//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements bookkeeping for "interesting" users of expressions // computed from induction variables. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/IVUsers.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "iv-users" AnalysisKey IVUsersAnalysis::Key; IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR) { return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); } char IVUsersWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", "Induction Variable Users", false, true) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", false, true) Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } /// isInteresting - Test whether the given expression is "interesting" when /// used by the given expression, within the context of analyzing the /// given loop. static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, ScalarEvolution *SE, LoopInfo *LI) { // An addrec is interesting if it's affine or if it has an interesting start. if (const SCEVAddRecExpr *AR = dyn_cast(S)) { // Keep things simple. Don't touch loop-variant strides unless they're // only used outside the loop and we can simplify them. if (AR->getLoop() == L) return AR->isAffine() || (!L->contains(I) && SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); // Otherwise recurse to see if the start value is interesting, and that // the step value is not interesting, since we don't yet know how to // do effective SCEV expansions for addrecs with interesting steps. return isInteresting(AR->getStart(), I, L, SE, LI) && !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); } // An add is interesting if exactly one of its operands is interesting. if (const SCEVAddExpr *Add = dyn_cast(S)) { bool AnyInterestingYet = false; for (const auto *Op : Add->operands()) if (isInteresting(Op, I, L, SE, LI)) { if (AnyInterestingYet) return false; AnyInterestingYet = true; } return AnyInterestingYet; } // Nothing else is interesting here. return false; } /// Return true if all loop headers that dominate this block are in simplified /// form. static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, const LoopInfo *LI, SmallPtrSetImpl &SimpleLoopNests) { Loop *NearestLoop = nullptr; for (DomTreeNode *Rung = DT->getNode(BB); Rung; Rung = Rung->getIDom()) { BasicBlock *DomBB = Rung->getBlock(); Loop *DomLoop = LI->getLoopFor(DomBB); if (DomLoop && DomLoop->getHeader() == DomBB) { // If the domtree walk reaches a loop with no preheader, return false. if (!DomLoop->isLoopSimplifyForm()) return false; // If we have already checked this loop nest, stop checking. if (SimpleLoopNests.count(DomLoop)) break; // If we have not already checked this loop nest, remember the loop // header nearest to BB. The nearest loop may not contain BB. if (!NearestLoop) NearestLoop = DomLoop; } } if (NearestLoop) SimpleLoopNests.insert(NearestLoop); return true; } /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression /// and now we need to decide whether the user should use the preinc or post-inc /// value. If this user should use the post-inc version of the IV, return true. /// /// Choosing wrong here can break dominance properties (if we choose to use the /// post-inc value when we cannot) or it can end up adding extra live-ranges to /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we /// should use the post-inc value). static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, const Loop *L, DominatorTree *DT) { // If the user is in the loop, use the preinc value. if (L->contains(User)) return false; BasicBlock *LatchBlock = L->getLoopLatch(); if (!LatchBlock) return false; // Ok, the user is outside of the loop. If it is dominated by the latch // block, use the post-inc value. if (DT->dominates(LatchBlock, User->getParent())) return true; // There is one case we have to be careful of: PHI nodes. These little guys // can live in blocks that are not dominated by the latch block, but (since // their uses occur in the predecessor block, not the block the PHI lives in) // should still use the post-inc value. Check for this case now. PHINode *PN = dyn_cast(User); if (!PN || !Operand) return false; // not a phi, not dominated by latch block. // Look at all of the uses of Operand by the PHI node. If any use corresponds // to a block that is not dominated by the latch block, give up and use the // preincremented value. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == Operand && !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) return false; // Okay, all uses of Operand by PN are in predecessor blocks that really are // dominated by the latch block. Use the post-incremented value. return true; } /// AddUsersImpl - Inspect the specified instruction. If it is a /// reducible SCEV, recursively add its users to the IVUsesByStride set and /// return true. Otherwise, return false. bool IVUsers::AddUsersImpl(Instruction *I, SmallPtrSetImpl &SimpleLoopNests) { const DataLayout &DL = I->getModule()->getDataLayout(); // Add this IV user to the Processed set before returning false to ensure that // all IV users are members of the set. See IVUsers::isIVUserOrOperand. if (!Processed.insert(I).second) return true; // Instruction already handled. if (!SE->isSCEVable(I->getType())) return false; // Void and FP expressions cannot be reduced. // IVUsers is used by LSR which assumes that all SCEV expressions are safe to // pass to SCEVExpander. Expressions are not safe to expand if they represent // operations that are not safe to speculate, namely integer division. if (!isa(I) && !isSafeToSpeculativelyExecute(I)) return false; // LSR is not APInt clean, do not touch integers bigger than 64-bits. // Also avoid creating IVs of non-native types. For example, we don't want a // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. uint64_t Width = SE->getTypeSizeInBits(I->getType()); if (Width > 64 || !DL.isLegalInteger(Width)) return false; // Don't attempt to promote ephemeral values to indvars. They will be removed // later anyway. if (EphValues.count(I)) return false; // Get the symbolic expression for this instruction. const SCEV *ISE = SE->getSCEV(I); // If we've come to an uninteresting expression, stop the traversal and // call