//===- DemandedBits.cpp - Determine demanded bits -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a demanded bits analysis. A demanded bit is one that // contributes to a result; bits that are not demanded can be either zero or // one without affecting control or data flow. For example in this sequence: // // %1 = add i32 %x, %y // %2 = trunc i32 %1 to i16 // // Only the lowest 16 bits of %1 are demanded; the rest are removed by the // trunc. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DemandedBits.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; #define DEBUG_TYPE "demanded-bits" char DemandedBitsWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", "Demanded bits analysis", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", "Demanded bits analysis", false, false) DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); } void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { DB->print(OS); } static bool isAlwaysLive(Instruction *I) { return isa(I) || isa(I) || I->isEHPad() || I->mayHaveSideEffects(); } void DemandedBits::determineLiveOperandBits( const Instruction *UserI, const Instruction *I, unsigned OperandNo, const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) { unsigned BitWidth = AB.getBitWidth(); // We're called once per operand, but for some instructions, we need to // compute known bits of both operands in order to determine the live bits of // either (when both operands are instructions themselves). We don't, // however, want to do this twice, so we cache the result in APInts that live // in the caller. For the two-relevant-operands case, both operand values are // provided here. auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1, const Value *V2) { const DataLayout &DL = I->getModule()->getDataLayout(); Known = KnownBits(BitWidth); computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); if (V2) { Known2 = KnownBits(BitWidth); computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); } }; switch (UserI->getOpcode()) { default: break; case Instruction::Call: case Instruction::Invoke: if (const IntrinsicInst *II = dyn_cast(UserI)) switch (II->getIntrinsicID()) { default: break; case Intrinsic::bswap: // The alive bits of the input are the swapped alive bits of // the output. AB = AOut.byteSwap(); break; case Intrinsic::bitreverse: // The alive bits of the input are the reversed alive bits of // the output. AB = AOut.reverseBits(); break; case Intrinsic::ctlz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the left of, and including, the leftmost bit // known to be one. ComputeKnownBits(BitWidth, I, nullptr); AB = APInt::getHighBitsSet(BitWidth, std::min(BitWidth, Known.countMaxLeadingZeros()+1)); } break; case Intrinsic::cttz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the right of, and including, the rightmost bit // known to be one. ComputeKnownBits(BitWidth, I, nullptr); AB = APInt::getLowBitsSet(BitWidth, std::min(BitWidth, Known.countMaxTrailingZeros()+1)); } break; } break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // Find the highest live output bit. We don't need any more input // bits than that (adds, and thus subtracts, ripple only to the // left). AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); break; case Instruction::Shl: if (OperandNo == 0) if (auto *ShiftAmtC = dyn_cast(UserI->getOperand(1))) { uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); AB = AOut.lshr(ShiftAmt); // If the shift is nuw/nsw, then the high bits are not dead // (because we've promised that they *must* be zero). const ShlOperator *S = cast(UserI); if (S->hasNoSignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); else if (S->hasNoUnsignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); } break; case Instruction::LShr: if (OperandNo == 0) if (auto *ShiftAmtC = dyn_cast(UserI->getOperand(1))) { uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); AB = AOut.shl(ShiftAmt); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::AShr: if (OperandNo == 0) if (auto *ShiftAmtC = dyn_cast(UserI->getOperand(1))) { uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); AB = AOut.shl(ShiftAmt); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) .getBoolValue()) AB.setSignBit(); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::And: AB = AOut; // For bits that are known zero, the corresponding bits in the // other operand are dead (unless they're both zero, in which // case they can't both be dead, so just mark the LHS bits as // dead). if (OperandNo == 0) { ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); AB &= ~Known2.Zero; } else { if (!isa(UserI->getOperand(0))) ComputeKnownBits(BitWidth, UserI->getOperand(0), I); AB &= ~(Known.Zero & ~Known2.Zero); } break; case Instruction::Or: AB = AOut; // For bits that are known one, the corresponding bits in the // other operand are dead (unless they're both