//===- MetadataLoader.cpp - Internal BitcodeReader implementation ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MetadataLoader.h" #include "ValueList.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/Function.h" #include "llvm/IR/GVMaterializer.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalIFunc.h" #include "llvm/IR/GlobalIndirectSymbol.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/TrackingMDRef.h" #include "llvm/IR/Type.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "bitcode-reader" STATISTIC(NumMDStringLoaded, "Number of MDStrings loaded"); STATISTIC(NumMDNodeTemporary, "Number of MDNode::Temporary created"); STATISTIC(NumMDRecordLoaded, "Number of Metadata records loaded"); /// Flag whether we need to import full type definitions for ThinLTO. /// Currently needed for Darwin and LLDB. static cl::opt ImportFullTypeDefinitions( "import-full-type-definitions", cl::init(false), cl::Hidden, cl::desc("Import full type definitions for ThinLTO.")); static cl::opt DisableLazyLoading( "disable-ondemand-mds-loading", cl::init(false), cl::Hidden, cl::desc("Force disable the lazy-loading on-demand of metadata when " "loading bitcode for importing.")); namespace { static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } class BitcodeReaderMetadataList { /// Array of metadata references. /// /// Don't use std::vector here. Some versions of libc++ copy (instead of /// move) on resize, and TrackingMDRef is very expensive to copy. SmallVector MetadataPtrs; /// The set of indices in MetadataPtrs above of forward references that were /// generated. SmallDenseSet ForwardReference; /// The set of indices in MetadataPtrs above of Metadata that need to be /// resolved. SmallDenseSet UnresolvedNodes; /// Structures for resolving old type refs. struct { SmallDenseMap Unknown; SmallDenseMap Final; SmallDenseMap FwdDecls; SmallVector, 1> Arrays; } OldTypeRefs; LLVMContext &Context; public: BitcodeReaderMetadataList(LLVMContext &C) : Context(C) {} // vector compatibility methods unsigned size() const { return MetadataPtrs.size(); } void resize(unsigned N) { MetadataPtrs.resize(N); } void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } void clear() { MetadataPtrs.clear(); } Metadata *back() const { return MetadataPtrs.back(); } void pop_back() { MetadataPtrs.pop_back(); } bool empty() const { return MetadataPtrs.empty(); } Metadata *operator[](unsigned i) const { assert(i < MetadataPtrs.size()); return MetadataPtrs[i]; } Metadata *lookup(unsigned I) const { if (I < MetadataPtrs.size()) return MetadataPtrs[I]; return nullptr; } void shrinkTo(unsigned N) { assert(N <= size() && "Invalid shrinkTo request!"); assert(ForwardReference.empty() && "Unexpected forward refs"); assert(UnresolvedNodes.empty() && "Unexpected unresolved node"); MetadataPtrs.resize(N); } /// Return the given metadata, creating a replaceable forward reference if /// necessary. Metadata *getMetadataFwdRef(unsigned Idx); /// Return the the given metadata only if it is fully resolved. /// /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() /// would give \c false. Metadata *getMetadataIfResolved(unsigned Idx); MDNode *getMDNodeFwdRefOrNull(unsigned Idx); void assignValue(Metadata *MD, unsigned Idx); void tryToResolveCycles(); bool hasFwdRefs() const { return !ForwardReference.empty(); } int getNextFwdRef() { assert(hasFwdRefs()); return *ForwardReference.begin(); } /// Upgrade a type that had an MDString reference. void addTypeRef(MDString &UUID, DICompositeType &CT); /// Upgrade a type that had an MDString reference. Metadata *upgradeTypeRef(Metadata *MaybeUUID); /// Upgrade a type ref array that may have MDString references. Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); private: Metadata *resolveTypeRefArray(Metadata *MaybeTuple); }; void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { if (auto *MDN = dyn_cast(MD)) if (!MDN->isResolved()) UnresolvedNodes.insert(Idx); if (Idx == size()) { push_back(MD); return; } if (Idx >= size()) resize(Idx + 1); TrackingMDRef &OldMD = MetadataPtrs[Idx]; if (!OldMD) { OldMD.reset(MD); return; } // If there was a forward reference to this value, replace it. TempMDTuple PrevMD(cast(OldMD.get())); PrevMD->replaceAllUsesWith(MD); ForwardReference.erase(Idx); } Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { if (Idx >= size()) resize(Idx + 1); if (Metadata *MD = MetadataPtrs[Idx]) return MD; // Track forward refs to be resolved later. ForwardReference.insert(Idx); // Create and return a placeholder, which will later be RAUW'd. ++NumMDNodeTemporary; Metadata *MD = MDNode::getTemporary(Context, None).release(); MetadataPtrs[Idx].reset(MD); return MD; } Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { Metadata *MD = lookup(Idx); if (auto *N = dyn_cast_or_null(MD)) if (!N->isResolved()) return nullptr; return MD; } MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { return dyn_cast_or_null(getMetadataFwdRef(Idx)); } void BitcodeReaderMetadataList::tryToResolveCycles() { if (!ForwardReference.empty()) // Still forward references... can't resolve cycles. return; // Give up on finding a full definition for any forward decls that remain. for (const auto &Ref : OldTypeRefs.FwdDecls) OldTypeRefs.Final.insert(Ref); OldTypeRefs.FwdDecls.clear(); // Upgrade from old type ref arrays. In strange cases, this could add to // OldTypeRefs.Unknown. for (const auto &Array : OldTypeRefs.Arrays) Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); OldTypeRefs.Arrays.clear(); // Replace old string-based type refs with the resolved node, if possible. // If we haven't seen the node, leave it to the verifier to complain about // the invalid string reference. for (const auto &Ref : OldTypeRefs.Unknown) { if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) Ref.second->replaceAllUsesWith(CT); else Ref.second->replaceAllUsesWith(Ref.first); } OldTypeRefs.Unknown.clear(); if (UnresolvedNodes.empty()) // Nothing to do. return; // Resolve any cycles. for (unsigned I : UnresolvedNodes) { auto &MD = MetadataPtrs[I]; auto *N = dyn_cast_or_null(MD); if (!N) continue; assert(!N->isTemporary() && "Unexpected forward reference"); N->resolveCycles(); } // Make sure we return early again until there's another unresolved ref. UnresolvedNodes.clear(); } void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, DICompositeType &CT) { assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); if (CT.isForwardDecl()) OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); else OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); } Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { auto *UUID = dyn_cast_or_null(MaybeUUID); if (LLVM_LIKELY(!UUID)) return MaybeUUID; if (auto *CT = OldTypeRefs.Final.lookup(UUID)) return CT; auto &Ref = OldTypeRefs.Unknown[UUID]; if (!Ref) Ref = MDNode::getTemporary(Context, None); return Ref.get(); } Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { auto *Tuple = dyn_cast_or_null(MaybeTuple); if (!Tuple || Tuple->isDistinct()) return MaybeTuple; // Look through the array immediately if possible. if (!Tuple->isTemporary()) return resolveTypeRefArray(Tuple); // Create and return a placeholder to use for now. Eventually // resolveTypeRefArrays() will be resolve this forward reference. OldTypeRefs.Arrays.emplace_back( std::piecewise_construct, std::forward_as_tuple(Tuple), std::forward_as_tuple(MDTuple::getTemporary(Context, None))); return OldTypeRefs.Arrays.back().second.get(); } Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { auto *Tuple = dyn_cast_or_null(MaybeTuple); if (!Tuple || Tuple->isDistinct()) return MaybeTuple; // Look through the DITypeRefArray, upgrading each DITypeRef. SmallVector Ops; Ops.reserve(Tuple->getNumOperands()); for (Metadata *MD : Tuple->operands()) Ops.push_back(upgradeTypeRef(MD)); return MDTuple::get(Context, Ops); } namespace { class PlaceholderQueue { // Placeholders would thrash around when moved, so store in a std::deque // instead of some sort of vector. std::deque PHs; public: ~PlaceholderQueue() { assert(empty() && "PlaceholderQueue hasn't been flushed before being destroyed"); } bool empty() { return PHs.empty(); } DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); void flush(BitcodeReaderMetadataList &MetadataList); /// Return the list of temporaries nodes in the queue, these need to be /// loaded before we can flush the queue. void getTemporaries(BitcodeReaderMetadataList &MetadataList, DenseSet &Temporaries) { for (auto &PH : PHs) { auto ID = PH.getID(); auto *MD = MetadataList.lookup(ID); if (!MD) { Temporaries.insert(ID); continue; } auto *N = dyn_cast_or_null(MD); if (N && N->isTemporary()) Temporaries.insert(ID); } } }; } // end anonymous namespace DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { PHs.emplace_back(ID); return PHs.back(); } void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { while (!PHs.empty()) { auto *MD = MetadataList.lookup(PHs.front().getID()); assert(MD && "Flushing placeholder on unassigned MD"); #ifndef NDEBUG if (auto *MDN = dyn_cast(MD)) assert(MDN->isResolved() && "Flushing Placeholder while cycles aren't resolved"); #endif PHs.front().replaceUseWith(MD); PHs.pop_front(); } } } // anonynous namespace static Error error(const Twine &Message) { return make_error( Message, make_error_code(BitcodeError::CorruptedBitcode)); } class MetadataLoader::MetadataLoaderImpl { BitcodeReaderMetadataList MetadataList; BitcodeReaderValueList &ValueList; BitstreamCursor &Stream; LLVMContext &Context; Module &TheModule; std::function getTypeByID; /// Cursor associated with the lazy-loading of Metadata. This is the easy way /// to keep around the right "context" (Abbrev list) to be able to jump in /// the middle of the metadata block and load any record. BitstreamCursor IndexCursor; /// Index that keeps track of MDString values. std::vector MDStringRef; /// On-demand loading of a single MDString. Requires the index above to be /// populated. MDString *lazyLoadOneMDString(unsigned Idx); /// Index that keeps track of where to find a metadata record in the stream. std::vector GlobalMetadataBitPosIndex; /// Populate the index above to enable lazily loading of metadata, and load /// the named metadata as well as the transitively referenced global /// Metadata. Expected lazyLoadModuleMetadataBlock(); /// On-demand loading of a single metadata. Requires the index above to be /// populated. void lazyLoadOneMetadata(unsigned Idx, PlaceholderQueue &Placeholders); // Keep mapping of seens pair of old-style CU <-> SP, and update pointers to // point from SP to CU after a block is completly parsed. std::vector> CUSubprograms; /// Functions that need to be matched with subprograms when upgrading old /// metadata. SmallDenseMap FunctionsWithSPs; // Map the bitcode's custom MDKind ID to the Module's MDKind ID. DenseMap MDKindMap; bool StripTBAA = false; bool HasSeenOldLoopTags = false; bool NeedUpgradeToDIGlobalVariableExpression = false; bool NeedDeclareExpressionUpgrade = false; /// True if metadata is being parsed for a module being ThinLTO imported. bool IsImporting = false; Error parseOneMetadata(SmallVectorImpl &Record, unsigned Code, PlaceholderQueue &Placeholders, StringRef Blob, unsigned &NextMetadataNo); Error parseMetadataStrings(ArrayRef Record, StringRef Blob, function_ref CallBack); Error parseGlobalObjectAttachment(GlobalObject &GO, ArrayRef Record); Error parseMetadataKindRecord(SmallVectorImpl &Record); void resolveForwardRefsAndPlaceholders(PlaceholderQueue &Placeholders); /// Upgrade old-style CU <-> SP pointers to point from SP to CU. void upgradeCUSubprograms() { for (auto CU_SP : CUSubprograms) if (auto *SPs = dyn_cast_or_null(CU_SP.second)) for (auto &Op : SPs->operands()) if (auto *SP = dyn_cast_or_null(Op)) SP->replaceUnit(CU_SP.first); CUSubprograms.clear(); } /// Upgrade old-style bare DIGlobalVariables to DIGlobalVariableExpressions. void upgradeCUVariables() { if (!NeedUpgradeToDIGlobalVariableExpression) return; // Upgrade list of variables attached to the CUs. if (NamedMDNode *CUNodes = TheModule.getNamedMetadata("llvm.dbg.cu")) for (unsigned I = 0, E = CUNodes->getNumOperands(); I != E; ++I) { auto *CU = cast(CUNodes->getOperand(I)); if (auto *GVs = dyn_cast_or_null(CU->getRawGlobalVariables())) for (unsigned I = 0; I < GVs->getNumOperands(); I++) if (auto *GV = dyn_cast_or_null(GVs->getOperand(I))) { auto *DGVE = DIGlobalVariableExpression::getDistinct( Context, GV, DIExpression::get(Context, {})); GVs->replaceOperandWith(I, DGVE); } } // Upgrade variables attached to globals. for (auto &GV : TheModule.globals()) { SmallVector MDs; GV.getMetadata(LLVMContext::MD_dbg, MDs); GV.eraseMetadata(LLVMContext::MD_dbg); for (auto *MD : MDs) if (auto *DGV = dyn_cast_or_null(MD)) { auto *DGVE = DIGlobalVariableExpression::getDistinct( Context, DGV, DIExpression::get(Context, {})); GV.addMetadata(LLVMContext::MD_dbg, *DGVE); } else GV.addMetadata(LLVMContext::MD_dbg, *MD); } } /// Remove a leading DW_OP_deref from DIExpressions in a dbg.declare that /// describes a function argument. void upgradeDeclareExpressions(Function &F) { if (!NeedDeclareExpressionUpgrade) return; for (auto &BB : F) for (auto &I : BB) if (auto *DDI = dyn_cast(&I)) if (auto *DIExpr = DDI->getExpression()) if (DIExpr->startsWithDeref() && dyn_cast_or_null(DDI->getAddress())) { SmallVector