//===- ScalarEvolutionNormalization.cpp - See below -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements utilities for working with "normalized" expressions. // See the comments at the top of ScalarEvolutionNormalization.h for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ScalarEvolutionNormalization.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" using namespace llvm; /// TransformKind - Different types of transformations that /// TransformForPostIncUse can do. enum TransformKind { /// Normalize - Normalize according to the given loops. Normalize, /// Denormalize - Perform the inverse transform on the expression with the /// given loop set. Denormalize }; namespace { struct NormalizeDenormalizeRewriter : public SCEVRewriteVisitor { const TransformKind Kind; // NB! Pred is a function_ref. Storing it here is okay only because // we're careful about the lifetime of NormalizeDenormalizeRewriter. const NormalizePredTy Pred; NormalizeDenormalizeRewriter(TransformKind Kind, NormalizePredTy Pred, ScalarEvolution &SE) : SCEVRewriteVisitor(SE), Kind(Kind), Pred(Pred) {} const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr); }; } // namespace const SCEV * NormalizeDenormalizeRewriter::visitAddRecExpr(const SCEVAddRecExpr *AR) { SmallVector Operands; transform(AR->operands(), std::back_inserter(Operands), [&](const SCEV *Op) { return visit(Op); }); if (!Pred(AR)) return SE.getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagAnyWrap); // Normalization and denormalization are fancy names for decrementing and // incrementing a SCEV expression with respect to a set of loops. Since // Pred(AR) has returned true, we know we need to normalize or denormalize AR // with respect to its loop. if (Kind == Denormalize) { // Denormalization / "partial increment" is essentially the same as \c // SCEVAddRecExpr::getPostIncExpr. Here we use an explicit loop to make the // symmetry with Normalization clear. for (int i = 0, e = Operands.size() - 1; i < e; i++) Operands[i] = SE.getAddExpr(Operands[i], Operands[i + 1]); } else { assert(Kind == Normalize && "Only two possibilities!"); // Normalization / "partial decrement" is a bit more subtle. Since // incrementing a SCEV expression (in general) changes the step of the SCEV // expression as well, we cannot use the step of the current expression. // Instead, we have to use the step of the very expression we're trying to // compute! // // We solve the issue by recursively building up the result, starting from // the "least significant" operand in the add recurrence: // // Base case: // Single operand add recurrence. It's its own normalization. // // N-operand case: // {S_{N-1},+,S_{N-2},+,...,+,S_0} = S // // Since the step recurrence of S is {S_{N-2},+,...,+,S_0}, we know its // normalization by induction. We subtract the normalized step // recurrence from S_{N-1} to get the normalization of S. for (int i = Operands.size() - 2; i >= 0; i--) Operands[i] = SE.getMinusSCEV(Operands[i], Operands[i + 1]); } return SE.getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagAnyWrap); } const SCEV *llvm::normalizeForPostIncUse(const SCEV *S, const PostIncLoopSet &Loops, ScalarEvolution &SE) { auto Pred = [&](const SCEVAddRecExpr *AR) { return Loops.count(AR->getLoop()); }; return NormalizeDenormalizeRewriter(Normalize, Pred, SE).visit(S); } const SCEV *llvm::normalizeForPostIncUseIf(const SCEV *S, NormalizePredTy Pred, ScalarEvolution &SE) { return NormalizeDenormalizeRewriter(Normalize, Pred, SE).visit(S); } const SCEV *llvm::denormalizeForPostIncUse(const SCEV *S, const PostIncLoopSet &Loops, ScalarEvolution &SE) { auto Pred = [&](const SCEVAddRecExpr *AR) { return Loops.count(AR->getLoop()); }; return NormalizeDenormalizeRewriter(Denormalize, Pred, SE).visit(S); }