summaryrefslogtreecommitdiff
path: root/lib/IR/Verifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/IR/Verifier.cpp')
-rw-r--r--lib/IR/Verifier.cpp2015
1 files changed, 2015 insertions, 0 deletions
diff --git a/lib/IR/Verifier.cpp b/lib/IR/Verifier.cpp
new file mode 100644
index 00000000000..aec44355fa5
--- /dev/null
+++ b/lib/IR/Verifier.cpp
@@ -0,0 +1,2015 @@
+//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the function verifier interface, that can be used for some
+// sanity checking of input to the system.
+//
+// Note that this does not provide full `Java style' security and verifications,
+// instead it just tries to ensure that code is well-formed.
+//
+// * Both of a binary operator's parameters are of the same type
+// * Verify that the indices of mem access instructions match other operands
+// * Verify that arithmetic and other things are only performed on first-class
+// types. Verify that shifts & logicals only happen on integrals f.e.
+// * All of the constants in a switch statement are of the correct type
+// * The code is in valid SSA form
+// * It should be illegal to put a label into any other type (like a structure)
+// or to return one. [except constant arrays!]
+// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
+// * PHI nodes must have an entry for each predecessor, with no extras.
+// * PHI nodes must be the first thing in a basic block, all grouped together
+// * PHI nodes must have at least one entry
+// * All basic blocks should only end with terminator insts, not contain them
+// * The entry node to a function must not have predecessors
+// * All Instructions must be embedded into a basic block
+// * Functions cannot take a void-typed parameter
+// * Verify that a function's argument list agrees with it's declared type.
+// * It is illegal to specify a name for a void value.
+// * It is illegal to have a internal global value with no initializer
+// * It is illegal to have a ret instruction that returns a value that does not
+// agree with the function return value type.
+// * Function call argument types match the function prototype
+// * A landing pad is defined by a landingpad instruction, and can be jumped to
+// only by the unwind edge of an invoke instruction.
+// * A landingpad instruction must be the first non-PHI instruction in the
+// block.
+// * All landingpad instructions must use the same personality function with
+// the same function.
+// * All other things that are tested by asserts spread about the code...
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CallingConv.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdarg>
+using namespace llvm;
+
+namespace { // Anonymous namespace for class
+ struct PreVerifier : public FunctionPass {
+ static char ID; // Pass ID, replacement for typeid
+
+ PreVerifier() : FunctionPass(ID) {
+ initializePreVerifierPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ }
+
+ // Check that the prerequisites for successful DominatorTree construction
+ // are satisfied.
+ bool runOnFunction(Function &F) {
+ bool Broken = false;
+
+ for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ if (I->empty() || !I->back().isTerminator()) {
+ dbgs() << "Basic Block in function '" << F.getName()
+ << "' does not have terminator!\n";
+ WriteAsOperand(dbgs(), I, true);
+ dbgs() << "\n";
+ Broken = true;
+ }
+ }
+
+ if (Broken)
+ report_fatal_error("Broken module, no Basic Block terminator!");
+
+ return false;
+ }
+ };
+}
+
+char PreVerifier::ID = 0;
+INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
+ false, false)
+static char &PreVerifyID = PreVerifier::ID;
+
+namespace {
+ struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
+ static char ID; // Pass ID, replacement for typeid
+ bool Broken; // Is this module found to be broken?
+ VerifierFailureAction action;
+ // What to do if verification fails.
+ Module *Mod; // Module we are verifying right now
+ LLVMContext *Context; // Context within which we are verifying
+ DominatorTree *DT; // Dominator Tree, caution can be null!
+
+ std::string Messages;
+ raw_string_ostream MessagesStr;
+
+ /// InstInThisBlock - when verifying a basic block, keep track of all of the
+ /// instructions we have seen so far. This allows us to do efficient
+ /// dominance checks for the case when an instruction has an operand that is
+ /// an instruction in the same block.
+ SmallPtrSet<Instruction*, 16> InstsInThisBlock;
+
+ /// MDNodes - keep track of the metadata nodes that have been checked
+ /// already.
+ SmallPtrSet<MDNode *, 32> MDNodes;
+
+ /// PersonalityFn - The personality function referenced by the
+ /// LandingPadInsts. All LandingPadInsts within the same function must use
+ /// the same personality function.
