//===- lib/Codegen/MachineRegisterInfo.cpp --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MachineRegisterInfo class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; static cl::opt EnableSubRegLiveness("enable-subreg-liveness", cl::Hidden, cl::init(true), cl::desc("Enable subregister liveness tracking.")); // Pin the vtable to this file. void MachineRegisterInfo::Delegate::anchor() {} MachineRegisterInfo::MachineRegisterInfo(MachineFunction *MF) : MF(MF), TracksSubRegLiveness(MF->getSubtarget().enableSubRegLiveness() && EnableSubRegLiveness), IsUpdatedCSRsInitialized(false) { unsigned NumRegs = getTargetRegisterInfo()->getNumRegs(); VRegInfo.reserve(256); RegAllocHints.reserve(256); UsedPhysRegMask.resize(NumRegs); PhysRegUseDefLists.reset(new MachineOperand*[NumRegs]()); } /// setRegClass - Set the register class of the specified virtual register. /// void MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) { assert(RC && RC->isAllocatable() && "Invalid RC for virtual register"); VRegInfo[Reg].first = RC; } void MachineRegisterInfo::setRegBank(unsigned Reg, const RegisterBank &RegBank) { VRegInfo[Reg].first = &RegBank; } static const TargetRegisterClass * constrainRegClass(MachineRegisterInfo &MRI, unsigned Reg, const TargetRegisterClass *OldRC, const TargetRegisterClass *RC, unsigned MinNumRegs) { if (OldRC == RC) return RC; const TargetRegisterClass *NewRC = MRI.getTargetRegisterInfo()->getCommonSubClass(OldRC, RC); if (!NewRC || NewRC == OldRC) return NewRC; if (NewRC->getNumRegs() < MinNumRegs) return nullptr; MRI.setRegClass(Reg, NewRC); return NewRC; } const TargetRegisterClass * MachineRegisterInfo::constrainRegClass(unsigned Reg, const TargetRegisterClass *RC, unsigned MinNumRegs) { return ::constrainRegClass(*this, Reg, getRegClass(Reg), RC, MinNumRegs); } bool MachineRegisterInfo::constrainRegAttrs(unsigned Reg, unsigned ConstrainingReg, unsigned MinNumRegs) { auto const *OldRC = getRegClassOrNull(Reg); auto const *RC = getRegClassOrNull(ConstrainingReg); // A virtual register at any point must have either a low-level type // or a class assigned, but not both. The only exception is the internals of // GlobalISel's instruction selection pass, which is allowed to temporarily // introduce registers with types and classes both. assert((OldRC || getType(Reg).isValid()) && "Reg has neither class nor type"); assert((!OldRC || !getType(Reg).isValid()) && "Reg has class and type both"); assert((RC || getType(ConstrainingReg).isValid()) && "ConstrainingReg has neither class nor type"); assert((!RC || !getType(ConstrainingReg).isValid()) && "ConstrainingReg has class and type both"); if (OldRC && RC) return ::constrainRegClass(*this, Reg, OldRC, RC, MinNumRegs); // If one of the virtual registers is generic (used in generic machine // instructions, has a low-level type, doesn't have a class), and the other is // concrete (used in target specific instructions, doesn't have a low-level // type, has a class), we can not unify them. if (OldRC || RC) return false; // At this point, both registers are guaranteed to have a valid low-level // type, and they must agree. if (getType(Reg) != getType(ConstrainingReg)) return false; auto const *OldRB = getRegBankOrNull(Reg); auto const *RB = getRegBankOrNull(ConstrainingReg); if (OldRB) return !RB || RB == OldRB; if (RB) setRegBank(Reg, *RB); return true; } bool MachineRegisterInfo::recomputeRegClass(unsigned Reg) { const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); const TargetRegisterClass *OldRC = getRegClass(Reg); const TargetRegisterClass *NewRC = getTargetRegisterInfo()->getLargestLegalSuperClass(OldRC, *MF); // Stop early if there is no room to grow. if (NewRC == OldRC) return false; // Accumulate constraints from all uses. for (MachineOperand &MO : reg_nodbg_operands(Reg)) { // Apply the effect of the given operand to NewRC. MachineInstr *MI = MO.getParent(); unsigned OpNo = &MO - &MI->getOperand(0); NewRC = MI->getRegClassConstraintEffect(OpNo, NewRC, TII, getTargetRegisterInfo()); if (!NewRC || NewRC == OldRC) return false; } setRegClass(Reg, NewRC); return true; } unsigned MachineRegisterInfo::createIncompleteVirtualRegister(StringRef Name) { unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs()); VRegInfo.grow(Reg); RegAllocHints.grow(Reg); insertVRegByName(Name, Reg); return Reg; } /// createVirtualRegister - Create and return a new virtual register in the /// function with the specified register class. /// unsigned MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name) { assert(RegClass && "Cannot create register without RegClass!"); assert(RegClass->isAllocatable() && "Virtual register RegClass must be allocatable."); // New virtual register number. unsigned Reg = createIncompleteVirtualRegister(Name); VRegInfo[Reg].first = RegClass; if (TheDelegate) TheDelegate->MRI_NoteNewVirtualRegister(Reg); return Reg; } void MachineRegisterInfo::setType(unsigned VReg, LLT Ty) { // Check that VReg doesn't have a class. assert((getRegClassOrRegBank(VReg).isNull() || !getRegClassOrRegBank(VReg).is()) && "Can't set the size of a non-generic virtual register"); VRegToType.grow(VReg); VRegToType[VReg] = Ty; } unsigned MachineRegisterInfo::createGenericVirtualRegister(LLT Ty, StringRef Name) { // New virtual register number. unsigned Reg = createIncompleteVirtualRegister(Name); // FIXME: Should we use a dummy register class? VRegInfo[Reg].first = static_cast(nullptr); setType(Reg, Ty); if (TheDelegate) TheDelegate->MRI_NoteNewVirtualRegister(Reg); return Reg; } void MachineRegisterInfo::clearVirtRegTypes() { VRegToType.clear(); } /// clearVirtRegs - Remove all virtual registers (after physreg assignment). void MachineRegisterInfo::clearVirtRegs() { #ifndef NDEBUG for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (!VRegInfo[Reg].second) continue; verifyUseList(Reg); llvm_unreachable("Remaining virtual register operands"); } #endif VRegInfo.clear(); for (auto &I : LiveIns) I.second = 0; } void MachineRegisterInfo::verifyUseList(unsigned Reg) const { #ifndef NDEBUG bool Valid = true; for (MachineOperand &M : reg_operands(Reg)) { MachineOperand *MO = &M; MachineInstr *MI = MO->getParent(); if (!MI) { errs() << printReg(Reg, getTargetRegisterInfo()) << " use list MachineOperand " << MO << " has no parent instruction.\n"; Valid = false; continue; } MachineOperand *MO0 = &MI->getOperand(0); unsigned NumOps = MI->getNumOperands(); if (!(MO >= MO0 && MO < MO0+NumOps)) { errs() << printReg(Reg, getTargetRegisterInfo()) << " use list MachineOperand " << MO << " doesn't belong to parent MI: " << *MI; Valid = false; } if (!MO->isReg()) { errs() << printReg(Reg, getTargetRegisterInfo()) << " MachineOperand " << MO << ": " << *MO << " is not a register\n"; Valid = false; } if (MO->getReg() != Reg) { errs() << printReg(Reg, getTargetRegisterInfo()) << " use-list MachineOperand " << MO << ": " << *MO << " is the wrong register\n"; Valid = false; } } assert(Valid && "Invalid use list"); #endif } void MachineRegisterInfo::verifyUseLists() const { #ifndef NDEBUG for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) verifyUseList(TargetRegisterInfo::index2VirtReg(i)); for (unsigned i = 1, e = getTargetRegisterInfo()->getNumRegs(); i != e; ++i) verifyUseList(i); #endif } /// Add MO to the linked list of operands for its register. void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) { assert(!MO->isOnRegUseList() && "Already on list"); MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg()); MachineOperand *const Head = HeadRef; // Head points to the first list element. // Next is NULL on the last list element. // Prev pointers are circular, so Head->Prev == Last. // Head is NULL for an empty list. if (!Head) { MO->Contents.Reg.Prev = MO; MO->Contents.Reg.Next = nullptr; HeadRef = MO; return; } assert(MO->getReg() == Head->getReg() && "Different regs on the same list!"); // Insert MO between