//===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the LiveRangeCalc class. // //===----------------------------------------------------------------------===// #include "LiveRangeCalc.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc" // Reserve an address that indicates a value that is known to be "undef". static VNInfo UndefVNI(0xbad, SlotIndex()); void LiveRangeCalc::resetLiveOutMap() { unsigned NumBlocks = MF->getNumBlockIDs(); Seen.clear(); Seen.resize(NumBlocks); EntryInfos.clear(); Map.resize(NumBlocks); } void LiveRangeCalc::reset(const MachineFunction *mf, SlotIndexes *SI, MachineDominatorTree *MDT, VNInfo::Allocator *VNIA) { MF = mf; MRI = &MF->getRegInfo(); Indexes = SI; DomTree = MDT; Alloc = VNIA; resetLiveOutMap(); LiveIn.clear(); } static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, LiveRange &LR, const MachineOperand &MO) { const MachineInstr &MI = *MO.getParent(); SlotIndex DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); // Create the def in LR. This may find an existing def. LR.createDeadDef(DefIdx, Alloc); } void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { assert(MRI && Indexes && "call reset() first"); // Step 1: Create minimal live segments for every definition of Reg. // Visit all def operands. If the same instruction has multiple defs of Reg, // createDeadDef() will deduplicate. const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); unsigned Reg = LI.reg; for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { if (!MO.isDef() && !MO.readsReg()) continue; unsigned SubReg = MO.getSubReg(); if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) : MRI->getMaxLaneMaskForVReg(Reg); // If this is the first time we see a subregister def, initialize // subranges by creating a copy of the main range. if (!LI.hasSubRanges() && !LI.empty()) { LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); LI.createSubRangeFrom(*Alloc, ClassMask, LI); } LI.refineSubRanges(*Alloc, SubMask, [&MO, this](LiveInterval::SubRange &SR) { if (MO.isDef()) createDeadDef(*Indexes, *Alloc, SR, MO); }); } // Create the def in the main liverange. We do not have to do this if // subranges are tracked as we recreate the main range later in this case. if (MO.isDef() && !LI.hasSubRanges()) createDeadDef(*Indexes, *Alloc, LI, MO); } // We may have created empty live ranges for partially undefined uses, we // can't keep them because we won't find defs in them later. LI.removeEmptySubRanges(); // Step 2: Extend live segments to all uses, constructing SSA form as // necessary. if (LI.hasSubRanges()) { for (LiveInterval::SubRange &S : LI.subranges()) { LiveRangeCalc SubLRC; SubLRC.reset(MF, Indexes, DomTree, Alloc); SubLRC.extendToUses(S, Reg, S.LaneMask, &LI); } LI.clear(); constructMainRangeFromSubranges(LI); } else { resetLiveOutMap(); extendToUses(LI, Reg, LaneBitmask::getAll()); } } void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { // First create dead defs at all defs found in subranges. LiveRange &MainRange = LI; assert(MainRange.segments.empty() && MainRange.valnos.empty() && "Expect empty main liverange"); for (const LiveInterval::SubRange &SR : LI.subranges()) { for (const VNInfo *VNI : SR.valnos) { if (!VNI->isUnused() && !VNI->isPHIDef()) MainRange.createDeadDef(VNI->def, *Alloc); } } resetLiveOutMap(); extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI); } void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { assert(MRI && Indexes && "call reset() first"); // Visit all def operands. If the same instruction has multiple defs of Reg, // LR.createDeadDef() will deduplicate. for (MachineOperand &MO : MRI->def_operands(Reg)) createDeadDef(*Indexes, *Alloc, LR, MO); } void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask, LiveInterval *LI) { SmallVector Undefs; if (LI != nullptr) LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); // Visit all operands that read Reg. This may include partial defs. bool IsSubRange = !Mask.all(); const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { // Clear all kill flags. They will be reinserted after register allocation // by LiveIntervals::addKillFlags(). if (MO.isUse()) MO.setIsKill(false); // MO::readsReg returns "true" for subregister defs. This is for keeping // liveness of the entire register (i.e. for the main range of the live // interval). For subranges, definitions of non-overlapping