//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. Note that the // loops identified may actually be several natural loops that share the same // header node... not just a single natural loop. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopInfo.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/LoopInfoImpl.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. template class llvm::LoopBase; template class llvm::LoopInfoBase; // Always verify loopinfo if expensive checking is enabled. #ifdef EXPENSIVE_CHECKS bool llvm::VerifyLoopInfo = true; #else bool llvm::VerifyLoopInfo = false; #endif static cl::opt VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), cl::Hidden, cl::desc("Verify loop info (time consuming)")); //===----------------------------------------------------------------------===// // Loop implementation // bool Loop::isLoopInvariant(const Value *V) const { if (const Instruction *I = dyn_cast(V)) return !contains(I); return true; // All non-instructions are loop invariant } bool Loop::hasLoopInvariantOperands(const Instruction *I) const { return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); } bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt) const { if (Instruction *I = dyn_cast(V)) return makeLoopInvariant(I, Changed, InsertPt); return true; // All non-instructions are loop-invariant. } bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, Instruction *InsertPt) const { // Test if the value is already loop-invariant. if (isLoopInvariant(I)) return true; if (!isSafeToSpeculativelyExecute(I)) return false; if (I->mayReadFromMemory()) return false; // EH block instructions are immobile. if (I->isEHPad()) return false; // Determine the insertion point, unless one was given. if (!InsertPt) { BasicBlock *Preheader = getLoopPreheader(); // Without a preheader, hoisting is not feasible. if (!Preheader) return false; InsertPt = Preheader->getTerminator(); } // Don't hoist instructions with loop-variant operands. for (Value *Operand : I->operands()) if (!makeLoopInvariant(Operand, Changed, InsertPt)) return false; // Hoist. I->moveBefore(InsertPt); // There is possibility of hoisting this instruction above some arbitrary // condition. Any metadata defined on it can be control dependent on this // condition. Conservatively strip it here so that we don't give any wrong // information to the optimizer. I->dropUnknownNonDebugMetadata(); Changed = true; return true; } PHINode *Loop::getCanonicalInductionVariable() const { BasicBlock *H = getHeader(); BasicBlock *Incoming = nullptr, *Backedge = nullptr; pred_iterator PI = pred_begin(H); assert(PI != pred_end(H) && "Loop must have at least one backedge!"); Backedge = *PI++; if (PI == pred_end(H)) return nullptr; // dead loop Incoming = *PI++; if (PI != pred_end(H)) return nullptr; // multiple backedges? if (contains(Incoming)) { if (contains(Backedge)) return nullptr; std::swap(Incoming, Backedge); } else if (!contains(Backedge)) return nullptr; // Loop over all of the PHI nodes, looking for a canonical indvar. for (BasicBlock::iterator I = H->begin(); isa(I); ++I) { PHINode *PN = cast(I); if (ConstantInt *CI = dyn_cast(PN->getIncomingValueForBlock(Incoming))) if (CI->isZero()) if (Instruction *Inc = dyn_cast(PN->getIncomingValueForBlock(Backedge))) if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) if (CI->isOne()) return PN; } return nullptr; } // Check that 'BB' doesn't have any uses outside of the 'L' static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, DominatorTree &DT) { for (const Instruction &I : BB) { // Tokens can't be used in PHI nodes and live-out tokens prevent loop // optimizations, so for the purposes of considered LCSSA form, we // can ignore them. if (I.getType()->isTokenTy()) continue; for (const Use &U : I.uses()) { const Instruction *UI = cast(U.getUser()); const BasicBlock *UserBB = UI->getParent(); if (const PHINode *P = dyn_cast(UI)) UserBB = P->getIncomingBlock(U); // Check the current block, as a fast-path, before checking whether // the use is anywhere in the loop. Most values are used in the same // block they are defined in. Also, blocks not reachable from the // entry are special; uses in them don't need to go through PHIs. if (UserBB != &BB && !L.contains(UserBB) && DT.isReachableFromEntry(UserBB)) return false; } } return true; } bool Loop::isLCSSAForm(DominatorTree &DT) const { // For each block we check that it doesn't have any uses outside of this loop. return all_of(this->blocks(), [&](const BasicBlock *BB) { return isBlockInLCSSAForm(*this, *BB, DT); }); } bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { // For each block we check that it doesn't have any uses outside of its // innermost loop. This process will transitively guarantee that the current // loop and all of the nested loops are in LCSSA form. return all_of(this->blocks(), [&](const BasicBlock *BB) { return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); }); } bool Loop::isLoopSimplifyForm() const { // Normal-form loops have a preheader, a single backedge, and all of their // exits have all their predecessors inside the loop. return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); } // Routines that reform the loop CFG and split edges often fail on indirectbr. bool Loop::isSafeToClone() const { // Return false if any loop blocks contain indirectbrs, or there are any calls // to noduplicate functions. for (BasicBlock *BB : this->blocks()) { if (isa(BB->getTerminator())) return false; for (Instruction &I : *BB) if (auto CS = CallSite(&I)) if (CS.cannotDuplicate()) return false; } return true; } MDNode *Loop::getLoopID() const { MDNode *LoopID = nullptr; if (BasicBlock *Latch = getLoopLatch()) { LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop); } else { assert(!getLoopLatch() && "The loop should have no single latch at this point"); // Go through each predecessor of the loop header and check the // terminator for the metadata. BasicBlock *H = getHeader(); for (BasicBlock *BB : this->blocks()) { TerminatorInst *TI = BB->getTerminator(); MDNode *MD = nullptr; // Check if this terminator branches to the loop header. for (BasicBlock *Successor : TI->successors()) { if (Successor == H) { MD = TI->getMetadata(LLVMContext::MD_loop); break; } } if (!MD) return nullptr; if (!LoopID) LoopID = MD; else if (MD != LoopID) return nullptr; } } if (!LoopID || LoopID->getNumOperands() == 0 || LoopID->getOperand(0) != LoopID) return nullptr; return LoopID; } void Loop::setLoopID(MDNode *LoopID) const { assert(LoopID && "Loop ID should not be null"); assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); if (BasicBlock *Latch = getLoopLatch()) { Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); return; } assert(!getLoopLatch() && "The loop should have no single latch at this point"); BasicBlock *H = getHeader(); for (BasicBlock *BB : this->blocks()) { TerminatorInst *TI = BB->getTerminator(); for (BasicBlock *Successor : TI->successors()) { if (Successor == H) TI->setMetadata(LLVMContext::MD_loop, LoopID); } } } void Loop::setLoopAlreadyUnrolled() { MDNode *LoopID = getLoopID(); // First remove any existing loop unrolling metadata. SmallVector MDs; // Reserve first location for self reference to the LoopID metadata node. MDs.push_back(nullptr); if (LoopID) { for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { bool IsUnrollMetadata = false; MDNode *MD = dyn_cast(LoopID->getOperand(i)); if (MD) { const MDString *S = dyn_cast(MD->getOperand(0)); IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); } if (!IsUnrollMetadata) MDs.push_back(LoopID->getOperand(i)); } } // Add unroll(disable) metadata to disable future unrolling. LLVMContext &Context = getHeader()->getContext(); SmallVector DisableOperands; DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); MDNode *DisableNode = MDNode::get(Context, DisableOperands); MDs.push_back(DisableNode); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); setLoopID(NewLoopID); } bool Loop::isAnnotatedParallel() const { MDNode *DesiredLoopIdMetadata = getLoopID(); if (!DesiredLoopIdMetadata) return false; // The loop branch contains the parallel loop metadata. In order to ensure // that any parallel-loop-unaware optimization pass hasn't added loop-carried // dependencies (thus converted the loop back to a sequential loop), check // that all the memory instructions in the loop contain parallelism metadata // that point to the same unique "loop id metadata" the loop branch does. for (BasicBlock *BB : this->blocks()) { for (Instruction &I : *BB) { if (!I.mayReadOrWriteMemory()) continue; // The memory instruction can refer to the loop identifier metadata // directly or indirectly through another list metadata (in case of // nested parallel loops). The loop identifier metadata refers to // itself so we can check both cases with the same routine. MDNode *LoopIdMD = I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); if (!LoopIdMD) return false; bool LoopIdMDFound = false; for (const MDOperand &MDOp : LoopIdMD->operands()) { if (MDOp == DesiredLoopIdMetadata) { LoopIdMDFound = true; break; } } if (!LoopIdMDFound) return false; } } return true; } DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } Loop::LocRange Loop::getLocRange() const { // If we have a debug location in the loop ID, then use it. if (MDNode *LoopID = getLoopID()) { DebugLoc Start; // We use the first DebugLoc in the header as the start location of the loop // and if there is a second DebugLoc in the header we use it as end location // of the loop. for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { if (DILocation *L = dyn_cast(LoopID->getOperand(i))) { if (!Start) Start = DebugLoc(L); else return LocRange(Start, DebugLoc(L)); } } if (Start) return LocRange(Start); } // Try the pre-header first. if (BasicBlock *PHeadBB = getLoopPreheader()) if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) return LocRange(DL); // If we have no pre-header or there are no instructions with debug // info in it, try the header. if (BasicBlock *HeadBB = getHeader()) return LocRange(HeadBB->getTerminator()->getDebugLoc()); return LocRange(); } bool Loop::hasDedicatedExits() const { // Each predecessor of each exit block of a normal loop is contained // within the loop. SmallVector ExitBlocks; getExitBlocks(ExitBlocks); for (BasicBlock *BB : ExitBlocks) for (BasicBlock *Predecessor : predecessors(BB)) if (!contains(Predecessor)) return false; // All the requirements are met. return true; } void Loop::getUniqueExitBlocks( SmallVectorImpl &ExitBlocks) const { assert(hasDedicatedExits() && "getUniqueExitBlocks assumes the loop has canonical form exits!"); SmallVector SwitchExitBlocks; for (BasicBlock *BB : this->blocks()) { SwitchExitBlocks.clear(); for (BasicBlock *Successor : successors(BB)) { // If block is inside the loop then it is not an exit block. if (contains(Successor)) continue; pred_iterator PI = pred_begin(Successor); BasicBlock *FirstPred = *PI; // If current basic block is this exit block's first predecessor // then only insert exit block in to the output ExitBlocks vector. // This ensures that same exit block is not inserted twice into // ExitBlocks vector. if (BB != FirstPred) continue; // If a terminator has more then two successors, for example SwitchInst, // then it is possible that there are multiple edges from current block // to one exit block. if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { ExitBlocks.push_back(Successor); continue; } // In case of multiple edges from current block to exit block, collect // only one edge in ExitBlocks. Use switchExitBlocks to keep track of // duplicate edges. if (!is_contained(SwitchExitBlocks, Successor)) { SwitchExitBlocks.push_back(Successor); ExitBlocks.push_back(Successor); } } } } BasicBlock *Loop::getUniqueExitBlock() const { SmallVector UniqueExitBlocks; getUniqueExitBlocks(UniqueExitBlocks); if (UniqueExitBlocks.size() == 1) return UniqueExitBlocks[0]; return nullptr; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } LLVM_DUMP_METHOD void Loop::dumpVerbose() const { print(dbgs(), /*Depth=*/0, /*Verbose=*/true); } #endif //===----------------------------------------------------------------------===// // UnloopUpdater implementation // namespace { /// Find the new parent loop for all blocks within the "unloop" whose last /// backedges has just been removed. class UnloopUpdater { Loop &Unloop; LoopInfo *LI; LoopBlocksDFS DFS; // Map unloop's immediate subloops to their nearest reachable parents. Nested // loops within these subloops will not change parents. However, an immediate // subloop's new parent will be the nearest loop reachable from either its own // exits *or* any of its nested loop's exits. DenseMap SubloopParents; // Flag the presence of an irreducible backedge whose destination is a block // directly contained by the original unloop. bool FoundIB; public: UnloopUpdater(Loop *UL, LoopInfo *LInfo) : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} void updateBlockParents(); void removeBlocksFromAncestors(); void updateSubloopParents(); protected: Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); }; } // end anonymous namespace /// Update the parent loop for all blocks that are directly contained within the /// original "unloop". void UnloopUpdater::updateBlockParents() { if (Unloop.getNumBlocks()) { // Perform a post order CFG traversal of all blocks within this loop, // propagating the nearest loop from successors to predecessors. LoopBlocksTraversal Traversal(DFS, LI); for (BasicBlock *POI : Traversal) { Loop *L = LI->getLoopFor(POI); Loop *NL = getNearestLoop(POI, L); if (NL != L) { // For reducible loops, NL is now an ancestor of Unloop. assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && "uninitialized