Last and Head in the circular Prev chain. MachineOperand *Last = Head->Contents.Reg.Prev; assert(Last && "Inconsistent use list"); assert(MO->getReg() == Last->getReg() && "Different regs on the same list!"); Head->Contents.Reg.Prev = MO; MO->Contents.Reg.Prev = Last; // Def operands always precede uses. This allows def_iterator to stop early. // Insert def operands at the front, and use operands at the back. if (MO->isDef()) { // Insert def at the front. MO->Contents.Reg.Next = Head; HeadRef = MO; } else { // Insert use at the end. MO->Contents.Reg.Next = nullptr; Last->Contents.Reg.Next = MO; } } /// Remove MO from its use-def list. void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) { assert(MO->isOnRegUseList() && "Operand not on use list"); MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg()); MachineOperand *const Head = HeadRef; assert(Head && "List already empty"); // Unlink this from the doubly linked list of operands. MachineOperand *Next = MO->Contents.Reg.Next; MachineOperand *Prev = MO->Contents.Reg.Prev; // Prev links are circular, next link is NULL instead of looping back to Head. if (MO == Head) HeadRef = Next; else Prev->Contents.Reg.Next = Next; (Next ? Next : Head)->Contents.Reg.Prev = Prev; MO->Contents.Reg.Prev = nullptr; MO->Contents.Reg.Next = nullptr; } /// Move NumOps operands from Src to Dst, updating use-def lists as needed. /// /// The Dst range is assumed to be uninitialized memory. (Or it may contain /// operands that won't be destroyed, which is OK because the MO destructor is /// trivial anyway). /// /// The Src and Dst ranges may overlap. void MachineRegisterInfo::moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps) { assert(Src != Dst && NumOps && "Noop moveOperands"); // Copy backwards if Dst is within the Src range. int Stride = 1; if (Dst >= Src && Dst < Src + NumOps) { Stride = -1; Dst += NumOps - 1; Src += NumOps - 1; } // Copy one operand at a time. do { new (Dst) MachineOperand(*Src); // Dst takes Src's place in the use-def chain. if (Src->isReg()) { MachineOperand *&Head = getRegUseDefListHead(Src->getReg()); MachineOperand *Prev = Src->Contents.Reg.Prev; MachineOperand *Next = Src->Contents.Reg.Next; assert(Head && "List empty, but operand is chained"); assert(Prev && "Operand was not on use-def list"); // Prev links are circular, next link is NULL instead of looping back to // Head. if (Src == Head) Head = Dst; else Prev->Contents.Reg.Next = Dst; // Update Prev pointer. This also works when Src was pointing to itself // in a 1-element list. In that case Head == Dst. (Next ? Next : Head)->Contents.Reg.Prev = Dst; } Dst += Stride; Src += Stride; } while (--NumOps); } /// replaceRegWith - Replace all instances of FromReg with ToReg in the /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), /// except that it also changes any definitions of the register as well. /// If ToReg is a physical register we apply the sub register to obtain the /// final/proper physical register. void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) { assert(FromReg != ToReg && "Cannot replace a reg with itself"); const TargetRegisterInfo *TRI = getTargetRegisterInfo(); // TODO: This could be more efficient by bulk changing the operands. for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) { MachineOperand &O = *I; ++I; if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { O.substPhysReg(ToReg, *TRI); } else { O.setReg(ToReg); } } } /// getVRegDef - Return the machine instr that defines the specified virtual /// register or null if none is found. This assumes that the code is in SSA /// form, so there should only be one definition. MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const { // Since we are in SSA form, we can use the first definition. def_instr_iterator I = def_instr_begin(Reg); assert((I.atEnd() || std::next(I) == def_instr_end()) && "getVRegDef assumes a single definition or no definition"); return !I.atEnd() ? &*I : nullptr; } /// getUniqueVRegDef - Return the unique machine instr that defines the /// specified virtual register or null if none is found. If there are /// multiple definitions or no definition, return null. MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const { if (def_empty(Reg)) return nullptr; def_instr_iterator I = def_instr_begin(Reg); if (std::next(I) != def_instr_end()) return nullptr; return &*I; } bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const { use_nodbg_iterator UI = use_nodbg_begin(RegNo); if (UI == use_nodbg_end()) return false; return ++UI == use_nodbg_end(); } /// clearKillFlags - Iterate over all the uses of the given register and /// clear the kill flag from the MachineOperand. This function is used by /// optimization passes which extend register lifetimes and need only /// preserve conservative kill flag information. void MachineRegisterInfo::clearKillFlags(unsigned Reg) const { for (MachineOperand &MO : use_operands(Reg)) MO.setIsKill(false); } bool MachineRegisterInfo::isLiveIn(unsigned Reg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->first == Reg || I->second == Reg) return true; return false; } /// getLiveInPhysReg - If VReg is a live-in virtual register, return the /// corresponding live-in physical register. unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->second == VReg) return I->first; return 0; } /// getLiveInVirtReg - If PReg is a live-in physical register, return the /// corresponding live-in physical register. unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->first == PReg) return I->second; return 0; } /// EmitLiveInCopies - Emit copies to initialize livein virtual registers /// into the given entry block. void MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB, const TargetRegisterInfo &TRI, const TargetInstrInfo &TII) { // Emit the copies into the top of the block. for (unsigned i = 0, e = LiveIns.size(); i != e; ++i) if (LiveIns[i].second) { if (use_nodbg_empty(LiveIns[i].second)) { // The livein has no non-dbg uses. Drop it. // // It would be preferable to have isel avoid creating live-in // records for unused arguments in the first place, but it's // complicated by the debug info code for arguments. LiveIns.erase(LiveIns.begin() + i); --i; --e; } else { // Emit a copy. BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(), TII.get(TargetOpcode::COPY), LiveIns[i].second) .addReg(LiveIns[i].first); // Add the register to the entry block live-in set. EntryMBB->addLiveIn(LiveIns[i].first); } } else { // Add the register to the entry block live-in set. EntryMBB->addLiveIn(LiveIns[i].first); } } LaneBitmask MachineRegisterInfo::getMaxLaneMaskForVReg(unsigned Reg) const { // Lane masks are only defined for vregs. assert(TargetRegisterInfo::isVirtualRegister(Reg)); const TargetRegisterClass &TRC = *getRegClass(Reg); return TRC.getLaneMask(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MachineRegisterInfo::dumpUses(unsigned Reg) const { for (MachineInstr &I : use_instructions(Reg)) I.dump(); } #endif void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) { ReservedRegs = getTargetRegisterInfo()->getReservedRegs(MF); assert(ReservedRegs.size() == getTargetRegisterInfo()->getNumRegs() && "Invalid ReservedRegs vector from target"); } bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg) const { assert(TargetRegisterInfo::isPhysicalRegister(PhysReg)); const TargetRegisterInfo *TRI = getTargetRegisterInfo(); if (TRI->isConstantPhysReg(PhysReg)) return true; // Check if any overlapping register is modified, or allocatable so it may be // used later. for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) if (!def_empty(*AI) || isAllocatable(*AI)) return false; return true; } bool MachineRegisterInfo::isCallerPreservedOrConstPhysReg(unsigned PhysReg) const { const TargetRegisterInfo *TRI = getTargetRegisterInfo(); return