//===- BlockFrequencyInfo.cpp - Block Frequency Analysis ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Loops should be simplified before this analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/None.h" #include "llvm/ADT/iterator.h" #include "llvm/Analysis/BlockFrequencyInfoImpl.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Function.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "block-freq" static cl::opt ViewBlockFreqPropagationDAG( "view-block-freq-propagation-dags", cl::Hidden, cl::desc("Pop up a window to show a dag displaying how block " "frequencies propagation through the CFG."), cl::values(clEnumValN(GVDT_None, "none", "do not display graphs."), clEnumValN(GVDT_Fraction, "fraction", "display a graph using the " "fractional block frequency representation."), clEnumValN(GVDT_Integer, "integer", "display a graph using the raw " "integer fractional block frequency representation."), clEnumValN(GVDT_Count, "count", "display a graph using the real " "profile count if available."))); cl::opt ViewBlockFreqFuncName("view-bfi-func-name", cl::Hidden, cl::desc("The option to specify " "the name of the function " "whose CFG will be displayed.")); cl::opt ViewHotFreqPercent("view-hot-freq-percent", cl::init(10), cl::Hidden, cl::desc("An integer in percent used to specify " "the hot blocks/edges to be displayed " "in red: a block or edge whose frequency " "is no less than the max frequency of the " "function multiplied by this percent.")); // Command line option to turn on CFG dot or text dump after profile annotation. cl::opt PGOViewCounts( "pgo-view-counts", cl::Hidden, cl::desc("A boolean option to show CFG dag or text with " "block profile counts and branch probabilities " "right after PGO profile annotation step. The " "profile counts are computed using branch " "probabilities from the runtime profile data and " "block frequency propagation algorithm. To view " "the raw counts from the profile, use option " "-pgo-view-raw-counts instead. To limit graph " "display to only one function, use filtering option " "-view-bfi-func-name."), cl::values(clEnumValN(PGOVCT_None, "none", "do not show."), clEnumValN(PGOVCT_Graph, "graph", "show a graph."), clEnumValN(PGOVCT_Text, "text", "show in text."))); static cl::opt PrintBlockFreq( "print-bfi", cl::init(false), cl::Hidden, cl::desc("Print the block frequency info.")); cl::opt PrintBlockFreqFuncName( "print-bfi-func-name", cl::Hidden, cl::desc("The option to specify the name of the function " "whose block frequency info is printed.")); namespace llvm { static GVDAGType getGVDT() { if (PGOViewCounts == PGOVCT_Graph) return GVDT_Count; return ViewBlockFreqPropagationDAG; } template <> struct GraphTraits { using NodeRef = const BasicBlock *; using ChildIteratorType = succ_const_iterator; using nodes_iterator = pointer_iterator; static NodeRef getEntryNode(const BlockFrequencyInfo *G) { return &G->getFunction()->front(); } static ChildIteratorType child_begin(const NodeRef N) { return succ_begin(N); } static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); } static nodes_iterator nodes_begin(const BlockFrequencyInfo *G) { return nodes_iterator(G->getFunction()->begin()); } static nodes_iterator nodes_end(const BlockFrequencyInfo *G) { return nodes_iterator(G->getFunction()->end()); } }; using BFIDOTGTraitsBase = BFIDOTGraphTraitsBase; template <> struct DOTGraphTraits : public BFIDOTGTraitsBase { explicit DOTGraphTraits(bool isSimple = false) : BFIDOTGTraitsBase(isSimple) {} std::string getNodeLabel(const BasicBlock *Node, const BlockFrequencyInfo *Graph) { return BFIDOTGTraitsBase::getNodeLabel(Node, Graph, getGVDT()); } std::string getNodeAttributes(const BasicBlock *Node, const BlockFrequencyInfo *Graph) { return BFIDOTGTraitsBase::getNodeAttributes(Node, Graph, ViewHotFreqPercent); } std::string getEdgeAttributes(const BasicBlock *Node, EdgeIter EI, const BlockFrequencyInfo *BFI) { return BFIDOTGTraitsBase::getEdgeAttributes(Node, EI, BFI, BFI->getBPI(), ViewHotFreqPercent); } }; } // end namespace llvm BlockFrequencyInfo::BlockFrequencyInfo() = default; BlockFrequencyInfo::BlockFrequencyInfo(const Function &F, const BranchProbabilityInfo &BPI, const LoopInfo &LI) { calculate(F, BPI, LI); } BlockFrequencyInfo::BlockFrequencyInfo(BlockFrequencyInfo &&Arg) : BFI(std::move(Arg.BFI)) {} BlockFrequencyInfo &BlockFrequencyInfo::operator=(BlockFrequencyInfo &&RHS) { releaseMemory(); BFI = std::move(RHS.BFI); return *this; } // Explicitly define the default constructor otherwise it would be implicitly // defined at the first ODR-use which is the BFI member in the // LazyBlockFrequencyInfo header. The dtor needs the BlockFrequencyInfoImpl // template instantiated which is not available in the header. BlockFrequencyInfo::~BlockFrequencyInfo() = default; bool BlockFrequencyInfo::invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &) { // Check whether the analysis, all analyses on functions, or the function's // CFG have been preserved. auto PAC = PA.getChecker(); return !