successor"); LI->changeLoopFor(POI, NL); } else { // Or the current block is part of a subloop, in which case its parent // is unchanged. assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); } } } // Each irreducible loop within the unloop induces a round of iteration using // the DFS result cached by Traversal. bool Changed = FoundIB; for (unsigned NIters = 0; Changed; ++NIters) { assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); // Iterate over the postorder list of blocks, propagating the nearest loop // from successors to predecessors as before. Changed = false; for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), POE = DFS.endPostorder(); POI != POE; ++POI) { Loop *L = LI->getLoopFor(*POI); Loop *NL = getNearestLoop(*POI, L); if (NL != L) { assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && "uninitialized successor"); LI->changeLoopFor(*POI, NL); Changed = true; } } } } /// Remove unloop's blocks from all ancestors below their new parents. void UnloopUpdater::removeBlocksFromAncestors() { // Remove all unloop's blocks (including those in nested subloops) from // ancestors below the new parent loop. for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); BI != BE; ++BI) { Loop *OuterParent = LI->getLoopFor(*BI); if (Unloop.contains(OuterParent)) { while (OuterParent->getParentLoop() != &Unloop) OuterParent = OuterParent->getParentLoop(); OuterParent = SubloopParents[OuterParent]; } // Remove blocks from former Ancestors except Unloop itself which will be // deleted. for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; OldParent = OldParent->getParentLoop()) { assert(OldParent && "new loop is not an ancestor of the original"); OldParent->removeBlockFromLoop(*BI); } } } /// Update the parent loop for all subloops directly nested within unloop. void UnloopUpdater::updateSubloopParents() { while (!Unloop.empty()) { Loop *Subloop = *std::prev(Unloop.end()); Unloop.removeChildLoop(std::prev(Unloop.end())); assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); if (Loop *Parent = SubloopParents[Subloop]) Parent->addChildLoop(Subloop); else LI->addTopLevelLoop(Subloop); } } /// Return the nearest parent loop among this block's successors. If a successor /// is a subloop header, consider its parent to be the nearest parent of the /// subloop's exits. /// /// For subloop blocks, simply update SubloopParents and return NULL. Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { // Initially for blocks directly contained by Unloop, NearLoop == Unloop and // is considered uninitialized. Loop *NearLoop = BBLoop; Loop *Subloop = nullptr; if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { Subloop = NearLoop; // Find the subloop ancestor that is directly contained within Unloop. while (Subloop->getParentLoop() != &Unloop) { Subloop = Subloop->getParentLoop(); assert(Subloop && "subloop is not an ancestor of the original loop"); } // Get the current nearest parent of the Subloop exits, initially Unloop. NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; } succ_iterator I = succ_begin(BB), E = succ_end(BB); if (I == E) { assert(!Subloop && "subloop blocks must have a successor"); NearLoop = nullptr; // unloop blocks may now exit the function. } for (; I != E; ++I) { if (*I == BB) continue; // self loops are uninteresting Loop *L = LI->getLoopFor(*I); if (L == &Unloop) { // This successor has not been processed. This path must lead to an // irreducible backedge. assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); FoundIB = true; } if (L != &Unloop && Unloop.contains(L)) { // Successor is in a subloop. if (Subloop) continue; // Branching within subloops. Ignore it. // BB branches from the original into a subloop header. assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); // Get the current nearest parent of the Subloop's exits. L = SubloopParents[L]; // L could be Unloop if the only exit was an irreducible backedge. } if (L == &Unloop) { continue; } // Handle critical edges from Unloop into a sibling loop. if (L && !L->contains(&Unloop)) { L = L->getParentLoop(); } // Remember the nearest parent loop among successors or subloop exits. if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) NearLoop = L; } if (Subloop) { SubloopParents[Subloop] = NearLoop; return BBLoop; } return NearLoop; } LoopInfo::LoopInfo(const DomTreeBase &DomTree) { analyze(DomTree); } bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &) { // Check whether the analysis, all analyses on functions, or the function's // CFG have been preserved. auto PAC = PA.getChecker(); return !