one, in which // case they can't both be dead, so just mark the LHS bits as // dead). if (OperandNo == 0) { ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); AB &= ~Known2.One; } else { if (!isa(UserI->getOperand(0))) ComputeKnownBits(BitWidth, UserI->getOperand(0), I); AB &= ~(Known.One & ~Known2.One); } break; case Instruction::Xor: case Instruction::PHI: AB = AOut; break; case Instruction::Trunc: AB = AOut.zext(BitWidth); break; case Instruction::ZExt: AB = AOut.trunc(BitWidth); break; case Instruction::SExt: AB = AOut.trunc(BitWidth); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), AOut.getBitWidth() - BitWidth)) .getBoolValue()) AB.setSignBit(); break; case Instruction::Select: if (OperandNo != 0) AB = AOut; break; } } bool DemandedBitsWrapperPass::runOnFunction(Function &F) { auto &AC = getAnalysis().getAssumptionCache(F); auto &DT = getAnalysis().getDomTree(); DB.emplace(F, AC, DT); return false; } void DemandedBitsWrapperPass::releaseMemory() { DB.reset(); } void DemandedBits::performAnalysis() { if (Analyzed) // Analysis already completed for this function. return; Analyzed = true; Visited.clear(); AliveBits.clear(); SmallVector Worklist; // Collect the set of "root" instructions that are known live. for (Instruction &I : instructions(F)) { if (!isAlwaysLive(&I)) continue; DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); // For integer-valued instructions, set up an initial empty set of alive // bits and add the instruction to the work list. For other instructions // add their operands to the work list (for integer values operands, mark // all bits as live). if (IntegerType *IT = dyn_cast(I.getType())) { if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second) Worklist.push_back(&I); continue; } // Non-integer-typed instructions... for (Use &OI : I.operands()) { if (Instruction *J = dyn_cast(OI)) { if (IntegerType *IT = dyn_cast(J->getType())) AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth()); Worklist.push_back(J); } } // To save memory, we don't add I to the Visited set here. Instead, we // check isAlwaysLive on every instruction when searching for dead // instructions later (we need to check isAlwaysLive for the // integer-typed instructions anyway). } // Propagate liveness backwards to operands. while (!Worklist.empty()) { Instruction *UserI = Worklist.pop_back_val(); DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); APInt AOut; if (UserI->getType()->isIntegerTy()) { AOut = AliveBits[UserI]; DEBUG(dbgs() << " Alive Out: " << AOut); } DEBUG(dbgs() << "\n"); if (!UserI->getType()->isIntegerTy()) Visited.insert(UserI); KnownBits Known, Known2; // Compute the set of alive bits for each operand. These are anded into the // existing set, if any, and if that changes the set of alive bits, the // operand is added to the work-list. for (Use &OI : UserI->operands()) { if (Instruction *I = dyn_cast(OI)) { if (IntegerType *IT = dyn_cast(I->getType())) { unsigned BitWidth = IT->getBitWidth(); APInt AB = APInt::getAllOnesValue(BitWidth); if (UserI->getType()->isIntegerTy() && !AOut && !isAlwaysLive(UserI)) { AB = APInt(BitWidth, 0); } else { // If all bits of the output are dead, then all bits of the input // Bits of each operand that are used to compute alive bits of the // output are alive, all others are dead. determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB, Known, Known2); } // If we've added to the set of alive bits (or the operand has not // been previously visited), then re-queue the operand to be visited // again. APInt ABPrev(BitWidth, 0); auto ABI = AliveBits.find(I); if (ABI != AliveBits.end()) ABPrev = ABI->second; APInt ABNew = AB | ABPrev; if (ABNew != ABPrev || ABI == AliveBits.end()) { AliveBits[I] = std::move(ABNew); Worklist.push_back(I); } } else if (!Visited.count(I)) { Worklist.push_back(I); } } } } } APInt DemandedBits::getDemandedBits(Instruction *I) { performAnalysis(); const DataLayout &DL = I->getModule()->getDataLayout(); auto Found = AliveBits.find(I); if (Found != AliveBits.end()) return Found->second; return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType())); } bool DemandedBits::isInstructionDead(Instruction *I) { performAnalysis(); return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && !isAlwaysLive(I); } void DemandedBits::print(raw_ostream &OS) { performAnalysis(); for (auto &KV : AliveBits) { OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue()) << " for " << *KV.first << '\n'; } } FunctionPass *llvm::createDemandedBitsWrapperPass() { return new DemandedBitsWrapperPass(); } AnalysisKey DemandedBitsAnalysis::Key; DemandedBits DemandedBitsAnalysis::run(Function &F, FunctionAnalysisManager &AM) { auto &AC = AM.getResult(F); auto &DT = AM.getResult(F); return DemandedBits(F, AC, DT); } PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult(F).print(OS); return PreservedAnalyses::all(); }