS->getInstructionIndex(MI); // This code is only meant to handle reading undefined subregisters which // we couldn't properly detect before. assert(LI.liveAt(BaseIndex) && "Reads of completely dead register should be marked undef already"); unsigned SubRegIdx = MO.getSubReg(); assert(SubRegIdx != 0 && LI.hasSubRanges()); LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); // See if any of the relevant subregister liveranges is defined at this point. for (const LiveInterval::SubRange &SR : LI.subranges()) { if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) return false; } return true; } void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const { if (!MI.isIdentityCopy()) return; LLVM_DEBUG(dbgs() << "Identity copy: " << MI); ++NumIdCopies; // Copies like: // %r0 = COPY undef %r0 // %al = COPY %al, implicit-def %eax // give us additional liveness information: The target (super-)register // must not be valid before this point. Replace the COPY with a KILL // instruction to maintain this information. if (MI.getOperand(0).isUndef() || MI.getNumOperands() > 2) { MI.setDesc(TII->get(TargetOpcode::KILL)); LLVM_DEBUG(dbgs() << " replace by: " << MI); return; } if (Indexes) Indexes->removeSingleMachineInstrFromMaps(MI); MI.eraseFromBundle(); LLVM_DEBUG(dbgs() << " deleted.\n"); } /// The liverange splitting logic sometimes produces bundles of copies when /// subregisters are involved. Expand these into a sequence of copy instructions /// after processing the last in the bundle. Does not update LiveIntervals /// which we shouldn't need for this instruction anymore. void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { if (!MI.isCopy()) return; if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { SmallVector MIs({&MI}); // Only do this when the complete bundle is made out of COPYs. MachineBasicBlock &MBB = *MI.getParent(); for (MachineBasicBlock::reverse_instr_iterator I = std::next(MI.getReverseIterator()), E = MBB.instr_rend(); I != E && I->isBundledWithSucc(); ++I) { if (!I->isCopy()) return; MIs.push_back(&*I); } MachineInstr *FirstMI = MIs.back(); auto anyRegsAlias = [](const MachineInstr *Dst, ArrayRef Srcs, const TargetRegisterInfo *TRI) { for (const MachineInstr *Src : Srcs) if (Src != Dst) if (TRI->regsOverlap(Dst->getOperand(0).getReg(), Src->getOperand(1).getReg())) return true; return false; }; // If any of the destination registers in the bundle of copies alias any of // the source registers, try to schedule the instructions to avoid any // clobbering. for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { for (int I = E; I--; ) if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) { if (I + 1 != E) std::swap(MIs[I], MIs[E - 1]); --E; } if (PrevE == E) { MF->getFunction().getContext().emitError( "register rewriting failed: cycle in copy bundle"); break; } } MachineInstr *BundleStart = FirstMI; for (MachineInstr *BundledMI : llvm::reverse(MIs)) { // If instruction is in the middle of the bundle, move it before the // bundle starts, otherwise, just unbundle it. When we get to the last // instruction, the bundle will have been completely undone. if (BundledMI != BundleStart) { BundledMI->removeFromBundle(); MBB.insert(FirstMI, BundledMI); } else if (BundledMI->isBundledWithSucc()) { BundledMI->unbundleFromSucc(); BundleStart = &*std::next(BundledMI->getIterator()); } if (Indexes && BundledMI != FirstMI) Indexes->insertMachineInstrInMaps(*BundledMI); } } } /// Check whether (part of) \p SuperPhysReg is live through \p MI. /// \pre \p MI defines a subregister of a virtual register that /// has been assigned to \p SuperPhysReg. bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, unsigned SuperPhysReg) const { SlotIndex MIIndex = LIS->getInstructionIndex(MI); SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) { const LiveRange &UnitRange = LIS->getRegUnit(*Unit); // If the regunit is live both before and after MI, // we assume it is live through. // Generally speaking, this is not true, because something like // "RU = op RU" would match that description. // However, we know that we are trying to assess whether // a def of a virtual reg, vreg, is live at the same time of RU. // If we are in the "RU = op RU" situation, that means that vreg // is defined at the same time as RU (i.e., "vreg, RU = op RU"). // Thus, vreg and RU interferes and vreg cannot be assigned to // SuperPhysReg. Therefore, this situation cannot happen. if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) return true; } return false; } void VirtRegRewriter::rewrite() { bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); SmallVector SuperDeads; SmallVector SuperDefs; SmallVector SuperKills; for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); MBBI != MBBE; ++MBBI) { LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); for (MachineBasicBlock::instr_iterator MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { MachineInstr *MI = &*MII; ++MII; for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { MachineOperand &MO = *MOI; // Make sure MRI knows about registers clobbered by regmasks. if (MO.isRegMask()) MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; unsigned VirtReg = MO.getReg(); unsigned PhysReg = VRM->getPhys(VirtReg); assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Instruction uses unmapped VirtReg"); assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); // Preserve semantics of sub-register operands. unsigned SubReg = MO.getSubReg(); if (SubReg != 0) { if (NoSubRegLiveness) { // A virtual register kill refers to the whole register, so we may // have to add implicit killed operands for the super-register. A // partial redef always kills and redefines the super-register. if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || (MO.isDef() && subRegLiveThrough(*MI, PhysReg))) SuperKills.push_back(PhysReg); if (MO.isDef()) { // Also add implicit defs for the super-register. if (MO.isDead()) SuperDeads.push_back(PhysReg); else SuperDefs.push_back(PhysReg); } } else { if (MO.isUse()) { if (readsUndefSubreg(MO)) // We need to add an flag if the subregister is // completely undefined (and we are not adding super-register // defs). MO.setIsUndef(true); } else if (!MO.isDead()) { assert(MO.isDef()); } } // The def undef and def internal flags only make sense for // sub-register defs, and we are substituting a full physreg. An // implicit killed operand from the SuperKills list will represent the // partial read of the super-register. if (MO.isDef()) { MO.setIsUndef(false); MO.setIsInternalRead(false); } // PhysReg operands cannot have subregister indexes. PhysReg = TRI->getSubReg(PhysReg, SubReg); assert(PhysReg && "Invalid SubReg for physical register"); MO.setSubReg(0); } // Rewrite. Note we could have used MachineOperand::substPhysReg(), but // we need the inlining here. MO.setReg(PhysReg); MO.setIsRenamable(true); } // Add any missing super-register kills after rewriting the whole // instruction. while (!SuperKills.empty()) MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); while (!SuperDeads.empty()) MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); while (!SuperDefs.empty()) MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); LLVM_DEBUG(dbgs() << "> " << *MI); expandCopyBundle(*MI); // We can remove identity copies right now. handleIdentityCopy(*MI); } } }