summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64SIMDInstrOpt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64SIMDInstrOpt.cpp')
-rw-r--r--lib/Target/AArch64/AArch64SIMDInstrOpt.cpp735
1 files changed, 735 insertions, 0 deletions
diff --git a/lib/Target/AArch64/AArch64SIMDInstrOpt.cpp b/lib/Target/AArch64/AArch64SIMDInstrOpt.cpp
new file mode 100644
index 00000000000..3ff4155849a
--- /dev/null
+++ b/lib/Target/AArch64/AArch64SIMDInstrOpt.cpp
@@ -0,0 +1,735 @@
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that performs optimization on SIMD instructions
+// with high latency by splitting them into more efficient series of
+// instructions.
+//
+// 1. Rewrite certain SIMD instructions with vector element due to their
+// inefficiency on some targets.
+// Example:
+// fmla v0.4s, v1.4s, v2.s[1]
+// is rewritten into
+// dup v3.4s, v2.s[1]
+// fmla v0.4s, v1.4s, v3.4s
+//
+// 2. Rewrite Interleaved memory access instructions due to their
+// inefficiency on some targets.
+// Example:
+// st2 {v0.4s, v1.4s}, addr
+// is rewritten into
+// zip1 v2.4s, v0.4s, v1.4s
+// zip2 v3.4s, v0.4s, v1.4s
+// stp q2, q3, addr
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64InstrInfo.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCSchedule.h"
+#include "llvm/Pass.h"
+#include <unordered_map>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-simdinstr-opt"
+
+STATISTIC(NumModifiedInstr,
+ "Number of SIMD instructions modified");
+
+#define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME \
+ "AArch64 SIMD instructions optimization pass"
+
+namespace {
+
+struct AArch64SIMDInstrOpt : public MachineFunctionPass {
+ static char ID;
+
+ const TargetInstrInfo *TII;
+ MachineRegisterInfo *MRI;
+ TargetSchedModel SchedModel;
+
+ // The two maps below are used to cache decisions instead of recomputing:
+ // This is used to cache instruction replacement decisions within function
+ // units and across function units.
+ std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
+ // This is used to cache the decision of whether to leave the Interleave-Store
+ // instructions replacement pass early or not for a particular target.
+ std::unordered_map<std::string, bool> InterlEarlyExit;
+
+ typedef enum {
+ VectorElem,
+ Interleave
+ } Subpass;
+
+ // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
+ struct InstReplInfo {
+ unsigned OrigOpc;
+ std::vector<unsigned> ReplOpc;
+ const TargetRegisterClass RC;
+ };
+
+#define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
+ {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
+#define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
+ OpcR7, OpcR8, OpcR9, RC) \
+ {OpcOrg, {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, \
+ OpcR8, OpcR9}, RC}
+
+ // The Instruction Replacement Table:
+ std::vector<InstReplInfo> IRT = {
+ // ST2 instructions
+ RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
+ AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
+ AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
+ AArch64::STPDi, AArch64::FPR64RegClass),
+ RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
+ AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
+ AArch64::STPDi, AArch64::FPR64RegClass),
+ RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
+ AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
+ AArch64::STPDi, AArch64::FPR64RegClass),
+ // ST4 instructions
+ RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
+ AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
+ AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
+ AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
+ AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
+ AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
+ AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
+ AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
+ AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
+ AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
+ RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
+ AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
+ AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
+ AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
+ AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
+ AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
+ AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
+ RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
+ AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
+ AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
+ AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
+ RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
+ AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
+ AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
+ AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
+ };
+
+ // A costly instruction is replaced in this work by N efficient instructions
+ // The maximum of N is curently 10 and it is for ST4 case.
+ static const unsigned MaxNumRepl = 10;
+
+ AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
+ initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// Based only on latency of instructions, determine if it is cost efficient
+ /// to replace the instruction InstDesc by the instructions stored in the
+ /// array InstDescRepl.
+ /// Return true if replacement is expected to be faster.
+ bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
+ SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
+
+ /// Determine if we need to exit the instruction replacement optimization
+ /// subpasses early. This makes sure that Targets with no need for this
+ /// optimization do not spend any compile time on this subpass other than the
+ /// simple check performed here. This simple check is done by comparing the
+ /// latency of the original instruction to the latency of the replacement
+ /// instructions. We only check for a representative instruction in the class
+ /// of instructions and not all concerned instructions. For the VectorElem
+ /// subpass, we check for the FMLA instruction while for the interleave subpass
+ /// we check for the st2.4s instruction.
+ /// Return true if early exit of the subpass is recommended.
+ bool shouldExitEarly(MachineFunction *MF, Subpass SP);
+
+ /// Check whether an equivalent DUP instruction has already been
+ /// created or not.
+ /// Return true when the dup instruction already exists. In this case,
+ /// DestReg will point to the destination of the already created DUP.
+ bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
+ unsigned LaneNumber, unsigned *DestReg) const;
+
+ /// Certain SIMD instructions with vector element operand are not efficient.
+ /// Rewrite them into SIMD instructions with vector operands. This rewrite
+ /// is driven by the latency of the instructions.
+ /// Return true if the SIMD instruction is modified.
+ bool optimizeVectElement(MachineInstr &MI);
+
+ /// Process The REG_SEQUENCE instruction, and extract the source
+ /// operands of the st2/4 instruction from it.
+ /// Example of such instructions.
+ /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
+ /// Return true when the instruction is processed successfully.
+ bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
+ unsigned* StRegKill, unsigned NumArg) const;
+
+ /// Load/Store Interleaving instructions are not always beneficial.
+ /// Replace them by zip instructionand classical load/store.
+ /// Return true if the SIMD instruction is modified.
+ bool optimizeLdStInterleave(MachineInstr &MI);
+
+ /// Return the number of useful source registers for this
+ /// instruction (2 for st2 and 4 for st4).
+ unsigned determineSrcReg(MachineInstr &MI) const;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ StringRef getPassName() const override {
+ return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
+ }
+};
+
+char AArch64SIMDInstrOpt::ID = 0;
+
+} // end anonymous namespace
+
+INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
+ AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
+
+/// Based only on latency of instructions, determine if it is cost efficient
+/// to replace the instruction InstDesc by the instructions stored in the
+/// array InstDescRepl.
+/// Return true if replacement is expected to be faster.
+bool AArch64SIMDInstrOpt::
+shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
+ SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
+ // Check if replacement decision is already available in the cached table.
+ // if so, return it.
+ std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
+ std::pair<unsigned, std::string> InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
+ if (!SIMDInstrTable.empty() &&
+ SIMDInstrTable.find(InstID) != SIMDInstrTable.end())
+ return SIMDInstrTable[InstID];
+
+ unsigned SCIdx = InstDesc->getSchedClass();
+ const MCSchedClassDesc *SCDesc =
+ SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
+
+ // If a subtarget does not define resources for the instructions
+ // of interest, then return false for no replacement.
+ const MCSchedClassDesc *SCDescRepl;
+ if (!SCDesc->isValid() || SCDesc->isVariant())
+ {
+ SIMDInstrTable[InstID] = false;
+ return false;
+ }
+ for (auto IDesc : InstDescRepl)
+ {
+ SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
+ IDesc->getSchedClass());
+ if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
+ {
+ SIMDInstrTable[InstID] = false;
+ return false;
+ }
+ }
+
+ // Replacement cost.
+ unsigned ReplCost = 0;
+ for (auto IDesc :InstDescRepl)
+ ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
+
+ if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
+ {
+ SIMDInstrTable[InstID] = true;
+ return true;
+ }
+ else
+ {
+ SIMDInstrTable[InstID] = false;
+ return false;
+ }
+}
+
+/// Determine if we need to exit the instruction replacement optimization
+/// subpasses early. This makes sure that Targets with no need for this
+/// optimization do not spend any compile time on this subpass other than the
+/// simple check performed here. This simple check is done by comparing the
+/// latency of the original instruction to the latency of the replacement
+/// instructions. We only check for a representative instruction in the class of
+/// instructions and not all concerned instructions. For the VectorElem subpass,
+/// we check for the FMLA instruction while for the interleave subpass we check
+/// for the st2.4s instruction.
