//===- RegisterScavenging.cpp - Machine register scavenging ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This file implements the machine register scavenger. It can provide /// information, such as unused registers, at any point in a machine basic /// block. It also provides a mechanism to make registers available by evicting /// them to spill slots. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveRegUnits.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "reg-scavenging" STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged"); void RegScavenger::setRegUsed(unsigned Reg, LaneBitmask LaneMask) { LiveUnits.addRegMasked(Reg, LaneMask); } void RegScavenger::init(MachineBasicBlock &MBB) { MachineFunction &MF = *MBB.getParent(); TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); LiveUnits.init(*TRI); assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) && "Target changed?"); // Self-initialize. if (!this->MBB) { NumRegUnits = TRI->getNumRegUnits(); KillRegUnits.resize(NumRegUnits); DefRegUnits.resize(NumRegUnits); TmpRegUnits.resize(NumRegUnits); } this->MBB = &MBB; for (ScavengedInfo &SI : Scavenged) { SI.Reg = 0; SI.Restore = nullptr; } Tracking = false; } void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) { init(MBB); LiveUnits.addLiveIns(MBB); } void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) { init(MBB); LiveUnits.addLiveOuts(MBB); // Move internal iterator at the last instruction of the block. if (MBB.begin() != MBB.end()) { MBBI = std::prev(MBB.end()); Tracking = true; } } void RegScavenger::addRegUnits(BitVector &BV, unsigned Reg) { for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) BV.set(*RUI); } void RegScavenger::removeRegUnits(BitVector &BV, unsigned Reg) { for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) BV.reset(*RUI); } void RegScavenger::determineKillsAndDefs() { assert(Tracking && "Must be tracking to determine kills and defs"); MachineInstr &MI = *MBBI; assert(!MI.isDebugValue() && "Debug values have no kills or defs"); // Find out which registers are early clobbered, killed, defined, and marked // def-dead in this instruction. KillRegUnits.reset(); DefRegUnits.reset(); for (const MachineOperand &MO : MI.operands()) { if (MO.isRegMask()) { TmpRegUnits.clear(); for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) { for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) { if (MO.clobbersPhysReg(*RURI)) { TmpRegUnits.set(RU); break; } } } // Apply the mask. KillRegUnits |= TmpRegUnits; } if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(Reg) || isReserved(Reg)) continue; if (MO.isUse()) { // Ignore undef uses. if (MO.isUndef()) continue; if (MO.isKill()) addRegUnits(KillRegUnits, Reg); } else { assert(MO.isDef()); if (MO.isDead()) addRegUnits(KillRegUnits, Reg); else addRegUnits(DefRegUnits, Reg); } } } void RegScavenger::unprocess() { assert(Tracking && "Cannot unprocess because we're not tracking"); MachineInstr &MI = *MBBI; if (!MI.isDebugValue()) { determineKillsAndDefs(); // Commit the changes. setUsed(KillRegUnits); setUnused(DefRegUnits); } if (MBBI == MBB->begin()) { MBBI = MachineBasicBlock::iterator(nullptr); Tracking = false; } else --MBBI; } void RegScavenger::forward() { // Move ptr forward. if (!Tracking) { MBBI = MBB->begin(); Tracking = true; } else { assert(MBBI != MBB->end() && "Already past the end of the basic block!"); MBBI = std::next(MBBI); } assert(MBBI != MBB->end() && "Already at the end of the basic block!"); MachineInstr &MI = *MBBI; for (SmallVectorImpl::iterator I = Scavenged.begin(), IE = Scavenged.end(); I != IE; ++I) { if (I->Restore != &MI) continue; I->Reg = 0; I->Restore = nullptr; } if (MI.isDebugValue()) return; determineKillsAndDefs(); // Verify uses and defs. #ifndef NDEBUG for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(Reg) || isReserved(Reg)) continue; if (MO.isUse()) { if (MO.isUndef()) continue; if (!isRegUsed(Reg)) { // Check if it's partial live: e.g. // D0 = insert_subreg undef D0, S0 // ... D0 // The problem is the insert_subreg could be eliminated. The use of // D0 is using a partially undef value. This is not *incorrect* since // S1 is can be freely clobbered. // Ideally we would like a way to model this, but leaving the // insert_subreg around causes both correctness and performance issues. bool SubUsed = false; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) if (isRegUsed(*SubRegs)) { SubUsed = true; break; } bool SuperUsed = false; for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { