============================== User Guide for AMDGPU Back-end ============================== Introduction ============ The AMDGPU back-end provides ISA code generation for AMD GPUs, starting with the R600 family up until the current Volcanic Islands (GCN Gen 3). Refer to `AMDGPU section in Architecture & Platform Information for Compiler Writers `_ for additional documentation. Conventions =========== Address Spaces -------------- The AMDGPU back-end uses the following address space mapping: ================== =================== ============== LLVM Address Space DWARF Address Space Memory Space ================== =================== ============== 0 1 Private 1 N/A Global 2 N/A Constant 3 2 Local 4 N/A Generic (Flat) 5 N/A Region ================== =================== ============== The terminology in the table, aside from the region memory space, is from the OpenCL standard. LLVM Address Space is used throughout LLVM (for example, in LLVM IR). DWARF Address Space is emitted in DWARF, and is used by tools, such as debugger, profiler and others. Trap Handler ABI ---------------- The OS element of the target triple controls the trap handler behavior. HSA OS ^^^^^^ For code objects generated by AMDGPU back-end for the HSA OS, the runtime installs a trap handler that supports the s_trap instruction with the following usage: +--------------+-------------+-------------------+----------------------------+ |Usage |Code Sequence|Trap Handler Inputs|Description | +==============+=============+===================+============================+ |reserved |s_trap 0x00 | |Reserved by hardware. | +--------------+-------------+-------------------+----------------------------+ |HSA debugtrap |s_trap 0x01 |SGPR0-1: queue_ptr |Reserved for HSA debugtrap | |(arg) | |VGPR0: arg |intrinsic (not implemented).| +--------------+-------------+-------------------+----------------------------+ |llvm.trap |s_trap 0x02 |SGPR0-1: queue_ptr |Causes dispatch to be | | | | |terminated and its | | | | |associated queue put into | | | | |the error state. | +--------------+-------------+-------------------+----------------------------+ |llvm.debugtrap| s_trap 0x03 |SGPR0-1: queue_ptr |If debugger not installed | | | | |handled same as llvm.trap. | +--------------+-------------+-------------------+----------------------------+ |debugger |s_trap 0x07 | |Reserved for debugger | |breakpoint | | |breakpoints. | +--------------+-------------+-------------------+----------------------------+ |debugger |s_trap 0x08 | |Reserved for debugger. | +--------------+-------------+-------------------+----------------------------+ |debugger |s_trap 0xfe | |Reserved for debugger. | +--------------+-------------+-------------------+----------------------------+ |debugger |s_trap 0xff | |Reserved for debugger. | +--------------+-------------+-------------------+----------------------------+ Non-HSA OS ^^^^^^^^^^ For code objects generated by AMDGPU back-end for non-HSA OS, the runtime does not install a trap handler. The llvm.trap and llvm.debugtrap instructions are handler as follows: =============== ============= =============================================== Usage Code Sequence Description =============== ============= =============================================== llvm.trap s_endpgm Causes wavefront to be terminated. llvm.debugtrap s_nop No operation. Compiler warning generated that there is no trap handler installed. =============== ============= =============================================== Assembler ========= AMDGPU backend has LLVM-MC based assembler which is currently in development. It supports Southern Islands ISA, Sea Islands and Volcanic Islands. This document describes general syntax for instructions and operands. For more information about instructions, their semantics and supported combinations of operands, refer to one of Instruction Set Architecture manuals. An instruction has the following syntax (register operands are normally comma-separated while extra operands are space-separated): * , ... ...