isConstantPhysReg(PhysReg) || TRI->isCallerPreservedPhysReg(PhysReg, *MF); } /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the /// specified register as undefined which causes the DBG_VALUE to be /// deleted during LiveDebugVariables analysis. void MachineRegisterInfo::markUsesInDebugValueAsUndef(unsigned Reg) const { // Mark any DBG_VALUE that uses Reg as undef (but don't delete it.) MachineRegisterInfo::use_instr_iterator nextI; for (use_instr_iterator I = use_instr_begin(Reg), E = use_instr_end(); I != E; I = nextI) { nextI = std::next(I); // I is invalidated by the setReg MachineInstr *UseMI = &*I; if (UseMI->isDebugValue()) UseMI->getOperand(0).setReg(0U); } } static const Function *getCalledFunction(const MachineInstr &MI) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isGlobal()) continue; const Function *Func = dyn_cast(MO.getGlobal()); if (Func != nullptr) return Func; } return nullptr; } static bool isNoReturnDef(const MachineOperand &MO) { // Anything which is not a noreturn function is a real def. const MachineInstr &MI = *MO.getParent(); if (!MI.isCall()) return false; const MachineBasicBlock &MBB = *MI.getParent(); if (!MBB.succ_empty()) return false; const MachineFunction &MF = *MBB.getParent(); // We need to keep correct unwind information even if the function will // not return, since the runtime may need it. if (MF.getFunction().hasFnAttribute(Attribute::UWTable)) return false; const Function *Called = getCalledFunction(MI); return !(Called == nullptr || !Called->hasFnAttribute(Attribute::NoReturn) || !Called->hasFnAttribute(Attribute::NoUnwind)); } bool MachineRegisterInfo::isPhysRegModified(unsigned PhysReg, bool SkipNoReturnDef) const { if (UsedPhysRegMask.test(PhysReg)) return true; const TargetRegisterInfo *TRI = getTargetRegisterInfo(); for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) { for (const MachineOperand &MO : make_range(def_begin(*AI), def_end())) { if (!SkipNoReturnDef && isNoReturnDef(MO)) continue; return true; } } return false; } bool MachineRegisterInfo::isPhysRegUsed(unsigned PhysReg) const { if (UsedPhysRegMask.test(PhysReg)) return true; const TargetRegisterInfo *TRI = getTargetRegisterInfo(); for (MCRegAliasIterator AliasReg(PhysReg, TRI, true); AliasReg.isValid(); ++AliasReg) { if (!reg_nodbg_empty(*AliasReg)) return true; } return false; } void MachineRegisterInfo::disableCalleeSavedRegister(unsigned Reg) { const TargetRegisterInfo *TRI = getTargetRegisterInfo(); assert(Reg && (Reg < TRI->getNumRegs()) && "Trying to disable an invalid register"); if (!IsUpdatedCSRsInitialized) { const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); for (const MCPhysReg *I = CSR; *I; ++I) UpdatedCSRs.push_back(*I); // Zero value represents the end of the register list // (no more registers should be pushed). UpdatedCSRs.push_back(0); IsUpdatedCSRsInitialized = true; } // Remove the register (and its aliases from the list). for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) UpdatedCSRs.erase(std::remove(UpdatedCSRs.begin(), UpdatedCSRs.end(), *AI), UpdatedCSRs.end()); } const MCPhysReg *MachineRegisterInfo::getCalleeSavedRegs() const { if (IsUpdatedCSRsInitialized) return UpdatedCSRs.data(); return getTargetRegisterInfo()->getCalleeSavedRegs(MF); } void MachineRegisterInfo::setCalleeSavedRegs(ArrayRef CSRs) { if (IsUpdatedCSRsInitialized) UpdatedCSRs.clear(); for (MCPhysReg Reg : CSRs) UpdatedCSRs.push_back(Reg); // Zero value represents the end of the register list // (no more registers should be pushed). UpdatedCSRs.push_back(0); IsUpdatedCSRsInitialized = true; } bool MachineRegisterInfo::isReservedRegUnit(unsigned Unit) const { const TargetRegisterInfo *TRI = getTargetRegisterInfo(); for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { bool IsRootReserved = true; for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); Super.isValid(); ++Super) { unsigned Reg = *Super; if (!isReserved(Reg)) { IsRootReserved = false; break; } } if (IsRootReserved) return true; } return false; }