if (isRegUsed(*SR)) { SuperUsed = true; break; } } if (!SubUsed && !SuperUsed) { MBB->getParent()->verify(nullptr, "In Register Scavenger"); llvm_unreachable("Using an undefined register!"); } (void)SubUsed; (void)SuperUsed; } } else { assert(MO.isDef()); #if 0 // FIXME: Enable this once we've figured out how to correctly transfer // implicit kills during codegen passes like the coalescer. assert((KillRegs.test(Reg) || isUnused(Reg) || isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) && "Re-defining a live register!"); #endif } } #endif // NDEBUG // Commit the changes. setUnused(KillRegUnits); setUsed(DefRegUnits); } void RegScavenger::backward() { assert(Tracking && "Must be tracking to determine kills and defs"); const MachineInstr &MI = *MBBI; LiveUnits.stepBackward(MI); // Expire scavenge spill frameindex uses. for (ScavengedInfo &I : Scavenged) { if (I.Restore == &MI) { I.Reg = 0; I.Restore = nullptr; } } if (MBBI == MBB->begin()) { MBBI = MachineBasicBlock::iterator(nullptr); Tracking = false; } else --MBBI; } bool RegScavenger::isRegUsed(unsigned Reg, bool includeReserved) const { if (isReserved(Reg)) return includeReserved; return !LiveUnits.available(Reg); } unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const { for (unsigned Reg : *RC) { if (!isRegUsed(Reg)) { DEBUG(dbgs() << "Scavenger found unused reg: " << printReg(Reg, TRI) << "\n"); return Reg; } } return 0; } BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) { BitVector Mask(TRI->getNumRegs()); for (unsigned Reg : *RC) if (!isRegUsed(Reg)) Mask.set(Reg); return Mask; } unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI, BitVector &Candidates, unsigned InstrLimit, MachineBasicBlock::iterator &UseMI) { int Survivor = Candidates.find_first(); assert(Survivor > 0 && "No candidates for scavenging"); MachineBasicBlock::iterator ME = MBB->getFirstTerminator(); assert(StartMI != ME && "MI already at terminator"); MachineBasicBlock::iterator RestorePointMI = StartMI; MachineBasicBlock::iterator MI = StartMI; bool inVirtLiveRange = false; for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) { if (MI->isDebugValue()) { ++InstrLimit; // Don't count debug instructions continue; } bool isVirtKillInsn = false; bool isVirtDefInsn = false; // Remove any candidates touched by instruction. for (const MachineOperand &MO : MI->operands()) { if (MO.isRegMask()) Candidates.clearBitsNotInMask(MO.getRegMask()); if (!MO.isReg() || MO.isUndef() || !MO.getReg()) continue; if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { if (MO.isDef()) isVirtDefInsn = true; else if (MO.isKill()) isVirtKillInsn = true; continue; } for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Candidates.reset(*AI); } // If we're not in a virtual reg's live range, this is a valid // restore point. if (!inVirtLiveRange) RestorePointMI = MI; // Update whether we're in the live range of a virtual register if (isVirtKillInsn) inVirtLiveRange = false; if (isVirtDefInsn) inVirtLiveRange = true; // Was our survivor untouched by this instruction? if (Candidates.test(Survivor)) continue; // All candidates gone? if (Candidates.none()) break; Survivor = Candidates.find_first(); } // If we ran off the end, that's where we want to restore. if (MI == ME) RestorePointMI = ME; assert(RestorePointMI != StartMI && "No available scavenger restore location!"); // We ran out of candidates, so stop the search. UseMI = RestorePointMI; return Survivor; } /// Given the bitvector \p Available of free register units at position /// \p From. Search backwards to find a register that is part of \p /// Candidates and not used/clobbered until the point \p To. If there is /// multiple candidates continue searching and pick the one that is not used/ /// clobbered for the longest time. /// Returns the register and the earliest position we know it to be free or /// the position MBB.end() if no register is available. static std::pair findSurvivorBackwards(const MachineRegisterInfo &MRI, MachineBasicBlock::iterator From, MachineBasicBlock::iterator To, const LiveRegUnits &LiveOut, ArrayRef AllocationOrder, bool RestoreAfter) { bool FoundTo = false; MCPhysReg Survivor = 0; MachineBasicBlock::iterator Pos; MachineBasicBlock &MBB = *From->getParent(); unsigned InstrLimit = 25; unsigned InstrCountDown = InstrLimit; const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); LiveRegUnits Used(TRI); for (MachineBasicBlock::iterator I = From;; --I) { const MachineInstr &MI = *I; Used.accumulate(MI); if (I == To) { // See if one of the registers in RC wasn't used so far. for (MCPhysReg Reg : AllocationOrder) { if (!MRI.isReserved(Reg) && Used.available(Reg) && LiveOut.available(Reg)) return std::make_pair(Reg, MBB.end()); } // Otherwise we will continue up to InstrLimit instructions to find // the register which is not defined/used for the longest time. FoundTo = true; Pos = To; // Note: It was fine so far to start our search at From, however now that // we have to spill, and can only place the restore after From then // add the regs used/defed by std::next(From) to the set. if (RestoreAfter) Used.accumulate(*std::next(From)); } if (FoundTo) { if (Survivor == 0 || !Used.available(Survivor)) { MCPhysReg AvilableReg = 0; for (MCPhysReg Reg : AllocationOrder) { if (!MRI.isReserved(Reg) && Used.available(Reg)) { AvilableReg = Reg; break; } } if (AvilableReg == 0) break; Survivor = AvilableReg; } if (--InstrCountDown == 0) break; // Keep searching when we find a vreg since the spilled register will // be usefull for this other vreg as well later. bool FoundVReg = false; for (const MachineOperand &MO : MI.operands()) { if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { FoundVReg = true; break; } } if (FoundVReg) { InstrCountDown = InstrLimit; Pos = I; } if (I == MBB.begin()) break; } } return std::make_pair(Survivor, Pos); } static unsigned getFrameIndexOperandNum(MachineInstr &MI) { unsigned i = 0; while (!MI.getOperand(i).isFI()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } return i; } RegScavenger::ScavengedInfo & RegScavenger::spill(unsigned Reg, const TargetRegisterClass &RC, int SPAdj, MachineBasicBlock::iterator Before, MachineBasicBlock::iterator &UseMI) { // Find an available scavenging slot with size and alignment matching // the requirements of the class RC. const MachineFunction &MF = *Before->getMF(); const MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned NeedSize = TRI->getSpillSize(RC); unsigned NeedAlign = TRI->getSpillAlignment(RC); unsigned SI = Scavenged.size(), Diff = std::numeric_limits::max(); int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd(); for (unsigned I = 0; I < Scavenged.size(); ++I) { if (Scavenged[I].Reg != 0) continue; // Verify that this slot is valid for this register. int FI = Scavenged[I].FrameIndex; if (FI < FIB || FI >= FIE) continue; unsigned S = MFI.getObjectSize(FI); unsigned A = MFI.getObjectAlignment(FI); if (NeedSize > S || NeedAlign > A) continue; // Avoid wasting slots with large size and/or large alignment. Pick one // that is the best fit for this register class (in street metric). // Picking a larger slot than necessary could happen if a slot for a // larger register is reserved before a slot for a smaller one. When // trying to spill a smaller register, the large slot would be found // first, thus making it impossible to spill the larger register later. unsigned D = (S-NeedSize) + (A-NeedAlign); if (D < Diff) { SI = I; Diff = D; } } if (SI == Scavenged.size()) { // We need to scavenge a register but have no spill slot, the target // must know how to do it (if not, we'll assert below). Scavenged.push_back(ScavengedInfo(FIE)); } // Avoid infinite regress Scavenged[SI].Reg = Reg; // If the target knows how to save/restore the register, let it do so; // otherwise, use the emergency stack spill slot. if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) { // Spill the scavenged register before \p Before. int FI = Scavenged[SI].FrameIndex; if (FI < FIB || FI >= FIE) { std::string Msg = std::string("Error while trying to spill ") + TRI->getName(Reg) + " from class " + TRI->getRegClassName(&RC) + ": Cannot scavenge register without an emergency spill slot!"; report_fatal_error(Msg.c_str()); } TII->storeRegToStackSlot(*MBB, Before, Reg, true, Scavenged[SI].FrameIndex, &RC, TRI); MachineBasicBlock::iterator II = std::prev(Before); unsigned FIOperandNum = getFrameIndexOperandNum(*II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); // Restore the scavenged register before its use (or first terminator). TII->loadRegFromStackSlot(*MBB, UseMI, Reg, Scavenged[SI].FrameIndex, &RC, TRI); II = std::prev(UseMI); FIOperandNum = getFrameIndexOperandNum(*II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); } return Scavenged[SI]; } unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC, MachineBasicBlock::iterator I, int SPAdj) { MachineInstr &MI = *I; const MachineFunction &MF = *MI.getMF(); // Consider all allocatable