//===- InlineCost.cpp - Cost analysis for inliner -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements inline cost analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InlineCost.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "inline-cost" STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); static cl::opt InlineThreshold( "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, cl::desc("Control the amount of inlining to perform (default = 225)")); static cl::opt HintThreshold( "inlinehint-threshold", cl::Hidden, cl::init(325), cl::desc("Threshold for inlining functions with inline hint")); static cl::opt ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining cold callsites")); // We introduce this threshold to help performance of instrumentation based // PGO before we actually hook up inliner with analysis passes such as BPI and // BFI. static cl::opt ColdThreshold( "inlinecold-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining functions with cold attribute")); static cl::opt HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), cl::ZeroOrMore, cl::desc("Threshold for hot callsites ")); static cl::opt LocallyHotCallSiteThreshold( "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, cl::desc("Threshold for locally hot callsites ")); static cl::opt ColdCallSiteRelFreq( "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::desc("Maxmimum block frequency, expressed as a percentage of caller's " "entry frequency, for a callsite to be cold in the absence of " "profile information.")); static cl::opt HotCallSiteRelFreq( "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, cl::desc("Minimum block frequency, expressed as a multiple of caller's " "entry frequency, for a callsite to be hot in the absence of " "profile information.")); static cl::opt OptComputeFullInlineCost( "inline-cost-full", cl::Hidden, cl::init(false), cl::desc("Compute the full inline cost of a call site even when the cost " "exceeds the threshold.")); namespace { class CallAnalyzer : public InstVisitor { typedef InstVisitor Base; friend class InstVisitor; /// The TargetTransformInfo available for this compilation. const TargetTransformInfo &TTI; /// Getter for the cache of @llvm.assume intrinsics. std::function &GetAssumptionCache; /// Getter for BlockFrequencyInfo Optional> &GetBFI; /// Profile summary information. ProfileSummaryInfo *PSI; /// The called function. Function &F; // Cache the DataLayout since we use it a lot. const DataLayout &DL; /// The OptimizationRemarkEmitter available for this compilation. OptimizationRemarkEmitter *ORE; /// The candidate callsite being analyzed. Please do not use this to do /// analysis in the caller function; we want the inline cost query to be /// easily cacheable. Instead, use the cover function paramHasAttr. CallSite CandidateCS; /// Tunable parameters that control the analysis. const InlineParams &Params; int Threshold; int Cost; bool ComputeFullInlineCost; bool IsCallerRecursive; bool IsRecursiveCall; bool ExposesReturnsTwice; bool HasDynamicAlloca; bool ContainsNoDuplicateCall; bool HasReturn; bool HasIndirectBr; bool HasUninlineableIntrinsic; bool UsesVarArgs; /// Number of bytes allocated statically by the callee. uint64_t AllocatedSize; unsigned NumInstructions, NumVectorInstructions; int VectorBonus, TenPercentVectorBonus; // Bonus to be applied when the callee has only one reachable basic block. int SingleBBBonus; /// While we walk the potentially-inlined instructions, we build up and /// maintain a mapping of simplified values specific to this callsite. The /// idea is to propagate any special information we have about arguments to /// this call through the inlinable section of the function, and account for /// likely simplifications post-inlining. The most important aspect we track /// is CFG altering simplifications -- when we prove a basic block dead, that /// can cause dramatic shifts in the cost of inlining a function. DenseMap SimplifiedValues; /// Keep track of the values which map back (through function arguments) to /// allocas on the caller stack which could be simplified through SROA. DenseMap SROAArgValues; /// The mapping of caller Alloca values to their accumulated cost savings. If /// we have to disable SROA for one of the allocas, this tells us how much /// cost must be added. DenseMap SROAArgCosts; /// Keep track of values which map to a pointer base and constant offset. DenseMap> ConstantOffsetPtrs; /// Keep track of dead blocks due to the constant arguments. SetVector DeadBlocks; /// The mapping of the blocks to their known unique successors due to the /// constant arguments. DenseMap KnownSuccessors; /// Model the elimination of repeated loads that is expected to happen /// whenever we simplify away the stores that would otherwise cause them to be /// loads. bool EnableLoadElimination; SmallPtrSet LoadAddrSet; int LoadEliminationCost; // Custom simplification helper routines. bool isAllocaDerivedArg(Value *V); bool lookupSROAArgAndCost(Value *V, Value *&Arg, DenseMap::iterator &CostIt); void disableSROA(DenseMap::iterator CostIt); void disableSROA(Value *V); void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); void accumulateSROACost(DenseMap::iterator CostIt, int InstructionCost); void disableLoadElimination(); bool isGEPFree(GetElementPtrInst &GEP); bool canFoldInboundsGEP(GetElementPtrInst &I); bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); bool simplifyCallSite(Function *F, CallSite CS); template bool simplifyInstruction(Instruction &I, Callable Evaluate); ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); /// Return true if the given argument to the function being considered for /// inlining has the given attribute set either at the call site or the /// function declaration. Primarily used to inspect call site specific /// attributes since these can be more precise than the ones on the callee /// itself. bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); /// Return true if the given value is known non null within the callee if /// inlined through this particular callsite. bool isKnownNonNullInCallee(Value *V); /// Update Threshold based on callsite properties such as callee /// attributes and callee hotness for PGO builds. The Callee is explicitly /// passed to support analyzing indirect calls whose target is inferred by /// analysis. void updateThreshold(CallSite CS, Function &Callee); /// Return true if size growth is allowed when inlining the callee at CS. bool allowSizeGrowth(CallSite CS); /// Return true if \p CS is a cold callsite. bool isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI); /// Return a higher threshold if \p CS is a hot callsite. Optional getHotCallSiteThreshold(CallSite CS, BlockFrequencyInfo *CallerBFI); // Custom analysis routines. bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl &EphValues); // Disable several entry points to the visitor so we don't accidentally use // them by declaring but not defining them here. void visit(Module *); void visit(Module &); void visit(Function *); void visit(Function &); void visit(BasicBlock *); void visit(BasicBlock &); // Provide base case for our instruction visit. bool visitInstruction(Instruction &I); // Our visit overrides. bool visitAlloca(AllocaInst &I); bool visitPHI(PHINode &I); bool visitGetElementPtr(GetElementPtrInst &I); bool visitBitCast(BitCastInst &I); bool visitPtrToInt(PtrToIntInst &I); bool visitIntToPtr(IntToPtrInst &I); bool visitCastInst(CastInst &I); bool visitUnaryInstruction(UnaryInstruction &I); bool visitCmpInst(CmpInst &I); bool visitSub(BinaryOperator &I); bool visitBinaryOperator(BinaryOperator &I); bool visitLoad(LoadInst &I); bool visitStore(StoreInst &I); bool visitExtractValue(ExtractValueInst &I); bool visitInsertValue(InsertValueInst &I); bool visitCallSite(CallSite CS); bool visitReturnInst(ReturnInst &RI); bool visitBranchInst(BranchInst &BI); bool visitSelectInst(SelectInst &SI); bool visitSwitchInst(SwitchInst &SI); bool visitIndirectBrInst(IndirectBrInst &IBI); bool visitResumeInst(ResumeInst &RI); bool visitCleanupReturnInst(CleanupReturnInst &RI); bool visitCatchReturnInst(CatchReturnInst &RI); bool visitUnreachableInst(UnreachableInst &I); public: CallAnalyzer(const TargetTransformInfo &TTI, std::function &GetAssumptionCache, Optional> &GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, CallSite CSArg, const InlineParams &Params) : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), CandidateCS(CSArg), Params(Params), Threshold(Params.DefaultThreshold), Cost(0), ComputeFullInlineCost(OptComputeFullInlineCost || Params.ComputeFullInlineCost || ORE), IsCallerRecursive(false), IsRecursiveCall(false), ExposesReturnsTwice(false), HasDynamicAlloca(false), ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), HasUninlineableIntrinsic(false), UsesVarArgs(false), AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0), VectorBonus(0), SingleBBBonus(0), EnableLoadElimination(true), LoadEliminationCost(0), NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0), NumConstantPtrDiffs(0), NumInstructionsSimplified(0), SROACostSavings(0), SROACostSavingsLost(0) {} bool analyzeCall(CallSite CS); int getThreshold() { return Threshold; } int getCost() { return Cost; } // Keep a bunch of stats about the cost savings found so we can print them // out when debugging. unsigned NumConstantArgs; unsigned NumConstantOffsetPtrArgs; unsigned NumAllocaArgs; unsigned NumConstantPtrCmps; unsigned NumConstantPtrDiffs; unsigned NumInstructionsSimplified; unsigned SROACostSavings; unsigned SROACostSavingsLost; void dump(); }; } // namespace /// Test whether the given value is an Alloca-derived function argument. bool CallAnalyzer::isAllocaDerivedArg(Value *V) { return SROAArgValues.count(V); } /// Lookup the SROA-candidate argument and cost iterator which V maps to. /// Returns false if V does not map to a SROA-candidate. bool CallAnalyzer::lookupSROAArgAndCost( Value *V, Value *&Arg, DenseMap::iterator &CostIt) { if (SROAArgValues.empty() || SROAArgCosts.empty()) return false; DenseMap::iterator ArgIt = SROAArgValues.find(V); if (ArgIt == SROAArgValues.end()) return false; Arg = ArgIt->second; CostIt = SROAArgCosts.find(Arg); return CostIt != SROAArgCosts.end(); } /// Disable SROA for the candidate marked by this cost iterator. /// /// This marks the candidate as no longer viable for SROA, and adds the cost /// savings associated with it back into the inline cost measurement. void CallAnalyzer::disableSROA(DenseMap::iterator CostIt) { // If we're no longer able to perform SROA we need to undo its cost savings // and prevent subsequent analysis. Cost += CostIt->second; SROACostSavings -= CostIt->second; SROACostSavingsLost += CostIt->second; SROAArgCosts.erase(CostIt); disableLoadElimination(); } /// If 'V' maps to a SROA candidate, disable SROA for it. void CallAnalyzer::disableSROA(Value *V) { Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(V, SROAArg, CostIt)) disableSROA(CostIt); } /// Accumulate the given cost for a particular SROA candidate. void CallAnalyzer::accumulateSROACost(DenseMap::iterator CostIt, int InstructionCost) { CostIt->second += InstructionCost; SROACostSavings += InstructionCost; } void CallAnalyzer::disableLoadElimination() { if (EnableLoadElimination) { Cost += LoadEliminationCost; LoadEliminationCost = 0; EnableLoadElimination = false; } } /// Accumulate a constant GEP offset into an APInt if possible. /// /// Returns false if unable to compute the offset for any reason. Respects any /// simplified values known during the analysis of this callsite. bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); assert(IntPtrWidth == Offset.getBitWidth()); for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); GTI != GTE; ++GTI) { ConstantInt *OpC = dyn_cast(GTI.getOperand()); if (!OpC) if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) OpC = dyn_cast(SimpleOp); if (!OpC) return false; if (OpC->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = GTI.getStructTypeOrNull()) { unsigned ElementIdx = OpC->getZExtValue(); const StructLayout *SL = DL.getStructLayout(STy); Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); continue; } APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; } return true; } /// Use TTI to check whether a GEP is free. /// /// Respects any simplified values known during the analysis of this callsite. bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { SmallVector Operands; Operands.push_back(GEP.getOperand(0)); for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) Operands.push_back(SimpleOp); else Operands.push_back(*I); return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands); } bool CallAnalyzer::visitAlloca(AllocaInst &I) { // Check whether inlining will turn a dynamic alloca into a static // alloca and handle that case. if (I.isArrayAllocation()) { Constant *Size = SimplifiedValues.lookup(I.getArraySize()); if (auto *AllocSize = dyn_cast_or_null(Size)) { Type *Ty = I.getAllocatedType(); AllocatedSize = SaturatingMultiplyAdd( AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize); return Base::visitAlloca(I); } } // Accumulate the allocated size. if (I.isStaticAlloca()) { Type *Ty = I.getAllocatedType(); AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize); } // We will happily inline static alloca instructions. if (I.isStaticAlloca()) return Base::visitAlloca(I); // FIXME: This is overly conservative. Dynamic allocas are inefficient for // a variety of reasons, and so we would like to not inline them into // functions which don't currently have a dynamic alloca. This simply // disables inlining altogether in the presence of a dynamic alloca. HasDynamicAlloca = true; return false; } bool CallAnalyzer::visitPHI(PHINode &I) { // FIXME: We need to propagate SROA *disabling* through phi nodes, even // though we don't want to propagate it's bonuses. The idea is to disable // SROA if it *might* be used in an inappropriate manner. // Phi nodes are always zero-cost. // FIXME: Pointer sizes may differ between different address spaces, so do we // need to use correct address space in the call to getPointerSizeInBits here? // Or could we skip the getPointerSizeInBits call completely? As far as I can // see the ZeroOffset is used as a dummy value, so we can probably use any // bit width for the ZeroOffset? APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); bool CheckSROA = I.getType()->isPointerTy(); // Track the constant or pointer with constant offset we've seen so far. Constant *FirstC = nullptr; std::pair FirstBaseAndOffset = {nullptr, ZeroOffset}; Value *FirstV = nullptr; for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = I.getIncomingBlock(i); // If the incoming block is dead, skip the incoming block. if (DeadBlocks.count(Pred)) continue; // If the parent block of phi is not the known successor of the incoming // block, skip the incoming block. BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; if (KnownSuccessor && KnownSuccessor != I.getParent()) continue; Value *V = I.getIncomingValue(i); // If the incoming value is this phi itself, skip the incoming value. if (&I == V) continue; Constant *C = dyn_cast(V); if (!C) C = SimplifiedValues.lookup(V); std::pair BaseAndOffset = {nullptr, ZeroOffset}; if (!C && CheckSROA) BaseAndOffset = ConstantOffsetPtrs.lookup(V); if (!C && !BaseAndOffset.first) // The incoming value is neither a constant nor a pointer with constant // offset, exit early. return true; if (FirstC) { if (FirstC == C) // If we've seen a constant incoming value before and it is the same // constant we see this time, continue checking the next incoming value. continue; // Otherwise early exit because we either see a different constant or saw // a constant before but we have a pointer with constant offset this time. return true; } if (FirstV) { // The same logic as above, but check pointer with constant offset here. if (FirstBaseAndOffset == BaseAndOffset) continue; return true; } if (C) { // This is the 1st time we've seen a constant, record it. FirstC = C; continue; } // The remaining case is that this is the 1st time we've seen a pointer with // constant offset, record it. FirstV = V; FirstBaseAndOffset = BaseAndOffset; } // Check if we can map phi to a constant. if (FirstC) { SimplifiedValues[&I] = FirstC; return true; } // Check if we can map phi to a pointer with constant offset. if (FirstBaseAndOffset.first) { ConstantOffsetPtrs[&I] = FirstBaseAndOffset; Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt)) SROAArgValues[&I] = SROAArg; } return true; } /// Check we can fold GEPs of constant-offset call site argument pointers. /// This requires target data and inbounds GEPs. /// /// \return true if the specified GEP can be folded. bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { // Check if we have a base + offset for the pointer. std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(I.getPointerOperand()); if (!BaseAndOffset.first) return false; // Check if the offset of this GEP is constant, and if so accumulate it // into Offset. if (!accumulateGEPOffset(cast(I), BaseAndOffset.second)) return false; // Add the result as a new mapping to Base + Offset. ConstantOffsetPtrs[&I] = BaseAndOffset; return true; } bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { Value *SROAArg; DenseMap::iterator