Ops; Ops.append(std::next(DIExpr->elements_begin()), DIExpr->elements_end()); auto *E = DIExpression::get(Context, Ops); DDI->setOperand(2, MetadataAsValue::get(Context, E)); } } /// Upgrade the expression from previous versions. Error upgradeDIExpression(uint64_t FromVersion, MutableArrayRef &Expr, SmallVectorImpl &Buffer) { auto N = Expr.size(); switch (FromVersion) { default: return error("Invalid record"); case 0: if (N >= 3 && Expr[N - 3] == dwarf::DW_OP_bit_piece) Expr[N - 3] = dwarf::DW_OP_LLVM_fragment; LLVM_FALLTHROUGH; case 1: // Move DW_OP_deref to the end. if (N && Expr[0] == dwarf::DW_OP_deref) { auto End = Expr.end(); if (Expr.size() >= 3 && *std::prev(End, 3) == dwarf::DW_OP_LLVM_fragment) End = std::prev(End, 3); std::move(std::next(Expr.begin()), End, Expr.begin()); *std::prev(End) = dwarf::DW_OP_deref; } NeedDeclareExpressionUpgrade = true; LLVM_FALLTHROUGH; case 2: { // Change DW_OP_plus to DW_OP_plus_uconst. // Change DW_OP_minus to DW_OP_uconst, DW_OP_minus auto SubExpr = ArrayRef(Expr); while (!SubExpr.empty()) { // Skip past other operators with their operands // for this version of the IR, obtained from // from historic DIExpression::ExprOperand::getSize(). size_t HistoricSize; switch (SubExpr.front()) { default: HistoricSize = 1; break; case dwarf::DW_OP_constu: case dwarf::DW_OP_minus: case dwarf::DW_OP_plus: HistoricSize = 2; break; case dwarf::DW_OP_LLVM_fragment: HistoricSize = 3; break; } // If the expression is malformed, make sure we don't // copy more elements than we should. HistoricSize = std::min(SubExpr.size(), HistoricSize); ArrayRef Args = SubExpr.slice(1, HistoricSize-1); switch (SubExpr.front()) { case dwarf::DW_OP_plus: Buffer.push_back(dwarf::DW_OP_plus_uconst); Buffer.append(Args.begin(), Args.end()); break; case dwarf::DW_OP_minus: Buffer.push_back(dwarf::DW_OP_constu); Buffer.append(Args.begin(), Args.end()); Buffer.push_back(dwarf::DW_OP_minus); break; default: Buffer.push_back(*SubExpr.begin()); Buffer.append(Args.begin(), Args.end()); break; } // Continue with remaining elements. SubExpr = SubExpr.slice(HistoricSize); } Expr = MutableArrayRef(Buffer); LLVM_FALLTHROUGH; } case 3: // Up-to-date! break; } return Error::success(); } void upgradeDebugInfo() { upgradeCUSubprograms(); upgradeCUVariables(); } public: MetadataLoaderImpl(BitstreamCursor &Stream, Module &TheModule, BitcodeReaderValueList &ValueList, std::function getTypeByID, bool IsImporting) : MetadataList(TheModule.getContext()), ValueList(ValueList), Stream(Stream), Context(TheModule.getContext()), TheModule(TheModule), getTypeByID(std::move(getTypeByID)), IsImporting(IsImporting) {} Error parseMetadata(bool ModuleLevel); bool hasFwdRefs() const { return MetadataList.hasFwdRefs(); } Metadata *getMetadataFwdRefOrLoad(unsigned ID) { if (ID < MDStringRef.size()) return lazyLoadOneMDString(ID); if (auto *MD = MetadataList.lookup(ID)) return MD; // If lazy-loading is enabled, we try recursively to load the operand // instead of creating a temporary. if (ID < (MDStringRef.size() + GlobalMetadataBitPosIndex.size())) { PlaceholderQueue Placeholders; lazyLoadOneMetadata(ID, Placeholders); resolveForwardRefsAndPlaceholders(Placeholders); return MetadataList.lookup(ID); } return MetadataList.getMetadataFwdRef(ID); } MDNode *getMDNodeFwdRefOrNull(unsigned Idx) { return MetadataList.getMDNodeFwdRefOrNull(Idx); } DISubprogram *lookupSubprogramForFunction(Function *F) { return FunctionsWithSPs.lookup(F); } bool hasSeenOldLoopTags() { return HasSeenOldLoopTags; } Error parseMetadataAttachment( Function &F, const SmallVectorImpl &InstructionList); Error parseMetadataKinds(); void setStripTBAA(bool Value) { StripTBAA = Value; } bool isStrippingTBAA() { return StripTBAA; } unsigned size() const { return MetadataList.size(); } void shrinkTo(unsigned N) { MetadataList.shrinkTo(N); } void upgradeDebugIntrinsics(Function &F) { upgradeDeclareExpressions(F); } }; Expected MetadataLoader::MetadataLoaderImpl::lazyLoadModuleMetadataBlock() { IndexCursor = Stream; SmallVector Record; // Get the abbrevs, and preload record positions to make them lazy-loadable. while (true) { BitstreamEntry Entry = IndexCursor.advanceSkippingSubblocks( BitstreamCursor::AF_DontPopBlockAtEnd); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: { return true; } case BitstreamEntry::Record: { // The interesting case. ++NumMDRecordLoaded; uint64_t CurrentPos = IndexCursor.GetCurrentBitNo(); auto Code = IndexCursor.skipRecord(Entry.ID); switch (Code) { case bitc::METADATA_STRINGS: { // Rewind and parse the strings. IndexCursor.JumpToBit(CurrentPos); StringRef Blob; Record.clear(); IndexCursor.readRecord(Entry.ID, Record, &Blob); unsigned NumStrings = Record[0]; MDStringRef.reserve(NumStrings); auto IndexNextMDString = [&](StringRef Str) { MDStringRef.push_back(Str); }; if (auto Err = parseMetadataStrings(Record, Blob, IndexNextMDString)) return std::move(Err); break; } case bitc::METADATA_INDEX_OFFSET: { // This is the offset to the index, when we see this we skip all the // records and load only an index to these. IndexCursor.JumpToBit(CurrentPos); Record.clear(); IndexCursor.readRecord(Entry.ID, Record); if (Record.size() != 2) return error("Invalid record"); auto Offset = Record[0] + (Record[1] << 32); auto BeginPos = IndexCursor.GetCurrentBitNo(); IndexCursor.JumpToBit(BeginPos + Offset); Entry = IndexCursor.advanceSkippingSubblocks( BitstreamCursor::AF_DontPopBlockAtEnd); assert(Entry.Kind == BitstreamEntry::Record && "Corrupted bitcode: Expected `Record` when trying to find the " "Metadata index"); Record.clear(); auto Code = IndexCursor.readRecord(Entry.ID, Record); (void)Code; assert(Code == bitc::METADATA_INDEX && "Corrupted bitcode: Expected " "`METADATA_INDEX` when trying " "to find the Metadata index"); // Delta unpack auto CurrentValue = BeginPos; GlobalMetadataBitPosIndex.reserve(Record.size()); for (auto &Elt : Record) { CurrentValue += Elt; GlobalMetadataBitPosIndex.push_back(CurrentValue); } break; } case bitc::METADATA_INDEX: // We don't expect to get there, the Index is loaded when we encounter // the offset. return error("Corrupted Metadata block"); case bitc::METADATA_NAME: { // Named metadata need to be materialized now and aren't deferred. IndexCursor.JumpToBit(CurrentPos); Record.clear(); unsigned Code = IndexCursor.readRecord(Entry.ID, Record); assert(Code == bitc::METADATA_NAME); // Read name of the named metadata. SmallString<8> Name(Record.begin(), Record.end()); Code = IndexCursor.ReadCode(); // Named Metadata comes in two parts, we expect the name to be followed // by the node Record.clear(); unsigned NextBitCode = IndexCursor.readRecord(Code, Record); assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; // Read named metadata elements. unsigned Size = Record.size(); NamedMDNode *NMD = TheModule.getOrInsertNamedMetadata(Name); for (unsigned i = 0; i != Size; ++i) { // FIXME: We could use a placeholder here, however NamedMDNode are // taking MDNode as operand and not using the Metadata infrastructure. // It is acknowledged by 'TODO: Inherit from Metadata' in the // NamedMDNode class definition. MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); assert(MD && "Invalid record"); NMD->addOperand(MD); } break; } case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { // FIXME: we need to do this early because we don't materialize global // value explicitly. IndexCursor.JumpToBit(CurrentPos); Record.clear(); IndexCursor.readRecord(Entry.ID, Record); if (Record.size() % 2 == 0) return error("Invalid record"); unsigned ValueID = Record[0]; if (ValueID >= ValueList.size()) return error("Invalid record"); if (auto *GO = dyn_cast(ValueList[ValueID])) if (Error Err = parseGlobalObjectAttachment( *GO, ArrayRef(Record).slice(1))) return std::move(Err); break; } case bitc::METADATA_KIND: case bitc::METADATA_STRING_OLD: case bitc::METADATA_OLD_FN_NODE: case bitc::METADATA_OLD_NODE: case bitc::METADATA_VALUE: case bitc::METADATA_DISTINCT_NODE: case bitc::METADATA_NODE: case bitc::METADATA_LOCATION: case bitc::METADATA_GENERIC_DEBUG: case bitc::METADATA_SUBRANGE: case bitc::METADATA_ENUMERATOR: case bitc::METADATA_BASIC_TYPE: case bitc::METADATA_DERIVED_TYPE: case bitc::METADATA_COMPOSITE_TYPE: case bitc::METADATA_SUBROUTINE_TYPE: case bitc::METADATA_MODULE: case bitc::METADATA_FILE: case bitc::METADATA_COMPILE_UNIT: case bitc::METADATA_SUBPROGRAM: case bitc::METADATA_LEXICAL_BLOCK: case bitc::METADATA_LEXICAL_BLOCK_FILE: case bitc::METADATA_NAMESPACE: case bitc::METADATA_MACRO: case bitc::METADATA_MACRO_FILE: case bitc::METADATA_TEMPLATE_TYPE: case bitc::METADATA_TEMPLATE_VALUE: case bitc::METADATA_GLOBAL_VAR: case bitc::METADATA_LOCAL_VAR: case bitc::METADATA_EXPRESSION: case bitc::METADATA_OBJC_PROPERTY: case bitc::METADATA_IMPORTED_ENTITY: case bitc::METADATA_GLOBAL_VAR_EXPR: // We don't expect to see any of these, if we see one, give up on // lazy-loading and fallback. MDStringRef.clear(); GlobalMetadataBitPosIndex.clear(); return false; } break; } } } } /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing /// module level metadata. Error MetadataLoader::MetadataLoaderImpl::parseMetadata(bool ModuleLevel) { if (!ModuleLevel && MetadataList.hasFwdRefs()) return error("Invalid metadata: fwd refs into function blocks"); // Record the entry position so that we can jump back here and efficiently // skip the whole block in case we lazy-load. auto EntryPos = Stream.GetCurrentBitNo(); if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) return error("Invalid record"); SmallVector Record; PlaceholderQueue Placeholders; // We lazy-load module-level metadata: we build an index for each record, and // then load individual record as needed, starting with the named metadata. if (ModuleLevel && IsImporting && MetadataList.empty() && !DisableLazyLoading) { auto SuccessOrErr = lazyLoadModuleMetadataBlock(); if (!SuccessOrErr) return SuccessOrErr.takeError(); if (SuccessOrErr.get()) { // An index was successfully created and we will be able to load metadata // on-demand. MetadataList.resize(MDStringRef.size() + GlobalMetadataBitPosIndex.size()); // Reading the named metadata created forward references and/or // placeholders, that we flush here. resolveForwardRefsAndPlaceholders(Placeholders); upgradeDebugInfo(); // Return at the beginning of the block, since it is easy to skip it // entirely from there. Stream.ReadBlockEnd(); // Pop the abbrev block context. Stream.JumpToBit(EntryPos); if (Stream.SkipBlock()) return error("Invalid record"); return Error::success(); } // Couldn't load an index, fallback to loading all the block "old-style". } unsigned NextMetadataNo = MetadataList.size(); // Read all the records. while (true) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: resolveForwardRefsAndPlaceholders(Placeholders); upgradeDebugInfo(); return Error::success(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); StringRef Blob; ++NumMDRecordLoaded; unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); if (Error Err = parseOneMetadata(Record, Code, Placeholders, Blob, NextMetadataNo)) return Err; } } MDString *MetadataLoader::MetadataLoaderImpl::lazyLoadOneMDString(unsigned ID) { ++NumMDStringLoaded; if (Metadata *MD = MetadataList.lookup(ID)) return cast(MD); auto MDS = MDString::get(Context, MDStringRef[ID]); MetadataList.assignValue(MDS, ID); return MDS; } void MetadataLoader::MetadataLoaderImpl::lazyLoadOneMetadata( unsigned ID, PlaceholderQueue &Placeholders) { assert(ID < (MDStringRef.size()) + GlobalMetadataBitPosIndex.size()); assert(ID >= MDStringRef.size() && "Unexpected lazy-loading of MDString"); // Lookup first if the metadata hasn't already been loaded. if (auto *MD = MetadataList.lookup(ID)) { auto *N = dyn_cast_or_null(MD); if (!N->isTemporary()) return; } SmallVector Record; StringRef Blob; IndexCursor.JumpToBit(GlobalMetadataBitPosIndex[ID - MDStringRef.size()]); auto Entry = IndexCursor.advanceSkippingSubblocks(); ++NumMDRecordLoaded; unsigned Code = IndexCursor.readRecord(Entry.ID, Record, &Blob); if (Error Err = parseOneMetadata(Record, Code, Placeholders, Blob, ID)) report_fatal_error("Can't lazyload MD"); } /// Ensure that all forward-references and placeholders are resolved. /// Iteratively lazy-loading metadata on-demand if needed. void MetadataLoader::MetadataLoaderImpl::resolveForwardRefsAndPlaceholders( PlaceholderQueue &Placeholders) { DenseSet Temporaries; while (1) { // Populate Temporaries with the placeholders that haven't been loaded yet. Placeholders.getTemporaries(MetadataList, Temporaries); // If we don't have any temporary, or FwdReference, we're done! if (Temporaries.empty() && !MetadataList.hasFwdRefs()) break; // First, load all the temporaries. This can add new placeholders or // forward references. for (auto ID : Temporaries) lazyLoadOneMetadata(ID, Placeholders); Temporaries.clear(); // Second, load the forward-references. This can also add new placeholders // or forward references. while (MetadataList.hasFwdRefs()) lazyLoadOneMetadata(MetadataList.getNextFwdRef(), Placeholders); } // At this point we don't have any forward reference remaining, or temporary // that haven't been loaded. We can safely drop RAUW support and mark cycles // as resolved. MetadataList.tryToResolveCycles(); // Finally, everything