+ const Value *PersonalityFn;
+
+ Verifier()
+ : FunctionPass(ID), Broken(false),
+ action(AbortProcessAction), Mod(0), Context(0), DT(0),
+ MessagesStr(Messages), PersonalityFn(0) {
+ initializeVerifierPass(*PassRegistry::getPassRegistry());
+ }
+ explicit Verifier(VerifierFailureAction ctn)
+ : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
+ Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
+ initializeVerifierPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool doInitialization(Module &M) {
+ Mod = &M;
+ Context = &M.getContext();
+
+ // We must abort before returning back to the pass manager, or else the
+ // pass manager may try to run other passes on the broken module.
+ return abortIfBroken();
+ }
+
+ bool runOnFunction(Function &F) {
+ // Get dominator information if we are being run by PassManager
+ DT = &getAnalysis<DominatorTree>();
+
+ Mod = F.getParent();
+ if (!Context) Context = &F.getContext();
+
+ visit(F);
+ InstsInThisBlock.clear();
+ PersonalityFn = 0;
+
+ // We must abort before returning back to the pass manager, or else the
+ // pass manager may try to run other passes on the broken module.
+ return abortIfBroken();
+ }
+
+ bool doFinalization(Module &M) {
+ // Scan through, checking all of the external function's linkage now...
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ visitGlobalValue(*I);
+
+ // Check to make sure function prototypes are okay.
+ if (I->isDeclaration()) visitFunction(*I);
+ }
+
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ visitGlobalVariable(*I);
+
+ for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
+ I != E; ++I)
+ visitGlobalAlias(*I);
+
+ for (Module::named_metadata_iterator I = M.named_metadata_begin(),
+ E = M.named_metadata_end(); I != E; ++I)
+ visitNamedMDNode(*I);
+
+ // If the module is broken, abort at this time.
+ return abortIfBroken();
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequiredID(PreVerifyID);
+ AU.addRequired<DominatorTree>();
+ }
+
+ /// abortIfBroken - If the module is broken and we are supposed to abort on
+ /// this condition, do so.
+ ///
+ bool abortIfBroken() {
+ if (!Broken) return false;
+ MessagesStr << "Broken module found, ";
+ switch (action) {
+ case AbortProcessAction:
+ MessagesStr << "compilation aborted!\n";
+ dbgs() << MessagesStr.str();
+ // Client should choose different reaction if abort is not desired
+ abort();
+ case PrintMessageAction:
+ MessagesStr << "verification continues.\n";
+ dbgs() << MessagesStr.str();
+ return false;
+ case ReturnStatusAction:
+ MessagesStr << "compilation terminated.\n";
+ return true;
+ }
+ llvm_unreachable("Invalid action");
+ }
+
+
+ // Verification methods...
+ void visitGlobalValue(GlobalValue &GV);
+ void visitGlobalVariable(GlobalVariable &GV);
+ void visitGlobalAlias(GlobalAlias &GA);
+ void visitNamedMDNode(NamedMDNode &NMD);
+ void visitMDNode(MDNode &MD, Function *F);
+ void visitFunction(Function &F);
+ void visitBasicBlock(BasicBlock &BB);
+ using InstVisitor<Verifier>::visit;
+
+ void visit(Instruction &I);
+
+ void visitTruncInst(TruncInst &I);
+ void visitZExtInst(ZExtInst &I);
+ void visitSExtInst(SExtInst &I);
+ void visitFPTruncInst(FPTruncInst &I);
+ void visitFPExtInst(FPExtInst &I);
+ void visitFPToUIInst(FPToUIInst &I);
+ void visitFPToSIInst(FPToSIInst &I);
+ void visitUIToFPInst(UIToFPInst &I);
+ void visitSIToFPInst(SIToFPInst &I);
+ void visitIntToPtrInst(IntToPtrInst &I);
+ void visitPtrToIntInst(PtrToIntInst &I);
+ void visitBitCastInst(BitCastInst &I);
+ void visitPHINode(PHINode &PN);
+ void visitBinaryOperator(BinaryOperator &B);
+ void visitICmpInst(ICmpInst &IC);
+ void visitFCmpInst(FCmpInst &FC);
+ void visitExtractElementInst(ExtractElementInst &EI);
+ void visitInsertElementInst(InsertElementInst &EI);
+ void visitShuffleVectorInst(ShuffleVectorInst &EI);
+ void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
+ void visitCallInst(CallInst &CI);
+ void visitInvokeInst(InvokeInst &II);
+ void visitGetElementPtrInst(GetElementPtrInst &GEP);
+ void visitLoadInst(LoadInst &LI);
+ void visitStoreInst(StoreInst &SI);
+ void verifyDominatesUse(Instruction &I, unsigned i);
+ void visitInstruction(Instruction &I);
+ void visitTerminatorInst(TerminatorInst &I);
+ void visitBranchInst(BranchInst &BI);
+ void visitReturnInst(ReturnInst &RI);
+ void visitSwitchInst(SwitchInst &SI);