CostIt; bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt); // Lambda to check whether a GEP's indices are all constant. auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) if (!isa(*I) && !SimplifiedValues.lookup(*I)) return false; return true; }; if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { if (SROACandidate) SROAArgValues[&I] = SROAArg; // Constant GEPs are modeled as free. return true; } // Variable GEPs will require math and will disable SROA. if (SROACandidate) disableSROA(CostIt); return isGEPFree(I); } /// Simplify \p I if its operands are constants and update SimplifiedValues. /// \p Evaluate is a callable specific to instruction type that evaluates the /// instruction when all the operands are constants. template bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { SmallVector COps; for (Value *Op : I.operands()) { Constant *COp = dyn_cast(Op); if (!COp) COp = SimplifiedValues.lookup(Op); if (!COp) return false; COps.push_back(COp); } auto *C = Evaluate(COps); if (!C) return false; SimplifiedValues[&I] = C; return true; } bool CallAnalyzer::visitBitCast(BitCastInst &I) { // Propagate constants through bitcasts. if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantExpr::getBitCast(COps[0], I.getType()); })) return true; // Track base/offsets through casts std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(I.getOperand(0)); // Casts don't change the offset, just wrap it up. if (BaseAndOffset.first) ConstantOffsetPtrs[&I] = BaseAndOffset; // Also look for SROA candidates here. Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) SROAArgValues[&I] = SROAArg; // Bitcasts are always zero cost. return true; } bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { // Propagate constants through ptrtoint. if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantExpr::getPtrToInt(COps[0], I.getType()); })) return true; // Track base/offset pairs when converted to a plain integer provided the // integer is large enough to represent the pointer. unsigned IntegerSize = I.getType()->getScalarSizeInBits(); unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); if (IntegerSize >= DL.getPointerSizeInBits(AS)) { std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(I.getOperand(0)); if (BaseAndOffset.first) ConstantOffsetPtrs[&I] = BaseAndOffset; } // This is really weird. Technically, ptrtoint will disable SROA. However, // unless that ptrtoint is *used* somewhere in the live basic blocks after // inlining, it will be nuked, and SROA should proceed. All of the uses which // would block SROA would also block SROA if applied directly to a pointer, // and so we can just add the integer in here. The only places where SROA is // preserved either cannot fire on an integer, or won't in-and-of themselves // disable SROA (ext) w/o some later use that we would see and disable. Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) SROAArgValues[&I] = SROAArg; return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); } bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { // Propagate constants through ptrtoint. if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantExpr::getIntToPtr(COps[0], I.getType()); })) return true; // Track base/offset pairs when round-tripped through a pointer without // modifications provided the integer is not too large. Value *Op = I.getOperand(0); unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(Op); if (BaseAndOffset.first) ConstantOffsetPtrs[&I] = BaseAndOffset; } // "Propagate" SROA here in the same manner as we do for ptrtoint above. Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) SROAArgValues[&I] = SROAArg; return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); } bool CallAnalyzer::visitCastInst(CastInst &I) { // Propagate constants through ptrtoint. if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); })) return true; // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. disableSROA(I.getOperand(0)); // If this is a floating-point cast, and the target says this operation // is expensive, this may eventually become a library call. Treat the cost // as such. switch (I.getOpcode()) { case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) Cost += InlineConstants::CallPenalty; default: break; } return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); } bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { Value *Operand = I.getOperand(0); if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantFoldInstOperands(&I, COps[0], DL); })) return true; // Disable any SROA on the argument to arbitrary unary operators. disableSROA(Operand); return false; } bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { return CandidateCS.paramHasAttr(A->getArgNo(), Attr); } bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { // Does the *call site* have the NonNull attribute set on an argument? We // use the attribute on the call site to memoize any analysis done in the // caller. This will also trip if the callee function has a non-null // parameter attribute, but that's a less interesting case because hopefully // the callee would already have been simplified based on that. if (Argument *A = dyn_cast(V)) if (paramHasAttr(A, Attribute::NonNull)) return true; // Is this an alloca in the caller? This is distinct from the attribute case // above because attributes aren't updated within the inliner itself and we // always want to catch the alloca derived case. if (isAllocaDerivedArg(V)) // We can actually predict the result of comparisons between an // alloca-derived value and null. Note that this fires regardless of // SROA firing. return true; return false; } bool CallAnalyzer::allowSizeGrowth(CallSite CS) { // If the normal destination of the invoke or the parent block of the call // site is unreachable-terminated, there is little point in inlining this // unless there is literally zero cost. // FIXME: Note that it is possible that an unreachable-terminated block has a // hot entry. For example, in below scenario inlining hot_call_X() may be // beneficial : // main() { // hot_call_1(); // ... // hot_call_N() // exit(0); // } // For now, we are not handling this corner case here as it is rare in real // code. In future, we should elaborate this based on BPI and BFI in more // general threshold adjusting heuristics in updateThreshold(). Instruction *Instr = CS.getInstruction(); if (InvokeInst *II = dyn_cast(Instr)) { if (isa(II->getNormalDest()->getTerminator())) return false; } else if (isa(Instr->getParent()->getTerminator())) return false; return true; } bool CallAnalyzer::isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI) { // If global profile summary is available, then callsite's coldness is // determined based on that. if (PSI && PSI->hasProfileSummary()) return PSI->isColdCallSite(CS, CallerBFI); // Otherwise we need BFI to be available. if (!CallerBFI) return false; // Determine if the callsite is cold relative to caller's entry. We could // potentially cache the computation of scaled entry frequency, but the added // complexity is not worth it unless this scaling shows up high in the // profiles. const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); auto CallSiteBB = CS.getInstruction()->getParent(); auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); auto CallerEntryFreq = CallerBFI->getBlockFreq(&(CS.getCaller()->getEntryBlock())); return CallSiteFreq < CallerEntryFreq * ColdProb; } Optional CallAnalyzer::getHotCallSiteThreshold(CallSite CS, BlockFrequencyInfo *CallerBFI) { // If global profile summary is available, then callsite's hotness is // determined based on that. if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(CS, CallerBFI)) return Params.HotCallSiteThreshold; // Otherwise we need BFI to be available and to have a locally hot callsite // threshold. if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) return None; // Determine if the callsite is hot relative to caller's entry. We could // potentially cache the computation of scaled entry frequency, but the added // complexity is not worth it unless this scaling shows up high in the // profiles. auto CallSiteBB = CS.getInstruction()->getParent(); auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); auto CallerEntryFreq = CallerBFI->getEntryFreq(); if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) return Params.LocallyHotCallSiteThreshold; // Otherwise treat it normally. return None; } void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) { // If no size growth is allowed for this inlining, set Threshold to 0. if (!allowSizeGrowth(CS)) { Threshold = 0; return; } Function *Caller = CS.getCaller(); // return min(A, B) if