* Operands -------- The following syntax for register operands is supported: * SGPR registers: s0, ... or s[0], ... * VGPR registers: v0, ... or v[0], ... * TTMP registers: ttmp0, ... or ttmp[0], ... * Special registers: exec (exec_lo, exec_hi), vcc (vcc_lo, vcc_hi), flat_scratch (flat_scratch_lo, flat_scratch_hi) * Special trap registers: tba (tba_lo, tba_hi), tma (tma_lo, tma_hi) * Register pairs, quads, etc: s[2:3], v[10:11], ttmp[5:6], s[4:7], v[12:15], ttmp[4:7], s[8:15], ... * Register lists: [s0, s1], [ttmp0, ttmp1, ttmp2, ttmp3] * Register index expressions: v[2*2], s[1-1:2-1] * 'off' indicates that an operand is not enabled The following extra operands are supported: * offset, offset0, offset1 * idxen, offen bits * glc, slc, tfe bits * waitcnt: integer or combination of counter values * VOP3 modifiers: - abs (\| \|), neg (\-) * DPP modifiers: - row_shl, row_shr, row_ror, row_rol - row_mirror, row_half_mirror, row_bcast - wave_shl, wave_shr, wave_ror, wave_rol, quad_perm - row_mask, bank_mask, bound_ctrl * SDWA modifiers: - dst_sel, src0_sel, src1_sel (BYTE_N, WORD_M, DWORD) - dst_unused (UNUSED_PAD, UNUSED_SEXT, UNUSED_PRESERVE) - abs, neg, sext DS Instructions Examples ------------------------ .. code-block:: nasm ds_add_u32 v2, v4 offset:16 ds_write_src2_b64 v2 offset0:4 offset1:8 ds_cmpst_f32 v2, v4, v6 ds_min_rtn_f64 v[8:9], v2, v[4:5] For full list of supported instructions, refer to "LDS/GDS instructions" in ISA Manual. FLAT Instruction Examples -------------------------- .. code-block:: nasm flat_load_dword v1, v[3:4] flat_store_dwordx3 v[3:4], v[5:7] flat_atomic_swap v1, v[3:4], v5 glc flat_atomic_cmpswap v1, v[3:4], v[5:6] glc slc flat_atomic_fmax_x2 v[1:2], v[3:4], v[5:6] glc For full list of supported instructions, refer to "FLAT instructions" in ISA Manual. MUBUF Instruction Examples --------------------------- .. code-block:: nasm buffer_load_dword v1, off, s[4:7], s1 buffer_store_dwordx4 v[1:4], v2, ttmp[4:7], s1 offen offset:4 glc tfe buffer_store_format_xy v[1:2], off, s[4:7], s1 buffer_wbinvl1 buffer_atomic_inc v1, v2, s[8:11], s4 idxen offset:4 slc For full list of supported instructions, refer to "MUBUF Instructions" in ISA Manual. SMRD/SMEM Instruction Examples ------------------------------- .. code-block:: nasm s_load_dword s1, s[2:3], 0xfc s_load_dwordx8 s[8:15], s[2:3], s4 s_load_dwordx16 s[88:103], s[2:3], s4 s_dcache_inv_vol s_memtime s[4:5] For full list of supported instructions, refer to "Scalar Memory Operations" in ISA Manual. SOP1 Instruction Examples -------------------------- .. code-block:: nasm s_mov_b32 s1, s2 s_mov_b64 s[0:1], 0x80000000 s_cmov_b32 s1, 200 s_wqm_b64 s[2:3], s[4:5] s_bcnt0_i32_b64 s1, s[2:3] s_swappc_b64 s[2:3], s[4:5] s_cbranch_join s[4:5] For full list of supported instructions, refer to "SOP1 Instructions" in ISA Manual. SOP2 Instruction Examples ------------------------- .. code-block:: nasm s_add_u32 s1, s2, s3 s_and_b64 s[2:3], s[4:5], s[6:7] s_cselect_b32 s1, s2, s3 s_andn2_b32 s2, s4, s6 s_lshr_b64 s[2:3], s[4:5], s6 s_ashr_i32 s2, s4, s6 s_bfm_b64 s[2:3], s4, s6 s_bfe_i64 s[2:3], s[4:5], s6 s_cbranch_g_fork s[4:5], s[6:7] For full list of supported instructions, refer to "SOP2 Instructions" in ISA Manual. SOPC Instruction Examples -------------------------- .. code-block:: nasm s_cmp_eq_i32 s1, s2 s_bitcmp1_b32 s1, s2 s_bitcmp0_b64 s[2:3], s4 s_setvskip s3, s5 For full list of supported instructions, refer to "SOPC Instructions" in ISA Manual. SOPP Instruction Examples -------------------------- .. code-block:: nasm s_barrier s_nop 2 s_endpgm s_waitcnt 0 ; Wait for all counters to be 0 s_waitcnt vmcnt(0) & expcnt(0) & lgkmcnt(0) ; Equivalent to above s_waitcnt vmcnt(1) ; Wait for vmcnt counter to be 1. s_sethalt 9 s_sleep 10 s_sendmsg 0x1 s_sendmsg sendmsg(MSG_INTERRUPT) s_trap 1 For full list of supported instructions, refer to "SOPP Instructions" in ISA Manual. Unless otherwise mentioned, little verification is performed on the operands of SOPP Instructions, so it is up to the programmer to be familiar with the range or acceptable values. Vector ALU Instruction Examples ------------------------------- For vector ALU instruction opcodes (VOP1, VOP2, VOP3, VOPC, VOP_DPP, VOP_SDWA), the assembler will automatically use optimal encoding based on its operands. To force specific encoding, one can add a suffix to the opcode of the instruction: * _e32 for 32-bit VOP1/VOP2/VOPC * _e64 for 64-bit VOP3 * _dpp for VOP_DPP * _sdwa for VOP_SDWA VOP1/VOP2/VOP3/VOPC examples: .. code-block:: nasm