this a user. if (!isInteresting(ISE, I, L, SE, LI)) return false; SmallPtrSet UniqueUsers; for (Use &U : I->uses()) { Instruction *User = cast(U.getUser()); if (!UniqueUsers.insert(User).second) continue; // Do not infinitely recurse on PHI nodes. if (isa(User) && Processed.count(User)) continue; // Only consider IVUsers that are dominated by simplified loop // headers. Otherwise, SCEVExpander will crash. BasicBlock *UseBB = User->getParent(); // A phi's use is live out of its predecessor block. if (PHINode *PHI = dyn_cast(User)) { unsigned OperandNo = U.getOperandNo(); unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); UseBB = PHI->getIncomingBlock(ValNo); } if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) return false; // Descend recursively, but not into PHI nodes outside the current loop. // It's important to see the entire expression outside the loop to get // choices that depend on addressing mode use right, although we won't // consider references outside the loop in all cases. // If User is already in Processed, we don't want to recurse into it again, // but do want to record a second reference in the same instruction. bool AddUserToIVUsers = false; if (LI->getLoopFor(User->getParent()) != L) { if (isa(User) || Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' << " OF SCEV: " << *ISE << '\n'); AddUserToIVUsers = true; } } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { DEBUG(dbgs() << "FOUND USER: " << *User << '\n' << " OF SCEV: " << *ISE << '\n'); AddUserToIVUsers = true; } if (AddUserToIVUsers) { // Okay, we found a user that we cannot reduce. IVStrideUse &NewUse = AddUser(User, I); // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. // The regular return value here is discarded; instead of recording // it, we just recompute it when we need it. const SCEV *OriginalISE = ISE; auto NormalizePred = [&](const SCEVAddRecExpr *AR) { auto *L = AR->getLoop(); bool Result = IVUseShouldUsePostIncValue(User, I, L, DT); if (Result) NewUse.PostIncLoops.insert(L); return Result; }; ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE); // PostIncNormalization effectively simplifies the expression under // pre-increment assumptions. Those assumptions (no wrapping) might not // hold for the post-inc value. Catch such cases by making sure the // transformation is invertible. if (OriginalISE != ISE) { const SCEV *DenormalizedISE = denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE); // If we normalized the expression, but denormalization doesn't give the // original one, discard this user. if (OriginalISE != DenormalizedISE) { DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " << *ISE << '\n'); IVUses.pop_back(); return false; } } DEBUG(if (SE->getSCEV(I) != ISE) dbgs() << " NORMALIZED TO: " << *ISE << '\n'); } } return true; } bool IVUsers::AddUsersIfInteresting(Instruction *I) { // SCEVExpander can only handle users that are dominated by simplified loop // entries. Keep track of all loops that are only dominated by other simple // loops so we don't traverse the domtree for each user. SmallPtrSet SimpleLoopNests; return AddUsersImpl(I, SimpleLoopNests); } IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { IVUses.push_back(new IVStrideUse(this, User, Operand)); return IVUses.back(); } IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, ScalarEvolution *SE) : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() { // Collect ephemeral values so that AddUsersIfInteresting skips them. EphValues.clear(); CodeMetrics::collectEphemeralValues(L, AC, EphValues); // Find all uses of induction variables in this loop, and categorize // them by stride. Start by finding all of the PHI nodes in the header for // this loop. If they are induction variables, inspect their uses. for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) (void)AddUsersIfInteresting(&*I); } void IVUsers::print(raw_ostream &OS, const Module *M) const { OS << "IV Users for loop "; L->getHeader()->printAsOperand(OS, false); if (SE->hasLoopInvariantBackedgeTakenCount(L)) { OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); } OS << ":\n"; for (const IVStrideUse &IVUse : IVUses) { OS << " "; IVUse.getOperandValToReplace()->printAsOperand(OS, false); OS << " = " << *getReplacementExpr(IVUse); for (auto PostIncLoop : IVUse.PostIncLoops) { OS << " (post-inc with loop "; PostIncLoop->getHeader()->printAsOperand(OS, false); OS << ")"; } OS << " in "; if (IVUse.getUser()) IVUse.getUser()->print(OS); else OS << "Printing User"; OS << '\n'; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } #endif void IVUsers::releaseMemory() { Processed.clear(); IVUses.clear(); } IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); } void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { auto *AC = &getAnalysis().getAssumptionCache( *L->getHeader()->getParent()); auto *LI = &getAnalysis().getLoopInfo(); auto *DT = &getAnalysis().getDomTree(); auto *SE = &getAnalysis().getSE(); IU.reset(new IVUsers(L, AC, LI, DT, SE)); return false; } void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { IU->print(OS, M); } void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } /// getReplacementExpr - Return a SCEV expression which computes the /// value of the OperandValToReplace. const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { return SE->getSCEV(IU.getOperandValToReplace()); } /// getExpr - Return the expression for the use. const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(), *SE); } static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { if (const SCEVAddRecExpr *AR = dyn_cast(S)) { if (AR->getLoop() == L) return AR; return findAddRecForLoop(AR->getStart(), L); } if (const SCEVAddExpr *Add = dyn_cast(S)) { for (const auto *Op : Add->operands()) if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L)) return AR; return nullptr; } return nullptr; } const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) return AR->getStepRecurrence(*SE); return nullptr; } void IVStrideUse::transformToPostInc(const Loop *L) { PostIncLoops.insert(L); } void IVStrideUse::deleted() { // Remove this user from the list. Parent->Processed.erase(this->getUser()); Parent->IVUses.erase(this); // this now dangles! }