B is valid. auto MinIfValid = [](int A, Optional B) { return B ? std::min(A, B.getValue()) : A; }; // return max(A, B) if B is valid. auto MaxIfValid = [](int A, Optional B) { return B ? std::max(A, B.getValue()) : A; }; // Various bonus percentages. These are multiplied by Threshold to get the // bonus values. // SingleBBBonus: This bonus is applied if the callee has a single reachable // basic block at the given callsite context. This is speculatively applied // and withdrawn if more than one basic block is seen. // // Vector bonuses: We want to more aggressively inline vector-dense kernels // and apply this bonus based on the percentage of vector instructions. A // bonus is applied if the vector instructions exceed 50% and half that amount // is applied if it exceeds 10%. Note that these bonuses are some what // arbitrary and evolved over time by accident as much as because they are // principled bonuses. // FIXME: It would be nice to base the bonus values on something more // scientific. // // LstCallToStaticBonus: This large bonus is applied to ensure the inlining // of the last call to a static function as inlining such functions is // guaranteed to reduce code size. // // These bonus percentages may be set to 0 based on properties of the caller // and the callsite. int SingleBBBonusPercent = 50; int VectorBonusPercent = 150; int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; // Lambda to set all the above bonus and bonus percentages to 0. auto DisallowAllBonuses = [&]() { SingleBBBonusPercent = 0; VectorBonusPercent = 0; LastCallToStaticBonus = 0; }; // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available // and reduce the threshold if the caller has the necessary attribute. if (Caller->optForMinSize()) { Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); // For minsize, we want to disable the single BB bonus and the vector // bonuses, but not the last-call-to-static bonus. Inlining the last call to // a static function will, at the minimum, eliminate the parameter setup and // call/return instructions. SingleBBBonusPercent = 0; VectorBonusPercent = 0; } else if (Caller->optForSize()) Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); // Adjust the threshold based on inlinehint attribute and profile based // hotness information if the caller does not have MinSize attribute. if (!Caller->optForMinSize()) { if (Callee.hasFnAttribute(Attribute::InlineHint)) Threshold = MaxIfValid(Threshold, Params.HintThreshold); // FIXME: After switching to the new passmanager, simplify the logic below // by checking only the callsite hotness/coldness as we will reliably // have local profile information. // // Callsite hotness and coldness can be determined if sample profile is // used (which adds hotness metadata to calls) or if caller's // BlockFrequencyInfo is available. BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr; auto HotCallSiteThreshold = getHotCallSiteThreshold(CS, CallerBFI); if (!Caller->optForSize() && HotCallSiteThreshold) { LLVM_DEBUG(dbgs() << "Hot callsite.\n"); // FIXME: This should update the threshold only if it exceeds the // current threshold, but AutoFDO + ThinLTO currently relies on this // behavior to prevent inlining of hot callsites during ThinLTO // compile phase. Threshold = HotCallSiteThreshold.getValue(); } else if (isColdCallSite(CS, CallerBFI)) { LLVM_DEBUG(dbgs() << "Cold callsite.\n"); // Do not apply bonuses for a cold callsite including the // LastCallToStatic bonus. While this bonus might result in code size // reduction, it can cause the size of a non-cold caller to increase // preventing it from being inlined. DisallowAllBonuses(); Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); } else if (PSI) { // Use callee's global profile information only if we have no way of // determining this via callsite information. if (PSI->isFunctionEntryHot(&Callee)) { LLVM_DEBUG(dbgs() << "Hot callee.\n"); // If callsite hotness can not be determined, we may still know // that the callee is hot and treat it as a weaker hint for threshold // increase. Threshold = MaxIfValid(Threshold, Params.HintThreshold); } else if (PSI->isFunctionEntryCold(&Callee)) { LLVM_DEBUG(dbgs() << "Cold callee.\n"); // Do not apply bonuses for a cold callee including the // LastCallToStatic bonus. While this bonus might result in code size // reduction, it can cause the size of a non-cold caller to increase // preventing it from being inlined. DisallowAllBonuses(); Threshold = MinIfValid(Threshold, Params.ColdThreshold); } } } // Finally, take the target-specific inlining threshold multiplier into // account. Threshold *= TTI.getInliningThresholdMultiplier(); SingleBBBonus = Threshold * SingleBBBonusPercent / 100; VectorBonus = Threshold * VectorBonusPercent / 100; bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction(); // If there is only one call of the function, and it has internal linkage, // the cost of inlining it drops dramatically. It may seem odd to update // Cost in updateThreshold, but the bonus depends on the logic in this method. if (OnlyOneCallAndLocalLinkage) Cost -= LastCallToStaticBonus; } bool CallAnalyzer::visitCmpInst(CmpInst &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); // First try to handle simplified comparisons. if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); })) return true; if (I.getOpcode() == Instruction::FCmp) return false; // Otherwise look for a comparison between constant offset pointers with // a common base. Value *LHSBase, *RHSBase; APInt LHSOffset, RHSOffset; std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); if (LHSBase) { std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); if (RHSBase && LHSBase == RHSBase) { // We have common bases, fold the icmp to a constant based on the // offsets. Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { SimplifiedValues[&I] = C; ++NumConstantPtrCmps; return true; } } } // If the comparison is an equality comparison with null, we can simplify it // if we know the value (argument) can't be null if (I.isEquality() && isa(I.getOperand(1)) && isKnownNonNullInCallee(I.getOperand(0))) { bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) : ConstantInt::getFalse(I.getType()); return true; } // Finally check for SROA candidates in comparisons. Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { if (isa(I.getOperand(1))) { accumulateSROACost(CostIt, InlineConstants::InstrCost); return true; } disableSROA(CostIt); } return false; } bool CallAnalyzer::visitSub(BinaryOperator &I) { // Try to handle a special case: we can fold computing the difference of two // constant-related pointers. Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Value *LHSBase, *RHSBase; APInt LHSOffset, RHSOffset; std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); if (LHSBase) { std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); if (RHSBase && LHSBase == RHSBase) { // We have common bases, fold the subtract to a constant based on the // offsets. Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { SimplifiedValues[&I] = C; ++NumConstantPtrDiffs; return true; } } } // Otherwise, fall back to the generic logic for simplifying and handling // instructions. return Base::visitSub(I); } bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Constant *CLHS = dyn_cast(LHS); if (!CLHS) CLHS = SimplifiedValues.lookup(LHS); Constant *CRHS = dyn_cast(RHS); if (!CRHS) CRHS = SimplifiedValues.lookup(RHS); Value *SimpleV = nullptr; if (auto FI = dyn_cast(&I)) SimpleV = SimplifyFPBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL); else SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); if (Constant *C = dyn_cast_or_null(SimpleV)) SimplifiedValues[&I] = C; if (SimpleV) return true; // Disable any SROA on arguments to arbitrary, unsimplified binary operators. disableSROA(LHS); disableSROA(RHS); // If the instruction is floating point, and the target says this operation // is expensive, this may eventually become a library call. Treat the cost // as such. if (I.getType()->isFloatingPointTy() && TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) Cost += InlineConstants::CallPenalty; return false; } bool CallAnalyzer::visitLoad(LoadInst &I) { Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { if (I.isSimple()) { accumulateSROACost(CostIt, InlineConstants::InstrCost); return true; } disableSROA(CostIt); } // If the data is already loaded from this address and hasn't been clobbered // by any stores or calls, this load is likely to be redundant and can be // eliminated. if (EnableLoadElimination && !