//===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements UnrolledInstAnalyzer class. It's used for predicting // potential effects that loop unrolling might have, such as enabling constant // propagation and other optimizations. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopUnrollAnalyzer.h" using namespace llvm; /// \brief Try to simplify instruction \param I using its SCEV expression. /// /// The idea is that some AddRec expressions become constants, which then /// could trigger folding of other instructions. However, that only happens /// for expressions whose start value is also constant, which isn't always the /// case. In another common and important case the start value is just some /// address (i.e. SCEVUnknown) - in this case we compute the offset and save /// it along with the base address instead. bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) { if (!SE.isSCEVable(I->getType())) return false; const SCEV *S = SE.getSCEV(I); if (auto *SC = dyn_cast(S)) { SimplifiedValues[I] = SC->getValue(); return true; } auto *AR = dyn_cast(S); if (!AR || AR->getLoop() != L) return false; const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE); // Check if the AddRec expression becomes a constant. if (auto *SC = dyn_cast(ValueAtIteration)) { SimplifiedValues[I] = SC->getValue(); return true; } // Check if the offset from the base address becomes a constant. auto *Base = dyn_cast(SE.getPointerBase(S)); if (!Base) return false; auto *Offset = dyn_cast(SE.getMinusSCEV(ValueAtIteration, Base)); if (!Offset) return false; SimplifiedAddress Address; Address.Base = Base->getValue(); Address.Offset = Offset->getValue(); SimplifiedAddresses[I] = Address; return false; } /// Try to simplify binary operator I. /// /// TODO: Probably it's worth to hoist the code for estimating the /// simplifications effects to a separate class, since we have a very similar /// code in InlineCost already. bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); if (!isa(LHS)) if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) LHS = SimpleLHS; if (!isa(RHS)) if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) RHS = SimpleRHS; Value *SimpleV = nullptr; const DataLayout &DL = I.getModule()->getDataLayout(); if (auto FI = dyn_cast(&I)) SimpleV = SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); else SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); if (Constant *C = dyn_cast_or_null(SimpleV)) SimplifiedValues[&I] = C; if (SimpleV) return true; return Base::visitBinaryOperator(I); } /// Try to fold load I. bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) { Value *AddrOp = I.getPointerOperand(); auto AddressIt = SimplifiedAddresses.find(AddrOp); if (AddressIt == SimplifiedAddresses.end()) return false; ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset; auto *GV = dyn_cast(AddressIt->second.Base); // We're only interested in loads that can be completely folded to a // constant. if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant()) return false; ConstantDataSequential *CDS = dyn_cast(GV->getInitializer()); if (!CDS) return false; // We might have a vector load from an array. FIXME: for now we just bail // out in this case, but we should be able to resolve and simplify such // loads. if (CDS->getElementType() != I.getType()) return false; unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; if (SimplifiedAddrOp->getValue().getActiveBits() > 64) return false; int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue(); if (SimplifiedAddrOpV < 0) { // FIXME: For now we conservatively ignore out of bound accesses, but // we're allowed to perform the optimization in this case. return false; } uint64_t Index = static_cast(SimplifiedAddrOpV) / ElemSize; if (Index >= CDS->getNumElements()) { // FIXME: For now we conservatively ignore out of bound accesses, but // we're allowed to perform the optimization in this case. return false; } Constant *CV = CDS->getElementAsConstant(Index); assert(CV && "Constant expected."); SimplifiedValues[&I] = CV; return true; } /// Try to simplify cast instruction. bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) { // Propagate constants through casts. Constant *COp = dyn_cast(I.getOperand(0)); if (!COp) COp = SimplifiedValues.lookup(I.getOperand(0)); // If we know a simplified value for this operand and cast is valid, save the // result to SimplifiedValues. // The cast can be invalid, because SimplifiedValues contains results of SCEV // analysis, which operates on integers (and, e.g., might convert i8* null to // i32 0). if (COp && CastInst::castIsValid(I.getOpcode(), COp, I.getType())) { if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { SimplifiedValues[&I] = C; return true; } } return Base::visitCastInst(I); } /// Try to simplify cmp instruction. bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); // First try to handle simplified comparisons. if (!isa(LHS)) if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) LHS = SimpleLHS; if (!isa(RHS)) if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) RHS = SimpleRHS; if (!isa(LHS) && !isa(RHS)) { auto SimplifiedLHS = SimplifiedAddresses.find(LHS); if (SimplifiedLHS != SimplifiedAddresses.end()) { auto SimplifiedRHS = SimplifiedAddresses.find(RHS); if (SimplifiedRHS != SimplifiedAddresses.end()) { SimplifiedAddress &LHSAddr = SimplifiedLHS->second; SimplifiedAddress &RHSAddr = SimplifiedRHS->second; if (LHSAddr.Base == RHSAddr.Base) { LHS = LHSAddr.Offset; RHS = RHSAddr.Offset; } } } } if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) { if (CLHS->getType() == CRHS->getType()) { if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { SimplifiedValues[&I] = C; return true; } } } } return Base::visitCmpInst(I); } bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) { // Run base visitor first. This way we can gather some useful for later // analysis information. if (Base::visitPHINode(PN)) return true; // The loop induction PHI nodes are definitionally free. return PN.getParent() == L->getHeader(); }