+ void visitIndirectBrInst(IndirectBrInst &BI);
+ void visitSelectInst(SelectInst &SI);
+ void visitUserOp1(Instruction &I);
+ void visitUserOp2(Instruction &I) { visitUserOp1(I); }
+ void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
+ void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
+ void visitAtomicRMWInst(AtomicRMWInst &RMWI);
+ void visitFenceInst(FenceInst &FI);
+ void visitAllocaInst(AllocaInst &AI);
+ void visitExtractValueInst(ExtractValueInst &EVI);
+ void visitInsertValueInst(InsertValueInst &IVI);
+ void visitLandingPadInst(LandingPadInst &LPI);
+
+ void VerifyCallSite(CallSite CS);
+ bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
+ int VT, unsigned ArgNo, std::string &Suffix);
+ bool VerifyIntrinsicType(Type *Ty,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type*> &ArgTys);
+ void VerifyParameterAttrs(Attribute Attrs, Type *Ty,
+ bool isReturnValue, const Value *V);
+ void VerifyFunctionAttrs(FunctionType *FT, const AttributeSet &Attrs,
+ const Value *V);
+
+ void WriteValue(const Value *V) {
+ if (!V) return;
+ if (isa<Instruction>(V)) {
+ MessagesStr << *V << '\n';
+ } else {
+ WriteAsOperand(MessagesStr, V, true, Mod);
+ MessagesStr << '\n';
+ }
+ }
+
+ void WriteType(Type *T) {
+ if (!T) return;
+ MessagesStr << ' ' << *T;
+ }
+
+
+ // CheckFailed - A check failed, so print out the condition and the message
+ // that failed. This provides a nice place to put a breakpoint if you want
+ // to see why something is not correct.
+ void CheckFailed(const Twine &Message,
+ const Value *V1 = 0, const Value *V2 = 0,
+ const Value *V3 = 0, const Value *V4 = 0) {
+ MessagesStr << Message.str() << "\n";
+ WriteValue(V1);
+ WriteValue(V2);
+ WriteValue(V3);
+ WriteValue(V4);
+ Broken = true;
+ }
+
+ void CheckFailed(const Twine &Message, const Value *V1,
+ Type *T2, const Value *V3 = 0) {
+ MessagesStr << Message.str() << "\n";
+ WriteValue(V1);
+ WriteType(T2);
+ WriteValue(V3);
+ Broken = true;
+ }
+
+ void CheckFailed(const Twine &Message, Type *T1,
+ Type *T2 = 0, Type *T3 = 0) {
+ MessagesStr << Message.str() << "\n";
+ WriteType(T1);
+ WriteType(T2);
+ WriteType(T3);
+ Broken = true;
+ }
+ };
+} // End anonymous namespace
+
+char Verifier::ID = 0;
+INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
+INITIALIZE_PASS_DEPENDENCY(PreVerifier)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
+
+// Assert - We know that cond should be true, if not print an error message.
+#define Assert(C, M) \
+ do { if (!(C)) { CheckFailed(M); return; } } while (0)
+#define Assert1(C, M, V1) \
+ do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
+#define Assert2(C, M, V1, V2) \
+ do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
+#define Assert3(C, M, V1, V2, V3) \
+ do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
+#define Assert4(C, M, V1, V2, V3, V4) \
+ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
+
+void Verifier::visit(Instruction &I) {
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Assert1(I.getOperand(i) != 0, "Operand is null", &I);
+ InstVisitor<Verifier>::visit(I);
+}
+
+
+void Verifier::visitGlobalValue(GlobalValue &GV) {
+ Assert1(!GV.isDeclaration() ||
+ GV.isMaterializable() ||
+ GV.hasExternalLinkage() ||
+ GV.hasDLLImportLinkage() ||
+ GV.hasExternalWeakLinkage() ||
+ (isa<GlobalAlias>(GV) &&
+ (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
+ "Global is external, but doesn't have external or dllimport or weak linkage!",
+ &GV);
+
+ Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
+ "Global is marked as dllimport, but not external", &GV);
+
+ Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
+ "Only global variables can have appending linkage!", &GV);
+
+ if (GV.hasAppendingLinkage()) {
+ GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
+ Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
+ "Only global arrays can have appending linkage!", GVar);
+ }
+
+ Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
+ "linkonce_odr_auto_hide can only have default visibility!",
+ &GV);
+}
+
+void Verifier::visitGlobalVariable(GlobalVariable &GV) {
+ if (GV.hasInitializer()) {
+ Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
+ "Global variable initializer type does not match global "
+ "variable type!", &GV);
+
+ // If the global has common linkage, it must have a zero initializer and
+ // cannot be constant.