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { LoadEliminationCost += InlineConstants::InstrCost; return true; } return false; } bool CallAnalyzer::visitStore(StoreInst &I) { Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { if (I.isSimple()) { accumulateSROACost(CostIt, InlineConstants::InstrCost); return true; } disableSROA(CostIt); } // The store can potentially clobber loads and prevent repeated loads from // being eliminated. // FIXME: // 1. We can probably keep an initial set of eliminatable loads substracted // from the cost even when we finally see a store. We just need to disable // *further* accumulation of elimination savings. // 2. We should probably at some point thread MemorySSA for the callee into // this and then use that to actually compute *really* precise savings. disableLoadElimination(); return false; } bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { // Constant folding for extract value is trivial. if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantExpr::getExtractValue(COps[0], I.getIndices()); })) return true; // SROA can look through these but give them a cost. return false; } bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { // Constant folding for insert value is trivial. if (simplifyInstruction(I, [&](SmallVectorImpl &COps) { return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], /*InsertedValueOperand*/ COps[1], I.getIndices()); })) return true; // SROA can look through these but give them a cost. return false; } /// Try to simplify a call site. /// /// Takes a concrete function and callsite and tries to actually simplify it by /// analyzing the arguments and call itself with instsimplify. Returns true if /// it has simplified the callsite to some other entity (a constant), making it /// free. bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { // FIXME: Using the instsimplify logic directly for this is inefficient // because we have to continually rebuild the argument list even when no // simplifications can be performed. Until that is fixed with remapping // inside of instsimplify, directly constant fold calls here. if (!canConstantFoldCallTo(CS, F)) return false; // Try to re-map the arguments to constants. SmallVector ConstantArgs; ConstantArgs.reserve(CS.arg_size()); for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) { Constant *C = dyn_cast(*I); if (!C) C = dyn_cast_or_null(SimplifiedValues.lookup(*I)); if (!C) return false; // This argument doesn't map to a constant. ConstantArgs.push_back(C); } if (Constant *C = ConstantFoldCall(CS, F, ConstantArgs)) { SimplifiedValues[CS.getInstruction()] = C; return true; } return false; } bool CallAnalyzer::visitCallSite(CallSite CS) { if (CS.hasFnAttr(Attribute::ReturnsTwice) && !F.hasFnAttribute(Attribute::ReturnsTwice)) { // This aborts the entire analysis. ExposesReturnsTwice = true; return false; } if (CS.isCall() && cast(CS.getInstruction())->cannotDuplicate()) ContainsNoDuplicateCall = true; if (Function *F = CS.getCalledFunction()) { // When we have a concrete function, first try to simplify it directly. if (simplifyCallSite(F, CS)) return true; // Next check if it is an intrinsic we know about. // FIXME: Lift this into part of the InstVisitor. if (IntrinsicInst *II = dyn_cast(CS.getInstruction())) { switch (II->getIntrinsicID()) { default: if (!CS.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) disableLoadElimination(); return Base::visitCallSite(CS); case Intrinsic::load_relative: // This is normally lowered to 4 LLVM instructions. Cost += 3 * InlineConstants::InstrCost; return false; case Intrinsic::memset: case Intrinsic::memcpy: case Intrinsic::memmove: disableLoadElimination(); // SROA can usually chew through these intrinsics, but they aren't free. return false; case Intrinsic::icall_branch_funnel: case Intrinsic::localescape: HasUninlineableIntrinsic = true; return false; case Intrinsic::vastart: case Intrinsic::vaend: UsesVarArgs = true; return false; } } if (F == CS.getInstruction()->getFunction()) { // This flag will fully abort the analysis, so don't bother with anything // else. IsRecursiveCall = true; return false; } if (TTI.isLoweredToCall(F)) { // We account for the average 1 instruction per call argument setup // here. Cost += CS.arg_size() * InlineConstants::InstrCost; // Everything other than inline ASM will also have a significant cost // merely from making the call. if (!isa(CS.getCalledValue())) Cost += InlineConstants::CallPenalty; } if (!CS.onlyReadsMemory()) disableLoadElimination(); return Base::visitCallSite(CS); } // Otherwise we're in a very special case -- an indirect function call. See // if we can be particularly clever about this. Value *Callee = CS.getCalledValue(); // First, pay the price of the argument setup. We account for the average // 1 instruction per call argument setup here. Cost += CS.arg_size() * InlineConstants::InstrCost; // Next, check if this happens to be an indirect function call to a known // function in this inline context. If not, we've done all we can. Function *F = dyn_cast_or_null(SimplifiedValues.lookup(Callee)); if (!F) { if (!CS.onlyReadsMemory()) disableLoadElimination(); return Base::visitCallSite(CS); } // If we have a constant that we are calling as a function, we can peer // through it and see the function target. This happens not infrequently // during devirtualization and so we want to give it a hefty bonus for // inlining, but cap that bonus in the event that inlining wouldn't pan // out. Pretend to inline the function, with a custom threshold. auto IndirectCallParams = Params; IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold; CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, CS, IndirectCallParams); if (CA.analyzeCall(CS)) { // We were able to inline the indirect call! Subtract the cost from the // threshold to get the bonus we want to apply, but don't go below zero. Cost -= std::max(0, CA.getThreshold() - CA.getCost()); } if (!F->onlyReadsMemory()) disableLoadElimination(); return Base::visitCallSite(CS); } bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { // At least one return instruction will be free after inlining. bool Free = !HasReturn; HasReturn = true; return Free; } bool CallAnalyzer::visitBranchInst(BranchInst &BI) { // We model unconditional branches as essentially free -- they really // shouldn't exist at all, but handling them makes the behavior of the // inliner more regular and predictable. Interestingly, conditional branches // which will fold away are also free. return BI.isUnconditional() || isa(BI.getCondition()) || dyn_cast_or_null( SimplifiedValues.lookup(BI.getCondition())); } bool CallAnalyzer::visitSelectInst(SelectInst &SI) { bool CheckSROA = SI.getType()->isPointerTy(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); Constant *TrueC = dyn_cast(TrueVal); if (!TrueC) TrueC = SimplifiedValues.lookup(TrueVal); Constant *FalseC = dyn_cast(FalseVal); if (!FalseC) FalseC = SimplifiedValues.lookup(FalseVal); Constant *CondC = dyn_cast_or_null(SimplifiedValues.lookup(SI.getCondition())); if (!CondC) { // Select C, X, X => X if (TrueC == FalseC && TrueC) { SimplifiedValues[&SI] = TrueC; return true; } if (!CheckSROA) return Base::visitSelectInst(SI); std::pair TrueBaseAndOffset = ConstantOffsetPtrs.lookup(TrueVal); std::pair FalseBaseAndOffset = ConstantOffsetPtrs.lookup(FalseVal); if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt)) SROAArgValues[&SI] = SROAArg; return true; } return Base::visitSelectInst(SI); } // Select condition is a constant. Value *SelectedV = CondC->isAllOnesValue() ? TrueVal : (CondC->isNullValue()) ? FalseVal : nullptr; if (!SelectedV) { // Condition is a vector constant that is not all 1s or all 0s. If all // operands are constants, ConstantExpr::getSelect() can handle the cases // such as select vectors. if (TrueC && FalseC) { if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { SimplifiedValues[&SI] = C; return true; } } return Base::visitSelectInst(SI); } // Condition is either all 1s or all 0s. SI can be simplified. if (Constant *SelectedC = dyn_cast(SelectedV)) { SimplifiedValues[&SI] = SelectedC; return true; } if (!CheckSROA) return true; std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(SelectedV); if (BaseAndOffset.first) { ConstantOffsetPtrs[&SI] = BaseAndOffset; Value *SROAArg; DenseMap::iterator CostIt; if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt)) SROAArgValues[&SI] = SROAArg; } return true; } bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { // We model unconditional switches as free, see the comments on handling // branches. if (isa(SI.getCondition())) return true; if (Value *V = SimplifiedValues.lookup(SI.getCondition())) if (isa(V)) return true; // Assume the most general case where the