(PAC.preserved() || PAC.preservedSet>() || PAC.preservedSet()); } void BlockFrequencyInfo::calculate(const Function &F, const BranchProbabilityInfo &BPI, const LoopInfo &LI) { if (!BFI) BFI.reset(new ImplType); BFI->calculate(F, BPI, LI); if (ViewBlockFreqPropagationDAG != GVDT_None && (ViewBlockFreqFuncName.empty() || F.getName().equals(ViewBlockFreqFuncName))) { view(); } if (PrintBlockFreq && (PrintBlockFreqFuncName.empty() || F.getName().equals(PrintBlockFreqFuncName))) { print(dbgs()); } } BlockFrequency BlockFrequencyInfo::getBlockFreq(const BasicBlock *BB) const { return BFI ? BFI->getBlockFreq(BB) : 0; } Optional BlockFrequencyInfo::getBlockProfileCount(const BasicBlock *BB) const { if (!BFI) return None; return BFI->getBlockProfileCount(*getFunction(), BB); } Optional BlockFrequencyInfo::getProfileCountFromFreq(uint64_t Freq) const { if (!BFI) return None; return BFI->getProfileCountFromFreq(*getFunction(), Freq); } bool BlockFrequencyInfo::isIrrLoopHeader(const BasicBlock *BB) { assert(BFI && "Expected analysis to be available"); return BFI->isIrrLoopHeader(BB); } void BlockFrequencyInfo::setBlockFreq(const BasicBlock *BB, uint64_t Freq) { assert(BFI && "Expected analysis to be available"); BFI->setBlockFreq(BB, Freq); } void BlockFrequencyInfo::setBlockFreqAndScale( const BasicBlock *ReferenceBB, uint64_t Freq, SmallPtrSetImpl &BlocksToScale) { assert(BFI && "Expected analysis to be available"); // Use 128 bits APInt to avoid overflow. APInt NewFreq(128, Freq); APInt OldFreq(128, BFI->getBlockFreq(ReferenceBB).getFrequency()); APInt BBFreq(128, 0); for (auto *BB : BlocksToScale) { BBFreq = BFI->getBlockFreq(BB).getFrequency(); // Multiply first by NewFreq and then divide by OldFreq // to minimize loss of precision. BBFreq *= NewFreq; // udiv is an expensive operation in the general case. If this ends up being // a hot spot, one of the options proposed in // https://reviews.llvm.org/D28535#650071 could be used to avoid this. BBFreq = BBFreq.udiv(OldFreq); BFI->setBlockFreq(BB, BBFreq.getLimitedValue()); } BFI->setBlockFreq(ReferenceBB, Freq); } /// Pop up a ghostview window with the current block frequency propagation /// rendered using dot. void BlockFrequencyInfo::view() const { ViewGraph(const_cast(this), "BlockFrequencyDAGs"); } const Function *BlockFrequencyInfo::getFunction() const { return BFI ? BFI->getFunction() : nullptr; } const BranchProbabilityInfo *BlockFrequencyInfo::getBPI() const { return BFI ? &BFI->getBPI() : nullptr; } raw_ostream &BlockFrequencyInfo:: printBlockFreq(raw_ostream &OS, const BlockFrequency Freq) const { return BFI ? BFI->printBlockFreq(OS, Freq) : OS; } raw_ostream & BlockFrequencyInfo::printBlockFreq(raw_ostream &OS, const BasicBlock *BB) const { return BFI ? BFI->printBlockFreq(OS, BB) : OS; } uint64_t BlockFrequencyInfo::getEntryFreq() const { return BFI ? BFI->getEntryFreq() : 0; } void BlockFrequencyInfo::releaseMemory() { BFI.reset(); } void BlockFrequencyInfo::print(raw_ostream &OS) const { if (BFI) BFI->print(OS); } INITIALIZE_PASS_BEGIN(BlockFrequencyInfoWrapperPass, "block-freq", "Block Frequency Analysis", true, true) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(BlockFrequencyInfoWrapperPass, "block-freq", "Block Frequency Analysis", true, true) char BlockFrequencyInfoWrapperPass::ID = 0; BlockFrequencyInfoWrapperPass::BlockFrequencyInfoWrapperPass() : FunctionPass(ID) { initializeBlockFrequencyInfoWrapperPassPass(*PassRegistry::getPassRegistry()); } BlockFrequencyInfoWrapperPass::~BlockFrequencyInfoWrapperPass() = default; void BlockFrequencyInfoWrapperPass::print(raw_ostream &OS, const Module *) const { BFI.print(OS); } void BlockFrequencyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } void BlockFrequencyInfoWrapperPass::releaseMemory() { BFI.releaseMemory(); } bool BlockFrequencyInfoWrapperPass::runOnFunction(Function &F) { BranchProbabilityInfo &BPI = getAnalysis().getBPI(); LoopInfo &LI = getAnalysis().getLoopInfo(); BFI.calculate(F, BPI, LI); return false; } AnalysisKey BlockFrequencyAnalysis::Key; BlockFrequencyInfo BlockFrequencyAnalysis::run(Function &F, FunctionAnalysisManager &AM) { BlockFrequencyInfo BFI; BFI.calculate(F, AM.getResult(F), AM.getResult(F)); return BFI; } PreservedAnalyses BlockFrequencyPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { OS << "Printing analysis results of BFI for function " << "'" << F.getName() << "':" << "\n"; AM.getResult(F).print(OS); return PreservedAnalyses::all(); }