is in place, we can replace the placeholders operands // with the final node they refer to. Placeholders.flush(MetadataList); } Error MetadataLoader::MetadataLoaderImpl::parseOneMetadata( SmallVectorImpl &Record, unsigned Code, PlaceholderQueue &Placeholders, StringRef Blob, unsigned &NextMetadataNo) { bool IsDistinct = false; auto getMD = [&](unsigned ID) -> Metadata * { if (ID < MDStringRef.size()) return lazyLoadOneMDString(ID); if (!IsDistinct) { if (auto *MD = MetadataList.lookup(ID)) return MD; // If lazy-loading is enabled, we try recursively to load the operand // instead of creating a temporary. if (ID < (MDStringRef.size() + GlobalMetadataBitPosIndex.size())) { // Create a temporary for the node that is referencing the operand we // will lazy-load. It is needed before recursing in case there are // uniquing cycles. MetadataList.getMetadataFwdRef(NextMetadataNo); lazyLoadOneMetadata(ID, Placeholders); return MetadataList.lookup(ID); } // Return a temporary. return MetadataList.getMetadataFwdRef(ID); } if (auto *MD = MetadataList.getMetadataIfResolved(ID)) return MD; return &Placeholders.getPlaceholderOp(ID); }; auto getMDOrNull = [&](unsigned ID) -> Metadata * { if (ID) return getMD(ID - 1); return nullptr; }; auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { if (ID) return MetadataList.getMetadataFwdRef(ID - 1); return nullptr; }; auto getMDString = [&](unsigned ID) -> MDString * { // This requires that the ID is not really a forward reference. In // particular, the MDString must already have been resolved. auto MDS = getMDOrNull(ID); return cast_or_null(MDS); }; // Support for old type refs. auto getDITypeRefOrNull = [&](unsigned ID) { return MetadataList.upgradeTypeRef(getMDOrNull(ID)); }; #define GET_OR_DISTINCT(CLASS, ARGS) \ (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) switch (Code) { default: // Default behavior: ignore. break; case bitc::METADATA_NAME: { // Read name of the named metadata. SmallString<8> Name(Record.begin(), Record.end()); Record.clear(); Code = Stream.ReadCode(); ++NumMDRecordLoaded; unsigned NextBitCode = Stream.readRecord(Code, Record); if (NextBitCode != bitc::METADATA_NAMED_NODE) return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); // Read named metadata elements. unsigned Size = Record.size(); NamedMDNode *NMD = TheModule.getOrInsertNamedMetadata(Name); for (unsigned i = 0; i != Size; ++i) { MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); if (!MD) return error("Invalid record"); NMD->addOperand(MD); } break; } case bitc::METADATA_OLD_FN_NODE: { // FIXME: Remove in 4.0. // This is a LocalAsMetadata record, the only type of function-local // metadata. if (Record.size() % 2 == 1) return error("Invalid record"); // If this isn't a LocalAsMetadata record, we're dropping it. This used // to be legal, but there's no upgrade path. auto dropRecord = [&] { MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo); NextMetadataNo++; }; if (Record.size() != 2) { dropRecord(); break; } Type *Ty = getTypeByID(Record[0]); if (Ty->isMetadataTy() || Ty->isVoidTy()) { dropRecord(); break; } MetadataList.assignValue( LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_OLD_NODE: { // FIXME: Remove in 4.0. if (Record.size() % 2 == 1) return error("Invalid record"); unsigned Size = Record.size(); SmallVector Elts; for (unsigned i = 0; i != Size; i += 2) { Type *Ty = getTypeByID(Record[i]); if (!Ty) return error("Invalid record"); if (Ty->isMetadataTy()) Elts.push_back(getMD(Record[i + 1])); else if (!Ty->isVoidTy()) { auto *MD = ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); assert(isa(MD) && "Expected non-function-local metadata"); Elts.push_back(MD); } else Elts.push_back(nullptr); } MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_VALUE: { if (Record.size() != 2) return error("Invalid record"); Type *Ty = getTypeByID(Record[0]); if (Ty->isMetadataTy() || Ty->isVoidTy()) return error("Invalid record"); MetadataList.assignValue( ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_DISTINCT_NODE: IsDistinct = true; LLVM_FALLTHROUGH; case bitc::METADATA_NODE: { SmallVector Elts; Elts.reserve(Record.size()); for (unsigned ID : Record) Elts.push_back(getMDOrNull(ID)); MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) : MDNode::get(Context, Elts), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_LOCATION: { if (Record.size() != 5) return error("Invalid record"); IsDistinct = Record[0]; unsigned Line = Record[1]; unsigned Column = Record[2]; Metadata *Scope = getMD(Record[3]); Metadata *InlinedAt = getMDOrNull(Record[4]); MetadataList.assignValue( GET_OR_DISTINCT(DILocation, (Context, Line, Column, Scope, InlinedAt)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_GENERIC_DEBUG: { if (Record.size() < 4) return error("Invalid record"); IsDistinct = Record[0]; unsigned Tag = Record[1]; unsigned Version = Record[2]; if (Tag >= 1u << 16 || Version != 0) return error("Invalid record"); auto *Header = getMDString(Record[3]); SmallVector DwarfOps; for (unsigned I = 4, E = Record.size(); I != E; ++I) DwarfOps.push_back(getMDOrNull(Record[I])); MetadataList.assignValue( GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_SUBRANGE: { if (Record.size() != 3) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DISubrange, (Context, Record[1], unrotateSign(Record[2]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_ENUMERATOR: { if (Record.size() != 3) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), getMDString(Record[2]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_BASIC_TYPE: { if (Record.size() != 6) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DIBasicType, (Context, Record[1], getMDString(Record[2]), Record[3], Record[4], Record[5])), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_DERIVED_TYPE: { if (Record.size() < 12 || Record.size() > 13) return error("Invalid record"); // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means // that there is no DWARF address space associated with DIDerivedType. Optional DWARFAddressSpace; if (Record.size() > 12 && Record[12]) DWARFAddressSpace = Record[12] - 1; IsDistinct = Record[0]; DINode::DIFlags Flags = static_cast(Record[10]); MetadataList.assignValue( GET_OR_DISTINCT(DIDerivedType, (Context, Record[1], getMDString(Record[2]), getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], DWARFAddressSpace, Flags, getDITypeRefOrNull(Record[11]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_COMPOSITE_TYPE: { if (Record.size() != 16) return error("Invalid record"); // If we have a UUID and this is not a forward declaration, lookup the // mapping. IsDistinct = Record[0] & 0x1; bool