+ if (GV.hasCommonLinkage()) {
+ Assert1(GV.getInitializer()->isNullValue(),
+ "'common' global must have a zero initializer!", &GV);
+ Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
+ &GV);
+ }
+ } else {
+ Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
+ GV.hasExternalWeakLinkage(),
+ "invalid linkage type for global declaration", &GV);
+ }
+
+ if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
+ GV.getName() == "llvm.global_dtors")) {
+ Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
+ "invalid linkage for intrinsic global variable", &GV);
+ // Don't worry about emitting an error for it not being an array,
+ // visitGlobalValue will complain on appending non-array.
+ if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
+ StructType *STy = dyn_cast<StructType>(ATy->getElementType());
+ PointerType *FuncPtrTy =
+ FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
+ Assert1(STy && STy->getNumElements() == 2 &&
+ STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
+ STy->getTypeAtIndex(1) == FuncPtrTy,
+ "wrong type for intrinsic global variable", &GV);
+ }
+ }
+
+ visitGlobalValue(GV);
+}
+
+void Verifier::visitGlobalAlias(GlobalAlias &GA) {
+ Assert1(!GA.getName().empty(),
+ "Alias name cannot be empty!", &GA);
+ Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
+ GA.hasWeakLinkage(),
+ "Alias should have external or external weak linkage!", &GA);
+ Assert1(GA.getAliasee(),
+ "Aliasee cannot be NULL!", &GA);
+ Assert1(GA.getType() == GA.getAliasee()->getType(),
+ "Alias and aliasee types should match!", &GA);
+ Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
+
+ if (!isa<GlobalValue>(GA.getAliasee())) {
+ const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
+ Assert1(CE &&
+ (CE->getOpcode() == Instruction::BitCast ||
+ CE->getOpcode() == Instruction::GetElementPtr) &&
+ isa<GlobalValue>(CE->getOperand(0)),
+ "Aliasee should be either GlobalValue or bitcast of GlobalValue",
+ &GA);
+ }
+
+ const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
+ Assert1(Aliasee,
+ "Aliasing chain should end with function or global variable", &GA);
+
+ visitGlobalValue(GA);
+}
+
+void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
+ for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
+ MDNode *MD = NMD.getOperand(i);
+ if (!MD)
+ continue;
+
+ Assert1(!MD->isFunctionLocal(),
+ "Named metadata operand cannot be function local!", MD);
+ visitMDNode(*MD, 0);
+ }
+}
+
+void Verifier::visitMDNode(MDNode &MD, Function *F) {
+ // Only visit each node once. Metadata can be mutually recursive, so this
+ // avoids infinite recursion here, as well as being an optimization.
+ if (!MDNodes.insert(&MD))
+ return;
+
+ for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
+ Value *Op = MD.getOperand(i);
+ if (!Op)
+ continue;
+ if (isa<Constant>(Op) || isa<MDString>(Op))
+ continue;
+ if (MDNode *N = dyn_cast<MDNode>(Op)) {
+ Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
+ "Global metadata operand cannot be function local!", &MD, N);
+ visitMDNode(*N, F);
+ continue;
+ }
+ Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
+
+ // If this was an instruction, bb, or argument, verify that it is in the
+ // function that we expect.
+ Function *ActualF = 0;
+ if (Instruction *I = dyn_cast<Instruction>(Op))
+ ActualF = I->getParent()->getParent();
+ else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
+ ActualF = BB->getParent();
+ else if (Argument *A = dyn_cast<Argument>(Op))
+ ActualF = A->getParent();
+ assert(ActualF && "Unimplemented function local metadata case!");
+
+ Assert2(ActualF == F, "function-local metadata used in wrong function",
+ &MD, Op);
+ }
+}
+
+// VerifyParameterAttrs - Check the given attributes for an argument or return
+// value of the specified type. The value V is printed in error messages.