registers in the register class initially BitVector Candidates = TRI->getAllocatableSet(MF, RC); // Exclude all the registers being used by the instruction. for (const MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) && !TargetRegisterInfo::isVirtualRegister(MO.getReg())) for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Candidates.reset(*AI); } // Try to find a register that's unused if there is one, as then we won't // have to spill. BitVector Available = getRegsAvailable(RC); Available &= Candidates; if (Available.any()) Candidates = Available; // Find the register whose use is furthest away. MachineBasicBlock::iterator UseMI; unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI); // If we found an unused register there is no reason to spill it. if (!isRegUsed(SReg)) { DEBUG(dbgs() << "Scavenged register: " << printReg(SReg, TRI) << "\n"); return SReg; } ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI); Scavenged.Restore = &*std::prev(UseMI); DEBUG(dbgs() << "Scavenged register (with spill): " << printReg(SReg, TRI) << "\n"); return SReg; } unsigned RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC, MachineBasicBlock::iterator To, bool RestoreAfter, int SPAdj) { const MachineBasicBlock &MBB = *To->getParent(); const MachineFunction &MF = *MBB.getParent(); // Find the register whose use is furthest away. MachineBasicBlock::iterator UseMI; ArrayRef AllocationOrder = RC.getRawAllocationOrder(MF); std::pair P = findSurvivorBackwards(*MRI, MBBI, To, LiveUnits, AllocationOrder, RestoreAfter); MCPhysReg Reg = P.first; MachineBasicBlock::iterator SpillBefore = P.second; assert(Reg != 0 && "No register left to scavenge!"); // Found an available register? if (SpillBefore != MBB.end()) { MachineBasicBlock::iterator ReloadAfter = RestoreAfter ? std::next(MBBI) : MBBI; MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter); DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n'); ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore); Scavenged.Restore = &*std::prev(SpillBefore); LiveUnits.removeReg(Reg); DEBUG(dbgs() << "Scavenged register with spill: " << printReg(Reg, TRI) << " until " << *SpillBefore); } else { DEBUG(dbgs() << "Scavenged free register: " << printReg(Reg, TRI) << '\n'); } return Reg; } /// Allocate a register for the virtual register \p VReg. The last use of /// \p VReg is around the current position of the register scavenger \p RS. /// \p ReserveAfter controls whether the scavenged register needs to be reserved /// after the current instruction, otherwise it will only be reserved before the /// current instruction. static unsigned scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS, unsigned VReg, bool ReserveAfter) { const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); #ifndef NDEBUG // Verify that all definitions and uses are in the same basic block. const MachineBasicBlock *CommonMBB = nullptr; // Real definition for the reg, re-definitions are not considered. const MachineInstr *RealDef = nullptr; for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) { MachineBasicBlock *MBB = MO.getParent()->getParent(); if (CommonMBB == nullptr) CommonMBB = MBB; assert(MBB == CommonMBB && "All defs+uses must be in the same basic block"); if (MO.isDef()) { const MachineInstr &MI = *MO.getParent(); if (!MI.readsRegister(VReg, &TRI)) { assert((!RealDef || RealDef == &MI) && "Can have at most one definition which is not a redefinition"); RealDef = &MI; } } } assert(RealDef != nullptr && "Must have at least 1 Def"); #endif // We should only have one definition of the register. However to accommodate // the requirements of two address code we also allow definitions in // subsequent instructions provided they also read the register. That way // we get a single contiguous lifetime. // // Definitions in MRI.def_begin() are unordered, search for the first. MachineRegisterInfo::def_iterator FirstDef = std::find_if(MRI.def_begin(VReg), MRI.def_end(), [VReg, &TRI](const MachineOperand &MO) { return !MO.getParent()->readsRegister(VReg, &TRI); }); assert(FirstDef != MRI.def_end() && "Must have one definition that does not redefine vreg"); MachineInstr &DefMI = *FirstDef->getParent(); // The register scavenger will report a free register inserting an emergency // spill/reload if necessary. int SPAdj = 0; const TargetRegisterClass &RC = *MRI.getRegClass(VReg); unsigned SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(), ReserveAfter, SPAdj); MRI.replaceRegWith(VReg, SReg); ++NumScavengedRegs; return