IsNotUsedInTypeRef = Record[0] >= 2; unsigned Tag = Record[1]; MDString *Name = getMDString(Record[2]); Metadata *File = getMDOrNull(Record[3]); unsigned Line = Record[4]; Metadata *Scope = getDITypeRefOrNull(Record[5]); Metadata *BaseType = nullptr; uint64_t SizeInBits = Record[7]; if (Record[8] > (uint64_t)std::numeric_limits::max()) return error("Alignment value is too large"); uint32_t AlignInBits = Record[8]; uint64_t OffsetInBits = 0; DINode::DIFlags Flags = static_cast(Record[10]); Metadata *Elements = nullptr; unsigned RuntimeLang = Record[12]; Metadata *VTableHolder = nullptr; Metadata *TemplateParams = nullptr; auto *Identifier = getMDString(Record[15]); // If this module is being parsed so that it can be ThinLTO imported // into another module, composite types only need to be imported // as type declarations (unless full type definitions requested). // Create type declarations up front to save memory. Also, buildODRType // handles the case where this is type ODRed with a definition needed // by the importing module, in which case the existing definition is // used. if (IsImporting && !ImportFullTypeDefinitions && Identifier && (Tag == dwarf::DW_TAG_enumeration_type || Tag == dwarf::DW_TAG_class_type || Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type)) { Flags = Flags | DINode::FlagFwdDecl; } else { BaseType = getDITypeRefOrNull(Record[6]); OffsetInBits = Record[9]; Elements = getMDOrNull(Record[11]); VTableHolder = getDITypeRefOrNull(Record[13]); TemplateParams = getMDOrNull(Record[14]); } DICompositeType *CT = nullptr; if (Identifier) CT = DICompositeType::buildODRType( Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams); // Create a node if we didn't get a lazy ODR type. if (!CT) CT = GET_OR_DISTINCT(DICompositeType, (Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, Identifier)); if (!IsNotUsedInTypeRef && Identifier) MetadataList.addTypeRef(*Identifier, *cast(CT)); MetadataList.assignValue(CT, NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_SUBROUTINE_TYPE: { if (Record.size() < 3 || Record.size() > 4) return error("Invalid record"); bool IsOldTypeRefArray = Record[0] < 2; unsigned CC = (Record.size() > 3) ? Record[3] : 0; IsDistinct = Record[0] & 0x1; DINode::DIFlags Flags = static_cast(Record[1]); Metadata *Types = getMDOrNull(Record[2]); if (LLVM_UNLIKELY(IsOldTypeRefArray)) Types = MetadataList.upgradeTypeRefArray(Types); MetadataList.assignValue( GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_MODULE: { if (Record.size() != 6) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DIModule, (Context, getMDOrNull(Record[1]), getMDString(Record[2]), getMDString(Record[3]), getMDString(Record[4]), getMDString(Record[5]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_FILE: { if (Record.size() != 3 && Record.size() != 5) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT( DIFile, (Context, getMDString(Record[1]), getMDString(Record[2]), Record.size() == 3 ? DIFile::CSK_None : static_cast(Record[3]), Record.size() == 3 ? nullptr : getMDString(Record[4]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_COMPILE_UNIT: { if (Record.size() < 14 || Record.size() > 19) return error("Invalid record"); // Ignore Record[0], which indicates whether this compile unit is // distinct. It's always distinct. IsDistinct = true; auto *CU = DICompileUnit::getDistinct( Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), getMDOrNull(Record[12]), getMDOrNull(Record[13]), Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), Record.size() <= 14 ? 0 : Record[14], Record.size() <= 16 ? true : Record[16], Record.size() <= 17 ? false : Record[17], Record.size() <= 18 ? false : Record[18]); MetadataList.assignValue(CU, NextMetadataNo); NextMetadataNo++; // Move the Upgrade the list of subprograms. if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) CUSubprograms.push_back({CU, SPs}); break; } case bitc::METADATA_SUBPROGRAM: { if (Record.size() < 18 || Record.size() > 21) return error("Invalid record"); IsDistinct = (Record[0] & 1) || Record[8]; // All definitions should be distinct. // Version 1 has a Function as Record[15]. // Version 2 has removed Record[15]. // Version 3 has the Unit as Record[15]. // Version 4 added thisAdjustment. bool HasUnit = Record[0] >= 2; if (HasUnit && Record.size() < 19) return error("Invalid record"); Metadata *CUorFn = getMDOrNull(Record[15]); unsigned Offset = Record.size() >= 19 ? 1 : 0; bool HasFn = Offset && !HasUnit; bool HasThisAdj = Record.size() >= 20; bool HasThrownTypes = Record.size() >= 21; DISubprogram *SP = GET_OR_DISTINCT( DISubprogram, (Context, getDITypeRefOrNull(Record[1]), // scope getMDString(Record[2]), // name getMDString(Record[3]), // linkageName getMDOrNull(Record[4]), // file Record[5], // line getMDOrNull(Record[6]), // type Record[7], // isLocal Record[8], // isDefinition Record[9], // scopeLine getDITypeRefOrNull(Record[10]), // containingType Record[11], // virtuality Record[12], // virtualIndex HasThisAdj ? Record[19] : 0, // thisAdjustment static_cast(Record[13]), // flags Record[14], // isOptimized HasUnit ? CUorFn : nullptr, // unit getMDOrNull(Record[15 + Offset]), // templateParams getMDOrNull(Record[16 + Offset]), // declaration getMDOrNull(Record[17 + Offset]), // variables HasThrownTypes ? getMDOrNull(Record[20]) : nullptr // thrownTypes )); MetadataList.assignValue(SP, NextMetadataNo); NextMetadataNo++; // Upgrade sp->function mapping to function->sp mapping. if (HasFn) { if (auto *CMD = dyn_cast_or_null(CUorFn)) if (auto *F = dyn_cast(CMD->getValue())) { if (F->isMaterializable()) // Defer until materialized; unmaterialized functions may not have // metadata. FunctionsWithSPs[F] = SP; else if (!F->empty()) F->setSubprogram(SP); } } break; } case bitc::METADATA_LEXICAL_BLOCK: { if (Record.size() != 5) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DILexicalBlock, (Context, getMDOrNull(Record[1]), getMDOrNull(Record[2]), Record[3], Record[4])), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_LEXICAL_BLOCK_FILE: { if (Record.size() != 4) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DILexicalBlockFile, (Context, getMDOrNull(Record[1]), getMDOrNull(Record[2]), Record[3])), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_NAMESPACE: { // Newer versions of DINamespace dropped file and line. MDString *Name; if (Record.size() == 3) Name = getMDString(Record[2]); else if (Record.size() == 5) Name = getMDString(Record[3]); else return error("Invalid record"); IsDistinct = Record[0] & 1; bool ExportSymbols = Record[0] & 2; MetadataList.assignValue( GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), Name, ExportSymbols)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_MACRO: { if (Record.size() != 5) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DIMacro, (Context, Record[1], Record[2], getMDString(Record[3]), getMDString(Record[4]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_MACRO_FILE: { if (Record.size() != 5) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DIMacroFile, (Context, Record[1], Record[2], getMDOrNull(Record[3]), getMDOrNull(Record[4]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_TEMPLATE_TYPE: { if (Record.size() != 3) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, (Context, getMDString(Record[1]), getDITypeRefOrNull(Record[2]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_TEMPLATE_VALUE: { if (Record.size() != 5) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DITemplateValueParameter, (Context, Record[1], getMDString(Record[2]), getDITypeRefOrNull(Record[3]), getMDOrNull(Record[4]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_GLOBAL_VAR: { if (Record.size() < 11 || Record.size() > 12) return error("Invalid record"); IsDistinct = Record[0] & 1; unsigned Version = Record[0] >> 1; if (Version == 1) { MetadataList.assignValue( GET_OR_DISTINCT(DIGlobalVariable, (Context, getMDOrNull(Record[1]), getMDString(Record[2]), getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], getDITypeRefOrNull(Record[6]), Record[7], Record[8], getMDOrNull(Record[10]), Record[11])), NextMetadataNo); NextMetadataNo++; } else if (Version == 0) { // Upgrade old metadata, which stored a global variable reference or a // ConstantInt here. NeedUpgradeToDIGlobalVariableExpression = true; Metadata *Expr = getMDOrNull(Record[9]); uint32_t AlignInBits = 0; if (Record.size() > 11) { if (Record[11] > (uint64_t)std::numeric_limits::max()) return error("Alignment value is too large"); AlignInBits = Record[11]; } GlobalVariable *Attach = nullptr; if (auto *CMD = dyn_cast_or_null(Expr)) { if (auto *GV = dyn_cast(CMD->getValue())) { Attach = GV; Expr = nullptr; } else if (auto *CI = dyn_cast(CMD->getValue())) { Expr = DIExpression::get(Context, {dwarf::DW_OP_constu, CI->getZExtValue(), dwarf::DW_OP_stack_value}); } else { Expr = nullptr; } } DIGlobalVariable *DGV = GET_OR_DISTINCT( DIGlobalVariable, (Context, getMDOrNull(Record[1]), getMDString(Record[2]), getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], getDITypeRefOrNull(Record[6]), Record[7], Record[8], getMDOrNull(Record[10]), AlignInBits)); DIGlobalVariableExpression *DGVE = nullptr; if (Attach || Expr) DGVE = DIGlobalVariableExpression::getDistinct( Context, DGV, Expr ? Expr : DIExpression::get(Context, {})); if (Attach) Attach->addDebugInfo(DGVE); auto *MDNode = Expr ? cast(DGVE) : cast(DGV); MetadataList.assignValue(MDNode, NextMetadataNo); NextMetadataNo++; } else return error("Invalid record"); break; } case bitc::METADATA_LOCAL_VAR: { // 10th field is for the obseleted 'inlinedAt:' field. if (Record.size() < 8 || Record.size() > 10) return error("Invalid record"); IsDistinct = Record[0] & 1; bool HasAlignment = Record[0] & 2; // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or // DW_TAG_arg_variable, if we have alignment flag encoded it means, that // this is newer version of record which doesn't have artificial tag. bool HasTag = !HasAlignment && Record.size() > 8; DINode::DIFlags Flags = static_cast(Record[7 + HasTag]); uint32_t AlignInBits = 0; if (HasAlignment) { if (Record[8 + HasTag] > (uint64_t)std::numeric_limits::max()) return error("Alignment value is too large"); AlignInBits = Record[8 + HasTag]; } MetadataList.assignValue( GET_OR_DISTINCT(DILocalVariable, (Context, getMDOrNull(Record[1 + HasTag]), getMDString(Record[2 + HasTag]), getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], getDITypeRefOrNull(Record[5 + HasTag]), Record[6 + HasTag], Flags, AlignInBits)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_EXPRESSION: { if (Record.size() < 1) return error("Invalid record"); IsDistinct = Record[0] & 1; uint64_t Version = Record[0] >> 1; auto Elts = MutableArrayRef(Record).slice(1); SmallVector Buffer; if (Error Err = upgradeDIExpression(Version, Elts, Buffer)) return Err; MetadataList.assignValue( GET_OR_DISTINCT(DIExpression, (Context, Elts)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_GLOBAL_VAR_EXPR: { if (Record.size() != 3) return error("Invalid record"); IsDistinct = Record[0]; Metadata *Expr = getMDOrNull(Record[2]); if (!Expr) Expr = DIExpression::get(Context, {}); MetadataList.assignValue( GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, getMDOrNull(Record[1]), Expr)), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_OBJC_PROPERTY: { if (Record.size() != 8) return error("Invalid record"); IsDistinct = Record[0]; MetadataList.assignValue( GET_OR_DISTINCT(DIObjCProperty, (Context, getMDString(Record[1]), getMDOrNull(Record[2]), Record[3], getMDString(Record[4]), getMDString(Record[5]), Record[6], getDITypeRefOrNull(Record[7]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_IMPORTED_ENTITY: { if (Record.size() != 6 && Record.size() != 7) return error("Invalid record"); IsDistinct = Record[0]; bool HasFile = (Record.size() == 7); MetadataList.assignValue( GET_OR_DISTINCT(DIImportedEntity, (Context, Record[1], getMDOrNull(Record[2]), getDITypeRefOrNull(Record[3]), HasFile ? getMDOrNull(Record[6]) : nullptr, HasFile ? Record[4] : 0, getMDString(Record[5]))), NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_STRING_OLD: { std::string String(Record.begin(), Record.end()); // Test for upgrading !llvm.loop. HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); ++NumMDStringLoaded; Metadata *MD = MDString::get(Context, String); MetadataList.assignValue(MD, NextMetadataNo); NextMetadataNo++; break; } case bitc::METADATA_STRINGS: { auto CreateNextMDString = [&](StringRef Str) { ++NumMDStringLoaded; MetadataList.assignValue(MDString::get(Context, Str), NextMetadataNo); NextMetadataNo++; }; if (Error Err = parseMetadataStrings(Record, Blob, CreateNextMDString)) return Err; break; } case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { if (Record.size() % 2 == 0) return error("Invalid record"); unsigned ValueID = Record[0]; if (ValueID >= ValueList.size()) return error("Invalid record"); if (auto *GO = dyn_cast(ValueList[ValueID])) if (Error Err = parseGlobalObjectAttachment( *GO, ArrayRef(Record).slice(1))) return Err; break; } case bitc::METADATA_KIND: { // Support older bitcode files that had METADATA_KIND records in a // block with METADATA_BLOCK_ID. if (Error Err = parseMetadataKindRecord(Record)) return Err; break; } } return Error::success(); #undef GET_OR_DISTINCT } Error