switch is lowered into // either a jump table, bit test, or a balanced binary tree consisting of // case clusters without merging adjacent clusters with the same // destination. We do not consider the switches that are lowered with a mix // of jump table/bit test/binary search tree. The cost of the switch is // proportional to the size of the tree or the size of jump table range. // // NB: We convert large switches which are just used to initialize large phi // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent // inlining those. It will prevent inlining in cases where the optimization // does not (yet) fire. // Maximum valid cost increased in this function. int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; // Exit early for a large switch, assuming one case needs at least one // instruction. // FIXME: This is not true for a bit test, but ignore such case for now to // save compile-time. int64_t CostLowerBound = std::min((int64_t)CostUpperBound, (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost); if (CostLowerBound > Threshold && !ComputeFullInlineCost) { Cost = CostLowerBound; return false; } unsigned JumpTableSize = 0; unsigned NumCaseCluster = TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize); // If suitable for a jump table, consider the cost for the table size and // branch to destination. if (JumpTableSize) { int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 4 * InlineConstants::InstrCost; Cost = std::min((int64_t)CostUpperBound, JTCost + Cost); return false; } // Considering forming a binary search, we should find the number of nodes // which is same as the number of comparisons when lowered. For a given // number of clusters, n, we can define a recursive function, f(n), to find // the number of nodes in the tree. The recursion is : // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, // and f(n) = n, when n <= 3. // This will lead a binary tree where the leaf should be either f(2) or f(3) // when n > 3. So, the number of comparisons from leaves should be n, while // the number of non-leaf should be : // 2^(log2(n) - 1) - 1 // = 2^log2(n) * 2^-1 - 1 // = n / 2 - 1. // Considering comparisons from leaf and non-leaf nodes, we can estimate the // number of comparisons in a simple closed form : // n + n / 2 - 1 = n * 3 / 2 - 1 if (NumCaseCluster <= 3) { // Suppose a comparison includes one compare and one conditional branch. Cost += NumCaseCluster * 2 * InlineConstants::InstrCost; return false; } int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; Cost = std::min((int64_t)CostUpperBound, SwitchCost + Cost); return false; } bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { // We never want to inline functions that contain an indirectbr. This is // incorrect because all the blockaddress's (in static global initializers // for example) would be referring to the original function, and this // indirect jump would jump from the inlined copy of the function into the // original function which is extremely undefined behavior. // FIXME: This logic isn't really right; we can safely inline functions with // indirectbr's as long as no other function or global references the // blockaddress of a block within the current function. HasIndirectBr = true; return false; } bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { // FIXME: It's not clear that a single instruction is an accurate model for // the inline cost of a resume instruction. return false; } bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { // FIXME: It's not clear that a single instruction is an accurate model for // the inline cost of a cleanupret instruction. return false; } bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { // FIXME: It's not clear that a single instruction is an accurate model for // the inline cost of a catchret instruction. return false; } bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { // FIXME: It might be reasonably to discount the cost of instructions leading // to unreachable as they have the lowest possible impact on both runtime and // code size. return true; // No actual code is needed for unreachable. } bool CallAnalyzer::visitInstruction(Instruction &I) { // Some instructions are free. All of the free intrinsics can also be // handled by SROA, etc. if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) return true; // We found something we don't understand or can't handle. Mark any SROA-able // values in the operand list as no longer viable. for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) disableSROA(*OI); return false; } /// Analyze a basic block for its contribution to the inline cost. /// /// This method walks the analyzer over every instruction in the given basic /// block and accounts for their cost during inlining at this callsite. It /// aborts early if the threshold has been exceeded or an impossible to inline /// construct has been detected. It returns false if inlining is no longer /// viable, and true if inlining remains viable. bool CallAnalyzer::analyzeBlock(BasicBlock *BB, SmallPtrSetImpl &EphValues) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // FIXME: Currently, the number of instructions in a function regardless of // our ability to simplify them during inline to constants or dead code, // are actually used by the vector bonus heuristic. As long as that's true, // we have to special case debug intrinsics here to prevent differences in // inlining due to debug symbols. Eventually, the number of unsimplified // instructions shouldn't factor into the cost computation, but until then, // hack around it here. if (isa(I)) continue; // Skip ephemeral values. if (EphValues.count(&*I)) continue; ++NumInstructions; if (isa(I) || I->getType()->isVectorTy()) ++NumVectorInstructions; // If the instruction simplified to a constant, there is no cost to this // instruction. Visit the instructions using our InstVisitor to account for // all of the per-instruction logic. The visit tree returns true if we // consumed the instruction in any way, and false if the instruction's base // cost should count against inlining. if (Base::visit(&*I)) ++NumInstructionsSimplified; else Cost += InlineConstants::InstrCost; using namespace ore; // If the visit this instruction detected an uninlinable pattern, abort. if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || HasIndirectBr || HasUninlineableIntrinsic || UsesVarArgs) { if (ORE) ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", CandidateCS.getInstruction()) << NV("Callee", &F) << " has uninlinable pattern and cost is not fully computed"; }); return false; } // If the caller is a recursive function then we don't want to inline // functions which allocate a lot of stack space because it would increase // the caller stack usage dramatically. if (IsCallerRecursive && AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { if (ORE) ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", CandidateCS.getInstruction()) << NV("Callee", &F) << " is recursive and allocates too much stack space. Cost is " "not fully computed"; }); return false; } // Check if we've past the maximum possible threshold so we don't spin in // huge basic blocks that will never inline. if (Cost >= Threshold && !ComputeFullInlineCost) return false; } return true; } /// Compute the base pointer and cumulative constant offsets for V. /// /// This strips all constant offsets off of V, leaving it the base pointer, and /// accumulates the total constant offset applied in the returned constant. It /// returns 0 if V is not a pointer, and returns the constant '0' if there are /// no constant offsets applied. ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { if (!V->getType()->isPointerTy()) return nullptr; unsigned AS = V->getType()->getPointerAddressSpace(); unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); APInt Offset = APInt::getNullValue(IntPtrWidth); // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(V); do { if (GEPOperator *GEP = dyn_cast(V)) { if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) return nullptr; V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast) { V = cast(V)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(V)) { if (GA->isInterposable()) break; V = GA->getAliasee(); } else { break; } assert(V->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(V).second); Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS); return cast(ConstantInt::get(IntPtrTy, Offset)); } /// Find dead blocks due to deleted CFG edges during inlining. /// /// If we know the successor of the current block, \p CurrBB, has to be \p /// NextBB, the other successors of \p CurrBB are dead if these successors have /// no live incoming CFG edges. If one block is found to be dead, we can /// continue growing the dead block list by checking the successors of the dead /// blocks to see if all their incoming edges are dead or not. void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { // A CFG edge is dead if the predecessor is dead or the predessor has a // known successor which is not the one under exam. return (DeadBlocks.count(Pred) || (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); }; auto IsNewlyDead = [&](BasicBlock *BB) { // If all the edges to a block are dead, the block is also dead. return (!DeadBlocks.count(BB) && llvm::all_of(predecessors(BB), [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); }; for (BasicBlock *Succ : successors(CurrBB)) { if (Succ == NextBB || !IsNewlyDead(Succ)) continue; SmallVector NewDead; NewDead.push_back(Succ); while (!NewDead.empty()) { BasicBlock *Dead = NewDead.pop_back_val(); if (DeadBlocks.insert(Dead)) // Continue growing the dead block lists. for (BasicBlock *S : successors(Dead)) if (IsNewlyDead(S)) NewDead.push_back(S); } } } /// Analyze a call site for potential inlining. /// /// Returns true if inlining this call is viable, and false if it is not /// viable. It computes the cost and adjusts the threshold based on numerous /// factors and heuristics. If this method returns false but the computed cost /// is below the computed threshold, then inlining was forcibly disabled by /// some artifact of the routine. bool CallAnalyzer::analyzeCall(CallSite CS) { ++NumCallsAnalyzed; // Perform some tweaks to the cost and threshold based on the direct // callsite information. // We want to more aggressively inline vector-dense kernels, so up the // threshold, and we'll lower it if the % of vector instructions gets too // low. Note that these bonuses are some what arbitrary and evolved over time // by accident as much as because they are principled bonuses. // // FIXME: It would be nice to remove all such bonuses. At least it would be // nice to base the bonus values on something more scientific. assert(NumInstructions == 0); assert(NumVectorInstructions == 0); // Update the threshold based on callsite properties updateThreshold(CS, F); // Speculatively apply all possible bonuses to Threshold. If cost exceeds // this Threshold any time, and cost cannot decrease, we can stop processing // the rest of the function body. Threshold += (SingleBBBonus + VectorBonus); // Give out bonuses for the callsite, as the instructions setting them up // will be gone after inlining. Cost -= getCallsiteCost(CS, DL); // If this function uses the coldcc calling convention, prefer not to inline // it. if (F.getCallingConv() == CallingConv::Cold) Cost += InlineConstants::ColdccPenalty; // Check if we're done. This can happen due to bonuses and penalties. if (Cost >= Threshold && !ComputeFullInlineCost) return false; if (F.empty()) return true; Function *Caller = CS.getInstruction()->getFunction(); // Check if the caller function is recursive itself. for (User *U : Caller->users()) { CallSite Site(U); if (!Site) continue; Instruction *I = Site.getInstruction(); if (I->getFunction() == Caller) { IsCallerRecursive = true; break; } } // Populate our simplified values by mapping from function arguments to call // arguments with known important simplifications. CallSite::arg_iterator CAI = CS.arg_begin(); for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); FAI != FAE; ++FAI, ++CAI) { assert(CAI != CS.arg_end()); if (Constant *C = dyn_cast(CAI)) SimplifiedValues[&*FAI] = C; Value *PtrArg = *CAI; if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); // We can SROA any pointer arguments derived from alloca instructions. if (isa(PtrArg)) { SROAArgValues[&*FAI] = PtrArg; SROAArgCosts[PtrArg] = 0; } } } NumConstantArgs = SimplifiedValues.size(); NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); NumAllocaArgs = SROAArgValues.size(); // FIXME: If a caller has multiple calls to a callee, we end up recomputing // the ephemeral values multiple times (and they're completely determined by // the callee, so this is purely duplicate work). SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); // The worklist of live basic blocks in the callee *after* inlining. We avoid // adding basic blocks of the callee which can be proven to be dead for this // particular call site in order to get more accurate cost estimates. This // requires a somewhat heavyweight iteration pattern: we need to walk the // basic blocks in a breadth-first order as we insert live successors. To // accomplish this, prioritizing for small iterations because we exit after // crossing our threshold, we use a small-size optimized SetVector. typedef SetVector, SmallPtrSet> BBSetVector; BBSetVector BBWorklist; BBWorklist.insert(&F.getEntryBlock()); bool SingleBB = true; // Note that we *must not* cache the size, this loop grows the worklist. for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { // Bail out the moment we cross the threshold. This means we'll under-count // the cost, but only when undercounting doesn't matter. if (Cost >= Threshold && !ComputeFullInlineCost) break; BasicBlock *BB = BBWorklist[Idx]; if (BB->empty()) continue; // Disallow inlining a blockaddress. A blockaddress only has defined // behavior for an indirect branch in the same function, and we do not // currently support inlining indirect branches. But, the inliner may not // see an indirect branch that ends up being dead code at a particular call // site. If the blockaddress escapes the function, e.g., via a global // variable, inlining may lead to an invalid cross-function reference. if (BB->hasAddressTaken()) return false; // Analyze the cost of this block. If we blow through the threshold, this // returns false, and we can bail on out. if (!analyzeBlock(BB, EphValues)) return false; TerminatorInst *TI = BB->getTerminator(); // Add in the live successors by first checking whether we have terminator // that may be simplified based on the values simplified by this call. if (BranchInst *BI = dyn_cast(TI)) { if (BI->isConditional()) { Value *Cond = BI->getCondition(); if (ConstantInt *SimpleCond = dyn_cast_or_null(SimplifiedValues.lookup(Cond))) { BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); BBWorklist.insert(NextBB); KnownSuccessors[BB] = NextBB; findDeadBlocks(BB, NextBB); continue; } } } else if (SwitchInst *SI = dyn_cast(TI)) { Value *Cond = SI->getCondition(); if (ConstantInt *SimpleCond = dyn_cast_or_null(SimplifiedValues.lookup(Cond))) { BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); BBWorklist.insert(NextBB); KnownSuccessors[BB] = NextBB; findDeadBlocks(BB, NextBB); continue; } } // If we're unable to select a particular successor, just count all of // them. for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; ++TIdx) BBWorklist.insert(TI->getSuccessor(TIdx)); // If we had any successors at this point, than post-inlining is likely to // have them as well. Note that we assume any basic blocks which existed // due to branches or switches which folded above will also fold after // inlining. if (SingleBB && TI->getNumSuccessors() > 1) { // Take off the bonus we applied to the threshold. Threshold -= SingleBBBonus; SingleBB = false; } } bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction(); // If this is a noduplicate call, we can still inline as long as // inlining this would cause the removal of the caller (so the instruction // is not actually duplicated, just moved). if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) return false; // We applied the maximum possible vector bonus at the beginning. Now, // subtract the excess bonus, if any, from the Threshold before // comparing against Cost. if (NumVectorInstructions <= NumInstructions / 10) Threshold -= VectorBonus; else if (NumVectorInstructions <= NumInstructions / 2) Threshold -= VectorBonus/2; return Cost < std::max(1, Threshold); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Dump stats about this call's analysis. LLVM_DUMP_METHOD void CallAnalyzer::dump() { #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" DEBUG_PRINT_STAT(NumConstantArgs); DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); DEBUG_PRINT_STAT(NumAllocaArgs); DEBUG_PRINT_STAT(NumConstantPtrCmps); DEBUG_PRINT_STAT(NumConstantPtrDiffs); DEBUG_PRINT_STAT(NumInstructionsSimplified); DEBUG_PRINT_STAT(NumInstructions); DEBUG_PRINT_STAT(SROACostSavings); DEBUG_PRINT_STAT(SROACostSavingsLost); DEBUG_PRINT_STAT(LoadEliminationCost); DEBUG_PRINT_STAT(ContainsNoDuplicateCall); DEBUG_PRINT_STAT(Cost); DEBUG_PRINT_STAT(Threshold); #undef DEBUG_PRINT_STAT } #endif /// Test that there are