+/// Return true if early exit of the subpass is recommended.
+bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
+ const MCInstrDesc* OriginalMCID;
+ SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
+
+ switch (SP) {
+ case VectorElem:
+ OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
+ ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
+ ReplInstrMCID.push_back(&TII->get(AArch64::FMULv4f32));
+ if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
+ return false;
+ break;
+ case Interleave:
+ // Check if early exit decision is already available in the cached
+ // table or not.
+ std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
+ if (InterlEarlyExit.find(Subtarget) != InterlEarlyExit.end())
+ return InterlEarlyExit[Subtarget];
+
+ for (auto &I : IRT) {
+ OriginalMCID = &TII->get(I.OrigOpc);
+ for (auto &Repl : I.ReplOpc)
+ ReplInstrMCID.push_back(&TII->get(Repl));
+ if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
+ InterlEarlyExit[Subtarget] = false;
+ return false;
+ }
+ ReplInstrMCID.clear();
+ }
+ InterlEarlyExit[Subtarget] = true;
+ break;
+ }
+
+ return true;
+}
+
+/// Check whether an equivalent DUP instruction has already been
+/// created or not.
+/// Return true when the dup instruction already exists. In this case,
+/// DestReg will point to the destination of the already created DUP.
+bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
+ unsigned SrcReg, unsigned LaneNumber,
+ unsigned *DestReg) const {
+ for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
+ MII != MIE;) {
+ MII--;
+ MachineInstr *CurrentMI = &*MII;
+
+ if (CurrentMI->getOpcode() == DupOpcode &&
+ CurrentMI->getNumOperands() == 3 &&
+ CurrentMI->getOperand(1).getReg() == SrcReg &&
+ CurrentMI->getOperand(2).getImm() == LaneNumber) {
+ *DestReg = CurrentMI->getOperand(0).getReg();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// Certain SIMD instructions with vector element operand are not efficient.
+/// Rewrite them into SIMD instructions with vector operands. This rewrite
+/// is driven by the latency of the instructions.
+/// The instruction of concerns are for the time being fmla, fmls, fmul,
+/// and fmulx and hence they are hardcoded.
+///
+/// Example:
+/// fmla v0.4s, v1.4s, v2.s[1]
+/// is rewritten into
+/// dup v3.4s, v2.s[1] // dup not necessary if redundant
+/// fmla v0.4s, v1.4s, v3.4s
+/// Return true if the SIMD instruction is modified.
+bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
+ const MCInstrDesc *MulMCID, *DupMCID;
+ const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
+
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+
+ // 4X32 instructions
+ case AArch64::FMLAv4i32_indexed:
+ DupMCID = &TII->get(AArch64::DUPv4i32lane);
+ MulMCID = &TII->get(AArch64::FMLAv4f32);
+ break;
+ case AArch64::FMLSv4i32_indexed:
+ DupMCID = &TII->get(AArch64::DUPv4i32lane);
+ MulMCID = &TII->get(AArch64::FMLSv4f32);
+ break;
+ case AArch64::FMULXv4i32_indexed:
+ DupMCID = &TII->get(AArch64::DUPv4i32lane);
+ MulMCID = &TII->get(AArch64::FMULXv4f32);
+ break;
+ case AArch64::FMULv4i32_indexed:
+ DupMCID = &TII->get(AArch64::DUPv4i32lane);
+ MulMCID = &TII->get(AArch64::FMULv4f32);
+ break;
+
+ // 2X64 instructions
+ case AArch64::FMLAv2i64_indexed:
+ DupMCID = &TII->get(AArch64::DUPv2i64lane);
+ MulMCID = &TII->get(AArch64::FMLAv2f64);
+ break;
+ case AArch64::FMLSv2i64_indexed:
+ DupMCID = &TII->get(AArch64::DUPv2i64lane);
+ MulMCID = &TII->get(AArch64::FMLSv2f64);
+ break;
+ case AArch64::FMULXv2i64_indexed:
+ DupMCID = &TII->get(AArch64::DUPv2i64lane);
+ MulMCID = &TII->get(AArch64::FMULXv2f64);
+ break;
+ case AArch64::FMULv2i64_indexed:
+ DupMCID = &TII->get(AArch64::DUPv2i64lane);
+ MulMCID = &TII->get(AArch64::FMULv2f64);
+ break;
+
+ // 2X32 instructions
+ case AArch64::FMLAv2i32_indexed:
+ RC = &AArch64::FPR64RegClass;
+ DupMCID = &TII->get(AArch64::DUPv2i32lane);
+ MulMCID = &TII->get(AArch64::FMLAv2f32);
+ break;
+ case AArch64::FMLSv2i32_indexed:
+ RC = &AArch64::FPR64RegClass;
+ DupMCID = &TII->get(AArch64::DUPv2i32lane);
+ MulMCID = &TII->get(AArch64::FMLSv2f32);
+ break;
+ case AArch64::FMULXv2i32_indexed:
+ RC = &AArch64::FPR64RegClass;
+ DupMCID = &TII->get(AArch64::DUPv2i32lane);
+ MulMCID = &TII->get(AArch64::FMULXv2f32);
+ break;
+ case AArch64::FMULv2i32_indexed:
+ RC = &AArch64::FPR64RegClass;
+ DupMCID = &TII->get(AArch64::DUPv2i32lane);
+ MulMCID = &TII->get(AArch64::FMULv2f32);
+ break;
+ }
+
+ SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
+ ReplInstrMCID.push_back(DupMCID);
+ ReplInstrMCID.push_back(MulMCID);
+ if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
+ ReplInstrMCID))
+ return false;
+
+ const DebugLoc &DL = MI.getDebugLoc();
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+
+ // get the operands of the current SIMD arithmetic instruction.
+ unsigned MulDest = MI.getOperand(0).getReg();
+ unsigned SrcReg0 = MI.getOperand(1).getReg();
+ unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
+ unsigned SrcReg1 = MI.getOperand(2).getReg();
+ unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
+ unsigned DupDest;
+
+ // Instructions of interest have either 4 or 5 operands.
+ if (MI.getNumOperands() == 5) {
+ unsigned SrcReg2 = MI.getOperand(3).getReg();
+ unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
+ unsigned LaneNumber = MI.getOperand(4).getImm();
+ // Create a new DUP instruction. Note that if an equivalent DUP instruction
+ // has already been created before, then use that one instread of creating
+ // a new one.
+ if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
+ DupDest = MRI.createVirtualRegister(RC);
+ BuildMI(MBB, MI, DL, *DupMCID, DupDest)
+ .addReg(SrcReg2, Src2IsKill)
+ .addImm(LaneNumber);
+ }
+ BuildMI(MBB, MI, DL, *MulMCID, MulDest)
+ .addReg(SrcReg0, Src0IsKill)
+ .addReg(SrcReg1, Src1IsKill)
+ .addReg(DupDest, Src2IsKill);
+ } else if (MI.getNumOperands() == 4) {
+ unsigned LaneNumber = MI.getOperand(3).getImm();
+ if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
+ DupDest = MRI.createVirtualRegister(RC);
+ BuildMI(MBB, MI, DL, *DupMCID, DupDest)
+ .addReg(SrcReg1, Src1IsKill)
+ .addImm(LaneNumber);
+ }
+ BuildMI(MBB, MI, DL, *MulMCID, MulDest)
+ .addReg(SrcReg0, Src0IsKill)
+ .addReg(DupDest, Src1IsKill);
+ } else {
+ return false;
+ }
+
+ ++NumModifiedInstr;
+ return true;
+}
+
+/// Load/Store Interleaving instructions are not always beneficial.
+/// Replace them by zip instructions and classical load/store.