+void Verifier::VerifyParameterAttrs(Attribute Attrs, Type *Ty,
+ bool isReturnValue, const Value *V) {
+ if (!Attrs.hasAttributes())
+ return;
+
+ Assert1(!Attrs.hasAttribute(Attribute::NoReturn) &&
+ !Attrs.hasAttribute(Attribute::NoUnwind) &&
+ !Attrs.hasAttribute(Attribute::ReadNone) &&
+ !Attrs.hasAttribute(Attribute::ReadOnly) &&
+ !Attrs.hasAttribute(Attribute::NoInline) &&
+ !Attrs.hasAttribute(Attribute::AlwaysInline) &&
+ !Attrs.hasAttribute(Attribute::OptimizeForSize) &&
+ !Attrs.hasAttribute(Attribute::StackProtect) &&
+ !Attrs.hasAttribute(Attribute::StackProtectReq) &&
+ !Attrs.hasAttribute(Attribute::NoRedZone) &&
+ !Attrs.hasAttribute(Attribute::NoImplicitFloat) &&
+ !Attrs.hasAttribute(Attribute::Naked) &&
+ !Attrs.hasAttribute(Attribute::InlineHint) &&
+ !Attrs.hasAttribute(Attribute::StackAlignment) &&
+ !Attrs.hasAttribute(Attribute::UWTable) &&
+ !Attrs.hasAttribute(Attribute::NonLazyBind) &&
+ !Attrs.hasAttribute(Attribute::ReturnsTwice) &&
+ !Attrs.hasAttribute(Attribute::AddressSafety) &&
+ !Attrs.hasAttribute(Attribute::MinSize),
+ "Some attributes in '" + Attrs.getAsString() +
+ "' only apply to functions!", V);
+
+ if (isReturnValue)
+ Assert1(!Attrs.hasAttribute(Attribute::ByVal) &&
+ !Attrs.hasAttribute(Attribute::Nest) &&
+ !Attrs.hasAttribute(Attribute::StructRet) &&
+ !Attrs.hasAttribute(Attribute::NoCapture),
+ "Attribute 'byval', 'nest', 'sret', and 'nocapture' "
+ "do not apply to return values!", V);
+
+ // Check for mutually incompatible attributes.
+ Assert1(!((Attrs.hasAttribute(Attribute::ByVal) &&
+ Attrs.hasAttribute(Attribute::Nest)) ||
+ (Attrs.hasAttribute(Attribute::ByVal) &&
+ Attrs.hasAttribute(Attribute::StructRet)) ||
+ (Attrs.hasAttribute(Attribute::Nest) &&
+ Attrs.hasAttribute(Attribute::StructRet))), "Attributes "
+ "'byval, nest, and sret' are incompatible!", V);
+
+ Assert1(!((Attrs.hasAttribute(Attribute::ByVal) &&
+ Attrs.hasAttribute(Attribute::Nest)) ||
+ (Attrs.hasAttribute(Attribute::ByVal) &&
+ Attrs.hasAttribute(Attribute::InReg)) ||
+ (Attrs.hasAttribute(Attribute::Nest) &&
+ Attrs.hasAttribute(Attribute::InReg))), "Attributes "
+ "'byval, nest, and inreg' are incompatible!", V);
+
+ Assert1(!(Attrs.hasAttribute(Attribute::ZExt) &&
+ Attrs.hasAttribute(Attribute::SExt)), "Attributes "
+ "'zeroext and signext' are incompatible!", V);
+
+ Assert1(!(Attrs.hasAttribute(Attribute::ReadNone) &&
+ Attrs.hasAttribute(Attribute::ReadOnly)), "Attributes "
+ "'readnone and readonly' are incompatible!", V);
+
+ Assert1(!(Attrs.hasAttribute(Attribute::NoInline) &&
+ Attrs.hasAttribute(Attribute::AlwaysInline)), "Attributes "
+ "'noinline and alwaysinline' are incompatible!", V);
+
+ Assert1(!AttrBuilder(Attrs).
+ hasAttributes(Attribute::typeIncompatible(Ty)),
+ "Wrong types for attribute: " +
+ Attribute::typeIncompatible(Ty).getAsString(), V);
+
+ if (PointerType *PTy = dyn_cast<PointerType>(Ty))
+ Assert1(!Attrs.hasAttribute(Attribute::ByVal) ||
+ PTy->getElementType()->isSized(),
+ "Attribute 'byval' does not support unsized types!", V);
+ else
+ Assert1(!Attrs.hasAttribute(Attribute::ByVal),
+ "Attribute 'byval' only applies to parameters with pointer type!",
+ V);
+}
+
+// VerifyFunctionAttrs - Check parameter attributes against a function type.