MetadataLoader::MetadataLoaderImpl::parseMetadataStrings( ArrayRef Record, StringRef Blob, function_ref CallBack) { // All the MDStrings in the block are emitted together in a single // record. The strings are concatenated and stored in a blob along with // their sizes. if (Record.size() != 2) return error("Invalid record: metadata strings layout"); unsigned NumStrings = Record[0]; unsigned StringsOffset = Record[1]; if (!NumStrings) return error("Invalid record: metadata strings with no strings"); if (StringsOffset > Blob.size()) return error("Invalid record: metadata strings corrupt offset"); StringRef Lengths = Blob.slice(0, StringsOffset); SimpleBitstreamCursor R(Lengths); StringRef Strings = Blob.drop_front(StringsOffset); do { if (R.AtEndOfStream()) return error("Invalid record: metadata strings bad length"); unsigned Size = R.ReadVBR(6); if (Strings.size() < Size) return error("Invalid record: metadata strings truncated chars"); CallBack(Strings.slice(0, Size)); Strings = Strings.drop_front(Size); } while (--NumStrings); return Error::success(); } Error MetadataLoader::MetadataLoaderImpl::parseGlobalObjectAttachment( GlobalObject &GO, ArrayRef Record) { assert(Record.size() % 2 == 0); for (unsigned I = 0, E = Record.size(); I != E; I += 2) { auto K = MDKindMap.find(Record[I]); if (K == MDKindMap.end()) return error("Invalid ID"); MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); if (!MD) return error("Invalid metadata attachment"); GO.addMetadata(K->second, *MD); } return Error::success(); } /// Parse metadata attachments. Error MetadataLoader::MetadataLoaderImpl::parseMetadataAttachment( Function &F, const SmallVectorImpl &InstructionList) { if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) return error("Invalid record"); SmallVector Record; PlaceholderQueue Placeholders; while (true) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: resolveForwardRefsAndPlaceholders(Placeholders); return Error::success(); case BitstreamEntry::Record: // The interesting case. break; } // Read a metadata attachment record. Record.clear(); ++NumMDRecordLoaded; switch (Stream.readRecord(Entry.ID, Record)) { default: // Default behavior: ignore. break; case bitc::METADATA_ATTACHMENT: { unsigned RecordLength = Record.size(); if (Record.empty()) return error("Invalid record"); if (RecordLength % 2 == 0) { // A function attachment. if (Error Err = parseGlobalObjectAttachment(F, Record)) return Err; continue; } // An instruction attachment. Instruction *Inst = InstructionList[Record[0]]; for (unsigned i = 1; i != RecordLength; i = i + 2) { unsigned Kind = Record[i]; DenseMap::iterator I = MDKindMap.find(Kind); if (I == MDKindMap.end()) return error("Invalid ID"); if (I->second == LLVMContext::MD_tbaa && StripTBAA) continue; auto Idx = Record[i + 1]; if (Idx < (MDStringRef.size() + GlobalMetadataBitPosIndex.size()) && !MetadataList.lookup(Idx)) { // Load the attachment if it is in the lazy-loadable range and hasn't // been loaded yet. lazyLoadOneMetadata(Idx, Placeholders); resolveForwardRefsAndPlaceholders(Placeholders); } Metadata *Node = MetadataList.getMetadataFwdRef(Idx); if (isa(Node)) // Drop the attachment. This used to be legal, but there's no // upgrade path. break; MDNode *MD = dyn_cast_or_null(Node); if (!MD) return error("Invalid metadata attachment"); if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) MD = upgradeInstructionLoopAttachment(*MD); if (I->second == LLVMContext::MD_tbaa) { assert(!MD->isTemporary() && "should load MDs before attachments"); MD = UpgradeTBAANode(*MD); } Inst->setMetadata(I->second, MD); } break; } } } } /// Parse a single METADATA_KIND record, inserting result in MDKindMap. Error MetadataLoader::MetadataLoaderImpl::parseMetadataKindRecord( SmallVectorImpl &Record) { if (Record.size() < 2) return error("Invalid record"); unsigned Kind = Record[0]; SmallString<8> Name(Record.begin() + 1, Record.end()); unsigned NewKind = TheModule.getMDKindID(Name.str()); if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) return error("Conflicting METADATA_KIND records"); return Error::success(); } /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. Error MetadataLoader::MetadataLoaderImpl::parseMetadataKinds() { if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) return error("Invalid record"); SmallVector Record; // Read all the records. while (true) { BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case BitstreamEntry::SubBlock: // Handled for us already. case BitstreamEntry::Error: return error("Malformed block"); case BitstreamEntry::EndBlock: return Error::success(); case BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); ++NumMDRecordLoaded; unsigned Code = Stream.readRecord(Entry.ID, Record); switch (Code) { default: // Default behavior: ignore. break; case bitc::METADATA_KIND: { if (Error Err = parseMetadataKindRecord(Record)) return Err; break; } } } } MetadataLoader &MetadataLoader::operator=(MetadataLoader &&RHS) { Pimpl = std::move(RHS.Pimpl); return *this; } MetadataLoader::MetadataLoader(MetadataLoader &&RHS) : Pimpl(std::move(RHS.Pimpl)) {} MetadataLoader::~MetadataLoader() = default; MetadataLoader::MetadataLoader(BitstreamCursor &Stream, Module &TheModule, BitcodeReaderValueList &ValueList, bool IsImporting, std::function getTypeByID) : Pimpl(llvm::make_unique( Stream, TheModule, ValueList, std::move(getTypeByID), IsImporting)) {} Error MetadataLoader::parseMetadata(bool ModuleLevel) { return Pimpl->parseMetadata(ModuleLevel); } bool MetadataLoader::hasFwdRefs() const { return Pimpl->hasFwdRefs(); } /// Return the given metadata, creating a replaceable forward reference if /// necessary. Metadata *MetadataLoader::getMetadataFwdRefOrLoad(unsigned Idx) { return Pimpl->getMetadataFwdRefOrLoad(Idx); } MDNode *MetadataLoader::getMDNodeFwdRefOrNull(unsigned Idx) { return Pimpl->getMDNodeFwdRefOrNull(Idx); } DISubprogram *MetadataLoader::lookupSubprogramForFunction(Function *F) { return Pimpl->lookupSubprogramForFunction(F); } Error MetadataLoader::parseMetadataAttachment( Function &F, const SmallVectorImpl &InstructionList) { return Pimpl->parseMetadataAttachment(F, InstructionList); } Error MetadataLoader::parseMetadataKinds() { return Pimpl->parseMetadataKinds(); } void MetadataLoader::setStripTBAA(bool StripTBAA) { return Pimpl->setStripTBAA(StripTBAA); } bool MetadataLoader::isStrippingTBAA() { return Pimpl->isStrippingTBAA(); } unsigned MetadataLoader::size() const { return Pimpl->size(); } void MetadataLoader::shrinkTo(unsigned N) { return Pimpl->shrinkTo(N); } void MetadataLoader::upgradeDebugIntrinsics(Function &F) { return Pimpl->upgradeDebugIntrinsics(F); }