+///
+/// Example:
+/// st2 {v0.4s, v1.4s}, addr
+/// is rewritten into
+/// zip1 v2.4s, v0.4s, v1.4s
+/// zip2 v3.4s, v0.4s, v1.4s
+/// stp q2, q3, addr
+//
+/// Example:
+/// st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
+/// is rewritten into
+/// zip1 v4.4s, v0.4s, v2.4s
+/// zip2 v5.4s, v0.4s, v2.4s
+/// zip1 v6.4s, v1.4s, v3.4s
+/// zip2 v7.4s, v1.4s, v3.4s
+/// zip1 v8.4s, v4.4s, v6.4s
+/// zip2 v9.4s, v4.4s, v6.4s
+/// zip1 v10.4s, v5.4s, v7.4s
+/// zip2 v11.4s, v5.4s, v7.4s
+/// stp q8, q9, addr
+/// stp q10, q11, addr+32
+/// Currently only instructions related to st2 and st4 are considered.
+/// Other may be added later.
+/// Return true if the SIMD instruction is modified.
+bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
+
+ unsigned SeqReg, AddrReg;
+ unsigned StReg[4], StRegKill[4];
+ MachineInstr *DefiningMI;
+ const DebugLoc &DL = MI.getDebugLoc();
+ MachineBasicBlock &MBB = *MI.getParent();
+ SmallVector<unsigned, MaxNumRepl> ZipDest;
+ SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
+
+ // If current instruction matches any of the rewriting rules, then
+ // gather information about parameters of the new instructions.
+ bool Match = false;
+ for (auto &I : IRT) {
+ if (MI.getOpcode() == I.OrigOpc) {
+ SeqReg = MI.getOperand(0).getReg();
+ AddrReg = MI.getOperand(1).getReg();
+ DefiningMI = MRI->getUniqueVRegDef(SeqReg);
+ unsigned NumReg = determineSrcReg(MI);
+ if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
+ return false;
+
+ for (auto &Repl : I.ReplOpc) {
+ ReplInstrMCID.push_back(&TII->get(Repl));
+ // Generate destination registers but only for non-store instruction.
+ if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
+ ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
+ }
+ Match = true;
+ break;
+ }
+ }
+
+ if (!Match)
+ return false;
+
+ // Determine if it is profitable to replace MI by the series of instructions
+ // represented in ReplInstrMCID.
+ if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
+ ReplInstrMCID))
+ return false;
+
+ // Generate the replacement instructions composed of zip1, zip2, and stp (at
+ // this point, the code generation is hardcoded and does not rely on the IRT
+ // table used above given that code generation for ST2 replacement is somewhat
+ // different than for ST4 replacement. We could have added more info into the
+ // table related to how we build new instructions but we may be adding more
+ // complexity with that).
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case AArch64::ST2Twov16b:
+ case AArch64::ST2Twov8b:
+ case AArch64::ST2Twov8h:
+ case AArch64::ST2Twov4h:
+ case AArch64::ST2Twov4s:
+ case AArch64::ST2Twov2s:
+ case AArch64::ST2Twov2d:
+ // zip instructions
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
+ .addReg(StReg[0])
+ .addReg(StReg[1]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
+ .addReg(StReg[0], StRegKill[0])
+ .addReg(StReg[1], StRegKill[1]);
+ // stp instructions
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
+ .addReg(ZipDest[0])
+ .addReg(ZipDest[1])
+ .addReg(AddrReg)
+ .addImm(0);
+ break;
+ case AArch64::ST4Fourv16b:
+ case AArch64::ST4Fourv8b:
+ case AArch64::ST4Fourv8h:
+ case AArch64::ST4Fourv4h:
+ case AArch64::ST4Fourv4s:
+ case AArch64::ST4Fourv2s:
+ case AArch64::ST4Fourv2d:
+ // zip instructions
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
+ .addReg(StReg[0])
+ .addReg(StReg[2]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
+ .addReg(StReg[0], StRegKill[0])
+ .addReg(StReg[2], StRegKill[2]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
+ .addReg(StReg[1])
+ .addReg(StReg[3]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
+ .addReg(StReg[1], StRegKill[1])
+ .addReg(StReg[3], StRegKill[3]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
+ .addReg(ZipDest[0])
+ .addReg(ZipDest[2]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
+ .addReg(ZipDest[0])
+ .addReg(ZipDest[2]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
+ .addReg(ZipDest[1])
+ .addReg(ZipDest[3]);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
+ .addReg(ZipDest[1])
+ .addReg(ZipDest[3]);
+ // stp instructions
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
+ .addReg(ZipDest[4])
+ .addReg(ZipDest[5])
+ .addReg(AddrReg)
+ .addImm(0);
+ BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
+ .addReg(ZipDest[6])
+ .addReg(ZipDest[7])
+ .addReg(AddrReg)
+ .addImm(2);
+ break;
+ }
+
+ ++NumModifiedInstr;
+ return true;
+}
+
+/// Process The REG_SEQUENCE instruction, and extract the source
+/// operands of the st2/4 instruction from it.