v_mov_b32 v1, v2 v_mov_b32_e32 v1, v2 v_nop v_cvt_f64_i32_e32 v[1:2], v2 v_floor_f32_e32 v1, v2 v_bfrev_b32_e32 v1, v2 v_add_f32_e32 v1, v2, v3 v_mul_i32_i24_e64 v1, v2, 3 v_mul_i32_i24_e32 v1, -3, v3 v_mul_i32_i24_e32 v1, -100, v3 v_addc_u32 v1, s[0:1], v2, v3, s[2:3] v_max_f16_e32 v1, v2, v3 VOP_DPP examples: .. code-block:: nasm v_mov_b32 v0, v0 quad_perm:[0,2,1,1] v_sin_f32 v0, v0 row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0 v_mov_b32 v0, v0 wave_shl:1 v_mov_b32 v0, v0 row_mirror v_mov_b32 v0, v0 row_bcast:31 v_mov_b32 v0, v0 quad_perm:[1,3,0,1] row_mask:0xa bank_mask:0x1 bound_ctrl:0 v_add_f32 v0, v0, |v0| row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0 v_max_f16 v1, v2, v3 row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0 VOP_SDWA examples: .. code-block:: nasm v_mov_b32 v1, v2 dst_sel:BYTE_0 dst_unused:UNUSED_PRESERVE src0_sel:DWORD v_min_u32 v200, v200, v1 dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:DWORD v_sin_f32 v0, v0 dst_unused:UNUSED_PAD src0_sel:WORD_1 v_fract_f32 v0, |v0| dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_1 v_cmpx_le_u32 vcc, v1, v2 src0_sel:BYTE_2 src1_sel:WORD_0 For full list of supported instructions, refer to "Vector ALU instructions". HSA Code Object Directives -------------------------- AMDGPU ABI defines auxiliary data in output code object. In assembly source, one can specify them with assembler directives. .hsa_code_object_version major, minor ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ *major* and *minor* are integers that specify the version of the HSA code object that will be generated by the assembler. .hsa_code_object_isa [major, minor, stepping, vendor, arch] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ *major*, *minor*, and *stepping* are all integers that describe the instruction set architecture (ISA) version of the assembly program. *vendor* and *arch* are quoted strings. *vendor* should always be equal to "AMD" and *arch* should always be equal to "AMDGPU". By default, the assembler will derive the ISA version, *vendor*, and *arch* from the value of the -mcpu option that is passed to the assembler. .amdgpu_hsa_kernel (name) ^^^^^^^^^^^^^^^^^^^^^^^^^ This directives specifies that the symbol with given name is a kernel entry point (label) and the object should contain corresponding symbol of type STT_AMDGPU_HSA_KERNEL. .amd_kernel_code_t ^^^^^^^^^^^^^^^^^^ This directive marks the beginning of a list of key / value pairs that are used to specify the amd_kernel_code_t object that will be emitted by the assembler. The list must be terminated by the *.end_amd_kernel_code_t* directive. For any amd_kernel_code_t values that are unspecified a default value will be used. The default value for all keys is 0, with the following exceptions: - *kernel_code_version_major* defaults to 1. - *machine_kind* defaults to 1. - *machine_version_major*, *machine_version_minor*, and *machine_version_stepping* are derived from the value of the -mcpu option that is passed to the assembler. - *kernel_code_entry_byte_offset* defaults to 256. - *wavefront_size* defaults to 6. - *kernarg_segment_alignment*, *group_segment_alignment*, and *private_segment_alignment* default to 4. Note that alignments are specified as a power of two, so a value of **n** means an alignment of 2^ **n**. The *.amd_kernel_code_t* directive must be placed immediately after the function label and before any instructions. For a full list of amd_kernel_code_t keys, refer to AMDGPU ABI document, comments in lib/Target/AMDGPU/AmdKernelCodeT.h and test/CodeGen/AMDGPU/hsa.s. Here is an example of a minimal amd_kernel_code_t specification: .. code-block:: none .hsa_code_object_version 1,0 .hsa_code_object_isa .hsatext .globl hello_world .p2align 8 .amdgpu_hsa_kernel hello_world hello_world: .amd_kernel_code_t enable_sgpr_kernarg_segment_ptr = 1 is_ptr64 = 1 compute_pgm_rsrc1_vgprs = 0 compute_pgm_rsrc1_sgprs = 0 compute_pgm_rsrc2_user_sgpr = 2 kernarg_segment_byte_size = 8 wavefront_sgpr_count = 2 workitem_vgpr_count = 3 .end_amd_kernel_code_t s_load_dwordx2 s[0:1], s[0:1] 0x0 v_mov_b32 v0, 3.14159 s_waitcnt lgkmcnt(0) v_mov_b32 v1, s0 v_mov_b32 v2, s1 flat_store_dword v[1:2], v0 s_endpgm .Lfunc_end0: .size hello_world, .Lfunc_end0-hello_world