subregisters // do not count as uses. if (!MO.readsReg() || (IsSubRange && MO.isDef())) continue; unsigned SubReg = MO.getSubReg(); if (SubReg != 0) { LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); if (MO.isDef()) SLM = ~SLM; // Ignore uses not reading the current (sub)range. if ((SLM & Mask).none()) continue; } // Determine the actual place of the use. const MachineInstr *MI = MO.getParent(); unsigned OpNo = (&MO - &MI->getOperand(0)); SlotIndex UseIdx; if (MI->isPHI()) { assert(!MO.isDef() && "Cannot handle PHI def of partial register."); // The actual place where a phi operand is used is the end of the pred // MBB. PHI operands are paired: (Reg, PredMBB). UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); } else { // Check for early-clobber redefs. bool isEarlyClobber = false; unsigned DefIdx; if (MO.isDef()) isEarlyClobber = MO.isEarlyClobber(); else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { // FIXME: This would be a lot easier if tied early-clobber uses also // had an early-clobber flag. isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); } UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); } // MI is reading Reg. We may have visited MI before if it happens to be // reading Reg multiple times. That is OK, extend() is idempotent. extend(LR, UseIdx, Reg, Undefs); } } void LiveRangeCalc::updateFromLiveIns() { LiveRangeUpdater Updater; for (const LiveInBlock &I : LiveIn) { if (!I.DomNode) continue; MachineBasicBlock *MBB = I.DomNode->getBlock(); assert(I.Value && "No live-in value found"); SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(MBB); if (I.Kill.isValid()) // Value is killed inside this block. End = I.Kill; else { // The value is live-through, update LiveOut as well. // Defer the Domtree lookup until it is needed. assert(Seen.test(MBB->getNumber())); Map[MBB] = LiveOutPair(I.Value, nullptr); } Updater.setDest(&I.LR); Updater.add(Start, End, I.Value); } LiveIn.clear(); } void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, ArrayRef Undefs) { assert(Use.isValid() && "Invalid SlotIndex"); assert(Indexes && "Missing SlotIndexes"); assert(DomTree && "Missing dominator tree"); MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); assert(UseMBB && "No MBB at Use"); // Is there a def in the same MBB we can extend? auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); if (EP.first != nullptr || EP.second) return; // Find the single reaching def, or determine if Use is jointly dominated by // multiple values, and we may need to create even more phi-defs to preserve // VNInfo SSA form. Perform a search for all predecessor blocks where we // know the dominating VNInfo. if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) return; // When there were multiple different values, we may need new PHIs. calculateValues(); } // This function is called by a client after using the low-level API to add // live-out and live-in blocks. The unique value optimization is not // available, SplitEditor::transferValues handles that case directly anyway. void LiveRangeCalc::calculateValues() { assert(Indexes && "Missing SlotIndexes"); assert(DomTree && "Missing dominator tree"); updateSSA(); updateFromLiveIns(); } bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef Undefs, MachineBasicBlock &MBB, BitVector &DefOnEntry, BitVector &UndefOnEntry) { unsigned BN = MBB.getNumber(); if (DefOnEntry[BN]) return true; if (UndefOnEntry[BN]) return false; auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool { for (MachineBasicBlock *S : B.successors()) DefOnEntry[S->getNumber()] = true; DefOnEntry[BN] = true; return true; }; SetVector WorkList; // Checking if the entry of MBB is reached by some def: add all predecessors // that are potentially defined-on-exit to the work list. for (MachineBasicBlock *P : MBB.predecessors()) WorkList.insert(P->getNumber()); for (unsigned i = 0; i != WorkList.size(); ++i) { // Determine if the exit from the block is reached by some def. unsigned N = WorkList[i]; MachineBasicBlock &B = *MF->getBlockNumbered(N); if (Seen[N]) { const LiveOutPair &LOB = Map[&B]; if (LOB.first != nullptr && LOB.first != &UndefVNI) return MarkDefined(B); } SlotIndex Begin, End; std::tie(Begin, End) = Indexes->getMBBRange(&B); // Treat End as not belonging to B. // If LR has a segment S that starts at the next block, i.e. [End, ...), // std::upper_bound