(PAC.preserved() || PAC.preservedSet>() || PAC.preservedSet()); } void LoopInfo::erase(Loop *Unloop) { assert(!Unloop->isInvalid() && "Loop has already been erased!"); auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); // First handle the special case of no parent loop to simplify the algorithm. if (!Unloop->getParentLoop()) { // Since BBLoop had no parent, Unloop blocks are no longer in a loop. for (Loop::block_iterator I = Unloop->block_begin(), E = Unloop->block_end(); I != E; ++I) { // Don't reparent blocks in subloops. if (getLoopFor(*I) != Unloop) continue; // Blocks no longer have a parent but are still referenced by Unloop until // the Unloop object is deleted. changeLoopFor(*I, nullptr); } // Remove the loop from the top-level LoopInfo object. for (iterator I = begin();; ++I) { assert(I != end() && "Couldn't find loop"); if (*I == Unloop) { removeLoop(I); break; } } // Move all of the subloops to the top-level. while (!Unloop->empty()) addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); return; } // Update the parent loop for all blocks within the loop. Blocks within // subloops will not change parents. UnloopUpdater Updater(Unloop, this); Updater.updateBlockParents(); // Remove blocks from former ancestor loops. Updater.removeBlocksFromAncestors(); // Add direct subloops as children in their new parent loop. Updater.updateSubloopParents(); // Remove unloop from its parent loop. Loop *ParentLoop = Unloop->getParentLoop(); for (Loop::iterator I = ParentLoop->begin();; ++I) { assert(I != ParentLoop->end() && "Couldn't find loop"); if (*I == Unloop) { ParentLoop->removeChildLoop(I); break; } } } AnalysisKey LoopAnalysis::Key; LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { // FIXME: Currently we create a LoopInfo from scratch for every function. // This may prove to be too wasteful due to deallocating and re-allocating // memory each time for the underlying map and vector datastructures. At some // point it may prove worthwhile to use a freelist and recycle LoopInfo // objects. I don't want to add that kind of complexity until the scope of // the problem is better understood. LoopInfo LI; LI.analyze(AM.getResult(F)); return LI; } PreservedAnalyses LoopPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult(F).print(OS); return PreservedAnalyses::all(); } void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { if (forcePrintModuleIR()) { // handling -print-module-scope OS << Banner << " (loop: "; L.getHeader()->printAsOperand(OS, false); OS << ")\n"; // printing whole module OS << *L.getHeader()->getModule(); return; } OS << Banner; auto *PreHeader = L.getLoopPreheader(); if (PreHeader) { OS << "\n; Preheader:"; PreHeader->print(OS); OS << "\n; Loop:"; } for (auto *Block : L.blocks()) if (Block) Block->print(OS); else OS << "Printing block"; SmallVector ExitBlocks; L.getExitBlocks(ExitBlocks); if (!ExitBlocks.empty()) { OS << "\n; Exit blocks"; for (auto *Block : ExitBlocks) if (Block) Block->print(OS); else OS << "Printing block"; } } //===----------------------------------------------------------------------===// // LoopInfo implementation // char LoopInfoWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", true, true) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", true, true) bool LoopInfoWrapperPass::runOnFunction(Function &) { releaseMemory(); LI.analyze(getAnalysis().getDomTree()); return false; } void LoopInfoWrapperPass::verifyAnalysis() const { // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the // function each time verifyAnalysis is called is very expensive. The // -verify-loop-info option can enable this. In order to perform some // checking by default, LoopPass has been taught to call verifyLoop manually // during loop pass sequences. if (VerifyLoopInfo) { auto &DT = getAnalysis().getDomTree(); LI.verify(DT); } } void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { LI.print(OS); } PreservedAnalyses LoopVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { LoopInfo &LI = AM.getResult(F); auto &DT = AM.getResult(F); LI.verify(DT); return PreservedAnalyses::all(); } //===----------------------------------------------------------------------===// // LoopBlocksDFS implementation // /// Traverse the loop blocks and store the DFS result. /// Useful for clients that just want the final DFS result and don't need to /// visit blocks during the initial traversal. void LoopBlocksDFS::perform(LoopInfo *LI) { LoopBlocksTraversal Traversal(*this, LI); for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), POE = Traversal.end(); POI != POE; ++POI) ; }