+/// Example of such instruction.
+/// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
+/// Return true when the instruction is processed successfully.
+bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
+ unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
+ assert (DefiningMI != NULL);
+ if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
+ return false;
+
+ for (unsigned i=0; i<NumArg; i++) {
+ StReg[i] = DefiningMI->getOperand(2*i+1).getReg();
+ StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
+
+ // Sanity check for the other arguments.
+ if (DefiningMI->getOperand(2*i+2).isImm()) {
+ switch (DefiningMI->getOperand(2*i+2).getImm()) {
+ default:
+ return false;
+ case AArch64::dsub0:
+ case AArch64::dsub1:
+ case AArch64::dsub2:
+ case AArch64::dsub3:
+ case AArch64::qsub0:
+ case AArch64::qsub1:
+ case AArch64::qsub2:
+ case AArch64::qsub3:
+ break;
+ }
+ }
+ else
+ return false;
+ }
+ return true;
+}
+
+/// Return the number of useful source registers for this instruction
+/// (2 for ST2 and 4 for ST4).
+unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Unsupported instruction for this pass");
+ case AArch64::ST2Twov16b:
+ case AArch64::ST2Twov8b:
+ case AArch64::ST2Twov8h:
+ case AArch64::ST2Twov4h:
+ case AArch64::ST2Twov4s:
+ case AArch64::ST2Twov2s:
+ case AArch64::ST2Twov2d:
+ return 2;
+ case AArch64::ST4Fourv16b:
+ case AArch64::ST4Fourv8b:
+ case AArch64::ST4Fourv8h:
+ case AArch64::ST4Fourv4h:
+ case AArch64::ST4Fourv4s:
+ case AArch64::ST4Fourv2s:
+ case AArch64::ST4Fourv2d:
+ return 4;
+ }
+}
+
+bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(*MF.getFunction()))
+ return false;
+
+ TII = MF.getSubtarget().getInstrInfo();
+ MRI = &MF.getRegInfo();
+ const TargetSubtargetInfo &ST = MF.getSubtarget();
+ const AArch64InstrInfo *AAII =
+ static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
+ if (!AAII)
+ return false;
+ SchedModel.init(ST.getSchedModel(), &ST, AAII);
+ if (!SchedModel.hasInstrSchedModel())
+ return false;
+
+ bool Changed = false;
+ for (auto OptimizationKind : {VectorElem, Interleave}) {
+ if (!shouldExitEarly(&MF, OptimizationKind)) {
+ SmallVector<MachineInstr *, 8> RemoveMIs;
+ for (MachineBasicBlock &MBB : MF) {
+ for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
+ MII != MIE;) {
+ MachineInstr &MI = *MII;
+ bool InstRewrite;
+ if (OptimizationKind == VectorElem)
+ InstRewrite = optimizeVectElement(MI) ;
+ else
+ InstRewrite = optimizeLdStInterleave(MI);
+ if (InstRewrite) {
+ // Add MI to the list of instructions to be removed given that it
+ // has been replaced.
+ RemoveMIs.push_back(&MI);
+ Changed = true;
+ }
+ ++MII;
+ }
+ }
+ for (MachineInstr *MI : RemoveMIs)
+ MI->eraseFromParent();
+ }
+ }
+
+ return Changed;
+}
+
+/// createAArch64SIMDInstrOptPass - returns an instance of the
+/// vector by element optimization pass.
+FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
+ return new AArch64SIMDInstrOpt();
+}