will return the segment following S. Instead, // S should be treated as the first segment that does not overlap B. LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), End.getPrevSlot()); if (UB != LR.begin()) { LiveRange::Segment &Seg = *std::prev(UB); if (Seg.end > Begin) { // There is a segment that overlaps B. If the range is not explicitly // undefined between the end of the segment and the end of the block, // treat the block as defined on exit. If it is, go to the next block // on the work list. if (LR.isUndefIn(Undefs, Seg.end, End)) continue; return MarkDefined(B); } } // No segment overlaps with this block. If this block is not defined on // entry, or it undefines the range, do not process its predecessors. if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { UndefOnEntry[N] = true; continue; } if (DefOnEntry[N]) return MarkDefined(B); // Still don't know: add all predecessors to the work list. for (MachineBasicBlock *P : B.predecessors()) WorkList.insert(P->getNumber()); } UndefOnEntry[BN] = true; return false; } bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, SlotIndex Use, unsigned PhysReg, ArrayRef Undefs) { unsigned UseMBBNum = UseMBB.getNumber(); // Block numbers where LR should be live-in. SmallVector WorkList(1, UseMBBNum); // Remember if we have seen more than one value. bool UniqueVNI = true; VNInfo *TheVNI = nullptr; bool FoundUndef = false; // Using Seen as a visited set, perform a BFS for all reaching defs. for (unsigned i = 0; i != WorkList.size(); ++i) { MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); #ifndef NDEBUG if (MBB->pred_empty()) { MBB->getParent()->verify(); errs() << "Use of " << printReg(PhysReg) << " does not have a corresponding definition on every path:\n"; const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); if (MI != nullptr) errs() << Use << " " << *MI; report_fatal_error("Use not jointly dominated by defs."); } if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && !MBB->isLiveIn(PhysReg)) { MBB->getParent()->verify(); const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); errs() << "The register " << printReg(PhysReg, TRI) << " needs to be live in to " << printMBBReference(*MBB) << ", but is missing from the live-in list.\n"; report_fatal_error("Invalid global physical register"); } #endif FoundUndef |= MBB->pred_empty(); for (MachineBasicBlock *Pred : MBB->predecessors()) { // Is this a known live-out block? if (Seen.test(Pred->getNumber())) { if (VNInfo *VNI = Map[Pred].first) { if (TheVNI && TheVNI != VNI) UniqueVNI = false; TheVNI = VNI; } continue; } SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(Pred); // First time we see Pred. Try to determine the live-out value, but set // it as null if Pred is live-through with an unknown value. auto EP = LR.extendInBlock(Undefs, Start, End); VNInfo *VNI = EP.first; FoundUndef |= EP.second; setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI); if (VNI) { if (TheVNI && TheVNI != VNI) UniqueVNI = false; TheVNI = VNI; } if (VNI || EP.second) continue; // No, we need a live-in value for Pred as well if (Pred != &UseMBB) WorkList.push_back(Pred->getNumber()); else // Loopback to UseMBB, so value is really live through. Use = SlotIndex(); } } LiveIn.clear(); FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI); if (!Undefs.empty() && FoundUndef) UniqueVNI = false; // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but // neither require it. Skip the sorting overhead for small updates. if (WorkList.size() > 4) array_pod_sort(WorkList.begin(), WorkList.end()); // If a unique reaching def was found, blit in the live ranges immediately. if (UniqueVNI) { assert(TheVNI != nullptr && TheVNI != &UndefVNI); LiveRangeUpdater Updater(&LR); for (unsigned BN : WorkList) { SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(BN); // Trim the live range in UseMBB. if (BN == UseMBBNum && Use.isValid()) End = Use; else Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); Updater.add(Start, End, TheVNI); } return true; } // Prepare the defined/undefined bit vectors. EntryInfoMap::iterator Entry; bool DidInsert; std::tie(Entry, DidInsert) = EntryInfos.insert( std::make_pair(&LR, std::make_pair(BitVector(), BitVector()))); if (DidInsert) { // Initialize newly inserted entries. unsigned N = MF->getNumBlockIDs(); Entry->second.first.resize(N); Entry->second.second.resize(N); } BitVector &DefOnEntry = Entry->second.first; BitVector &UndefOnEntry = Entry->second.second; // Multiple values were found, so transfer the work list to the LiveIn array // where UpdateSSA will use it as a work list. LiveIn.reserve(WorkList.size()); for (unsigned BN : WorkList) { MachineBasicBlock *MBB = MF->getBlockNumbered(BN); if (!Undefs.empty() && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) continue; addLiveInBlock(LR, DomTree->getNode(MBB)); if (MBB == &UseMBB) LiveIn.back().Kill = Use; } return false; } // This is essentially the same iterative algorithm that SSAUpdater uses, // except we already have a dominator tree, so we don't have to recompute it. void LiveRangeCalc::updateSSA() { assert(Indexes && "Missing SlotIndexes"); assert(DomTree && "Missing dominator tree"); // Interate until convergence. bool Changed; do { Changed = false; // Propagate live-out values down the dominator tree, inserting phi-defs // when necessary. for (LiveInBlock &I : LiveIn) { MachineDomTreeNode *Node = I.DomNode; // Skip block if the live-in value has already been determined. if (!Node) continue; MachineBasicBlock *MBB = Node->getBlock(); MachineDomTreeNode *IDom = Node->getIDom(); LiveOutPair IDomValue; // We need a live-in value to a block with no immediate dominator? // This is probably an unreachable block that has survived somehow. bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); // IDom dominates all of our predecessors, but it may not be their // immediate dominator. Check if any of them have live-out values that are // properly dominated by IDom. If so, we need a phi-def here. if (!needPHI) { IDomValue = Map[IDom->getBlock()]; // Cache the DomTree node that defined the value. if (IDomValue.first && IDomValue.first != &UndefVNI && !IDomValue.second) { Map[IDom->getBlock()].second = IDomValue.second = DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); } for (MachineBasicBlock *Pred : MBB->predecessors()) { LiveOutPair &Value = Map[Pred]; if (!Value.first || Value.first == IDomValue.first) continue; if (Value.first == &UndefVNI) { needPHI = true; break; } // Cache the DomTree node that defined the value. if (!Value.second) Value.second = DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); // This predecessor is carrying something other than IDomValue. // It could be because IDomValue hasn't propagated yet, or it could be // because MBB is in the dominance frontier of that value. if (DomTree->dominates(IDom, Value.second)) { needPHI = true; break; } } } // The value may be live-through even if Kill is set, as can happen when // we are called from extendRange. In that case LiveOutSeen is true, and // LiveOut indicates a foreign or missing value. LiveOutPair &LOP = Map[MBB]; // Create a phi-def if required. if (needPHI) { Changed = true; assert(Alloc && "Need VNInfo allocator to create PHI-defs"); SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(MBB); LiveRange &LR = I.LR; VNInfo *VNI = LR.getNextValue(Start, *Alloc); I.Value = VNI; // This block is done, we know the final value. I.DomNode = nullptr; // Add liveness since updateFromLiveIns now skips this node. if (I.Kill.isValid()) { if (VNI) LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); } else { if (VNI) LR.addSegment(LiveInterval::Segment(Start, End, VNI)); LOP = LiveOutPair(VNI, Node); } } else if (IDomValue.first && IDomValue.first != &UndefVNI) { // No phi-def here. Remember incoming value. I.Value = IDomValue.first; // If the IDomValue is killed in the block, don't propagate through. if (I.Kill.isValid()) continue; // Propagate IDomValue if it isn't killed: // MBB is live-out and doesn't define its own value. if (LOP.first == IDomValue.first) continue; Changed = true; LOP = IDomValue; } } } while (Changed); } bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB, ArrayRef Defs, const SlotIndexes &Indexes) { const MachineFunction &MF = *MBB->getParent(); BitVector DefBlocks(MF.getNumBlockIDs()); for (SlotIndex I : Defs) DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber()); SetVector PredQueue; PredQueue.insert(MBB->getNumber()); for (unsigned i = 0; i != PredQueue.size(); ++i) { unsigned BN = PredQueue[i]; if (DefBlocks[BN]) return true; const MachineBasicBlock *B = MF.getBlockNumbered(BN); for (const MachineBasicBlock *P : B->predecessors()) PredQueue.insert(P->getNumber()); } return false; }