no attribute conflicts between Caller and Callee /// that prevent inlining. static bool functionsHaveCompatibleAttributes(Function *Caller, Function *Callee, TargetTransformInfo &TTI) { return TTI.areInlineCompatible(Caller, Callee) && AttributeFuncs::areInlineCompatible(*Caller, *Callee); } int llvm::getCallsiteCost(CallSite CS, const DataLayout &DL) { int Cost = 0; for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { if (CS.isByValArgument(I)) { // We approximate the number of loads and stores needed by dividing the // size of the byval type by the target's pointer size. PointerType *PTy = cast(CS.getArgument(I)->getType()); unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); unsigned AS = PTy->getAddressSpace(); unsigned PointerSize = DL.getPointerSizeInBits(AS); // Ceiling division. unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; // If it generates more than 8 stores it is likely to be expanded as an // inline memcpy so we take that as an upper bound. Otherwise we assume // one load and one store per word copied. // FIXME: The maxStoresPerMemcpy setting from the target should be used // here instead of a magic number of 8, but it's not available via // DataLayout. NumStores = std::min(NumStores, 8U); Cost += 2 * NumStores * InlineConstants::InstrCost; } else { // For non-byval arguments subtract off one instruction per call // argument. Cost += InlineConstants::InstrCost; } } // The call instruction also disappears after inlining. Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; return Cost; } InlineCost llvm::getInlineCost( CallSite CS, const InlineParams &Params, TargetTransformInfo &CalleeTTI, std::function &GetAssumptionCache, Optional> GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { return getInlineCost(CS, CS.getCalledFunction(), Params, CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE); } InlineCost llvm::getInlineCost( CallSite CS, Function *Callee, const InlineParams &Params, TargetTransformInfo &CalleeTTI, std::function &GetAssumptionCache, Optional> GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { // Cannot inline indirect calls. if (!Callee) return llvm::InlineCost::getNever(); // Never inline calls with byval arguments that does not have the alloca // address space. Since byval arguments can be replaced with a copy to an // alloca, the inlined code would need to be adjusted to handle that the // argument is in the alloca address space (so it is a little bit complicated // to solve). unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) if (CS.isByValArgument(I)) { PointerType *PTy = cast(CS.getArgument(I)->getType()); if (PTy->getAddressSpace() != AllocaAS) return llvm::InlineCost::getNever(); } // Calls to functions with always-inline attributes should be inlined // whenever possible. if (CS.hasFnAttr(Attribute::AlwaysInline)) { if (isInlineViable(*Callee)) return llvm::InlineCost::getAlways(); return llvm::InlineCost::getNever(); } // Never inline functions with conflicting attributes (unless callee has // always-inline attribute). Function *Caller = CS.getCaller(); if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI)) return llvm::InlineCost::getNever(); // Don't inline this call if the caller has the optnone attribute. if (Caller->hasFnAttribute(Attribute::OptimizeNone)) return llvm::InlineCost::getNever(); // Don't inline a function that treats null pointer as valid into a caller // that does not have this attribute. if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) return llvm::InlineCost::getNever(); // Don't inline functions which can be interposed at link-time. Don't inline // functions marked noinline or call sites marked noinline. // Note: inlining non-exact non-interposable functions is fine, since we know // we have *a* correct implementation of the source level function. if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline()) return llvm::InlineCost::getNever(); LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() << "... (caller:" << Caller->getName() << ")\n"); CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee, CS, Params); bool ShouldInline = CA.analyzeCall(CS); LLVM_DEBUG(CA.dump()); // Check if there was a reason to force inlining or no inlining. if (!ShouldInline && CA.getCost() < CA.getThreshold()) return InlineCost::getNever(); if (ShouldInline && CA.getCost() >= CA.getThreshold()) return InlineCost::getAlways(); return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); } bool llvm::isInlineViable(Function &F) { bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { // Disallow inlining of functions which contain indirect branches or // blockaddresses. if (isa(BI->getTerminator()) || BI->hasAddressTaken()) return false; for (auto &II : *BI) { CallSite CS(&II); if (!CS) continue; // Disallow recursive calls. if (&F == CS.getCalledFunction()) return false; // Disallow calls which expose returns-twice to a function not previously // attributed as such. if (!ReturnsTwice && CS.isCall() && cast(CS.getInstruction())->canReturnTwice()) return false; if (CS.getCalledFunction()) switch (CS.getCalledFunction()->getIntrinsicID()) { default: break; // Disallow inlining of @llvm.icall.branch.funnel because current // backend can't separate call targets from call arguments. case llvm::Intrinsic::icall_branch_funnel: // Disallow inlining functions that call @llvm.localescape. Doing this // correctly would require major changes to the inliner. case llvm::Intrinsic::localescape: // Disallow inlining of functions that access VarArgs. case llvm::Intrinsic::vastart: case llvm::Intrinsic::vaend: return false; } } } return true; } // APIs to create InlineParams based on command line flags and/or other // parameters. InlineParams llvm::getInlineParams(int Threshold) { InlineParams Params; // This field is the threshold to use for a callee by default. This is // derived from one or more of: // * optimization or size-optimization levels, // * a value passed to createFunctionInliningPass function, or // * the -inline-threshold flag. // If the -inline-threshold flag is explicitly specified, that is used // irrespective of anything else. if (InlineThreshold.getNumOccurrences() > 0) Params.DefaultThreshold = InlineThreshold; else Params.DefaultThreshold = Threshold; // Set the HintThreshold knob from the -inlinehint-threshold. Params.HintThreshold = HintThreshold; // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. Params.HotCallSiteThreshold = HotCallSiteThreshold; // If the -locally-hot-callsite-threshold is explicitly specified, use it to // populate LocallyHotCallSiteThreshold. Later, we populate // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if // we know that optimization level is O3 (in the getInlineParams variant that // takes the opt and size levels). // FIXME: Remove this check (and make the assignment unconditional) after // addressing size regression issues at O2. if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold. Params.ColdCallSiteThreshold = ColdCallSiteThreshold; // Set the OptMinSizeThreshold and OptSizeThreshold params only if the // -inlinehint-threshold commandline option is not explicitly given. If that // option is present, then its value applies even for callees with size and // minsize attributes. // If the -inline-threshold is not specified, set the ColdThreshold from the // -inlinecold-threshold even if it is not explicitly passed. If // -inline-threshold is specified, then -inlinecold-threshold needs to be // explicitly specified to set the ColdThreshold knob if (InlineThreshold.getNumOccurrences() == 0) { Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; Params.ColdThreshold = ColdThreshold; } else if (ColdThreshold.getNumOccurrences() > 0) { Params.ColdThreshold = ColdThreshold; } return Params; } InlineParams llvm::getInlineParams() { return getInlineParams(InlineThreshold); } // Compute the default threshold for inlining based on the opt level and the // size opt level. static int computeThresholdFromOptLevels(unsigned OptLevel, unsigned SizeOptLevel) { if (OptLevel > 2) return InlineConstants::OptAggressiveThreshold; if (SizeOptLevel == 1) // -Os return InlineConstants::OptSizeThreshold; if (SizeOptLevel == 2) // -Oz return InlineConstants::OptMinSizeThreshold; return InlineThreshold; } InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { auto Params = getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); // At O3, use the value of -locally-hot-callsite-threshold option to populate // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only // when it is specified explicitly. if (OptLevel > 2) Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; return Params; }