SReg; } /// Allocate (scavenge) vregs inside a single basic block. /// Returns true if the target spill callback created new vregs and a 2nd pass /// is necessary. static bool scavengeFrameVirtualRegsInBlock(MachineRegisterInfo &MRI, RegScavenger &RS, MachineBasicBlock &MBB) { const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); RS.enterBasicBlockEnd(MBB); unsigned InitialNumVirtRegs = MRI.getNumVirtRegs(); bool NextInstructionReadsVReg = false; for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) { --I; // Move RegScavenger to the position between *I and *std::next(I). RS.backward(I); // Look for unassigned vregs in the uses of *std::next(I). if (NextInstructionReadsVReg) { MachineBasicBlock::iterator N = std::next(I); const MachineInstr &NMI = *N; for (const MachineOperand &MO : NMI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); // We only care about virtual registers and ignore virtual registers // created by the target callbacks in the process (those will be handled // in a scavenging round). if (!TargetRegisterInfo::isVirtualRegister(Reg) || TargetRegisterInfo::virtReg2Index(Reg) >= InitialNumVirtRegs) continue; if (!MO.readsReg()) continue; unsigned SReg = scavengeVReg(MRI, RS, Reg, true); N->addRegisterKilled(SReg, &TRI, false); RS.setRegUsed(SReg); } } // Look for unassigned vregs in the defs of *I. NextInstructionReadsVReg = false; const MachineInstr &MI = *I; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); // Only vregs, no newly created vregs (see above). if (!TargetRegisterInfo::isVirtualRegister(Reg) || TargetRegisterInfo::virtReg2Index(Reg) >= InitialNumVirtRegs) continue; // We have to look at all operands anyway so we can precalculate here // whether there is a reading operand. This allows use to skip the use // step in the next iteration if there was none. assert(!MO.isInternalRead() && "Cannot assign inside bundles"); assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses"); if (MO.readsReg()) { NextInstructionReadsVReg = true; } if (MO.isDef()) { unsigned SReg = scavengeVReg(MRI, RS, Reg, false); I->addRegisterDead(SReg, &TRI, false); } } } #ifndef NDEBUG for (const MachineOperand &MO : MBB.front().operands()) { if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; assert(!MO.isInternalRead() && "Cannot assign inside bundles"); assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses"); assert(!MO.readsReg() && "Vreg use in first instruction not allowed"); } #endif return MRI.getNumVirtRegs() != InitialNumVirtRegs; } void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) { // FIXME: Iterating over the instruction stream is unnecessary. We can simply // iterate over the vreg use list, which at this point only contains machine // operands for which eliminateFrameIndex need a new scratch reg. MachineRegisterInfo &MRI = MF.getRegInfo(); // Shortcut. if (MRI.getNumVirtRegs() == 0) { MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs); return; } // Run through the instructions and find any virtual registers. for (MachineBasicBlock &MBB : MF) { if (MBB.empty()) continue; bool Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB); if (Again) { DEBUG(dbgs() << "Warning: Required two scavenging passes for block " << MBB.getName() << '\n'); Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB); // The target required a 2nd run (because it created new vregs while // spilling). Refuse to do another pass to keep compiletime in check. if (Again) report_fatal_error("Incomplete scavenging after 2nd pass"); } } MRI.clearVirtRegs(); MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs); } namespace { /// This class runs register scavenging independ of the PrologEpilogInserter. /// This is used in for testing. class ScavengerTest : public MachineFunctionPass { public: static char ID; ScavengerTest() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetFrameLowering &TFL = *STI.getFrameLowering(); RegScavenger RS; // Let's hope that calling those outside of PrologEpilogueInserter works // well enough to initialize the scavenger with some emergency spillslots // for the target. BitVector SavedRegs; TFL.determineCalleeSaves(MF, SavedRegs, &RS); TFL.processFunctionBeforeFrameFinalized(MF, &RS); // Let's scavenge the current function scavengeFrameVirtualRegs(MF, RS); return true; } }; } // end anonymous namespace char ScavengerTest::ID; INITIALIZE_PASS(ScavengerTest, "scavenger-test", "Scavenge virtual registers inside basic blocks", false, false)