+// The value V is printed in error messages.
+void Verifier::VerifyFunctionAttrs(FunctionType *FT,
+ const AttributeSet &Attrs,
+ const Value *V) {
+ if (Attrs.isEmpty())
+ return;
+
+ bool SawNest = false;
+
+ for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
+ const AttributeWithIndex &Attr = Attrs.getSlot(i);
+
+ Type *Ty;
+ if (Attr.Index == 0)
+ Ty = FT->getReturnType();
+ else if (Attr.Index-1 < FT->getNumParams())
+ Ty = FT->getParamType(Attr.Index-1);
+ else
+ break; // VarArgs attributes, verified elsewhere.
+
+ VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
+
+ if (Attr.Attrs.hasAttribute(Attribute::Nest)) {
+ Assert1(!SawNest, "More than one parameter has attribute nest!", V);
+ SawNest = true;
+ }
+
+ if (Attr.Attrs.hasAttribute(Attribute::StructRet))
+ Assert1(Attr.Index == 1, "Attribute sret is not on first parameter!", V);
+ }
+
+ Attribute FAttrs = Attrs.getFnAttributes();
+ AttrBuilder NotFn(FAttrs);
+ NotFn.removeFunctionOnlyAttrs();
+ Assert1(!NotFn.hasAttributes(), "Attribute '" +
+ Attribute::get(V->getContext(), NotFn).getAsString() +
+ "' do not apply to the function!", V);
+
+ // Check for mutually incompatible attributes.
+ Assert1(!((FAttrs.hasAttribute(Attribute::ByVal) &&
+ FAttrs.hasAttribute(Attribute::Nest)) ||
+ (FAttrs.hasAttribute(Attribute::ByVal) &&
+ FAttrs.hasAttribute(Attribute::StructRet)) ||
+ (FAttrs.hasAttribute(Attribute::Nest) &&
+ FAttrs.hasAttribute(Attribute::StructRet))), "Attributes "
+ "'byval, nest, and sret' are incompatible!", V);
+
+ Assert1(!((FAttrs.hasAttribute(Attribute::ByVal) &&
+ FAttrs.hasAttribute(Attribute::Nest)) ||
+ (FAttrs.hasAttribute(Attribute::ByVal) &&
+ FAttrs.hasAttribute(Attribute::InReg)) ||
+ (FAttrs.hasAttribute(Attribute::Nest) &&
+ FAttrs.hasAttribute(Attribute::InReg))), "Attributes "
+ "'byval, nest, and inreg' are incompatible!", V);
+
+ Assert1(!(FAttrs.hasAttribute(Attribute::ZExt) &&
+ FAttrs.hasAttribute(Attribute::SExt)), "Attributes "
+ "'zeroext and signext' are incompatible!", V);
+
+ Assert1(!(FAttrs.hasAttribute(Attribute::ReadNone) &&
+ FAttrs.hasAttribute(Attribute::ReadOnly)), "Attributes "
+ "'readnone and readonly' are incompatible!", V);
+
+ Assert1(!(FAttrs.hasAttribute(Attribute::NoInline) &&
+ FAttrs.hasAttribute(Attribute::AlwaysInline)), "Attributes "
+ "'noinline and alwaysinline' are incompatible!", V);
+}
+
+static bool VerifyAttributeCount(const AttributeSet &Attrs, unsigned Params) {
+ if (Attrs.isEmpty())
+ return true;
+
+ unsigned LastSlot = Attrs.getNumSlots() - 1;
+ unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
+ if (LastIndex <= Params
+ || (LastIndex == (unsigned)~0
+ && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
+ return true;
+
+ return false;
+}
+
+// visitFunction - Verify that a function is ok.
+//
+void Verifier::visitFunction(Function &F) {
+ // Check function arguments.
+ FunctionType *FT = F.getFunctionType();
+ unsigned NumArgs = F.arg_size();
+
+ Assert1(Context == &F.getContext(),
+ "Function context does not match Module context!", &F);
+
+ Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
+ Assert2(FT->getNumParams() == NumArgs,
+ "# formal arguments must match # of arguments for function type!",
+ &F, FT);
+ Assert1(F.getReturnType()->isFirstClassType() ||
+ F.getReturnType()->isVoidTy() ||
+ F.getReturnType()->isStructTy(),
+ "Functions cannot return aggregate values!", &F);
+
+ Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
+ "Invalid struct return type!", &F);
+
+ const AttributeSet &Attrs = F.getAttributes();
+
+ Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
+ "Attribute after last parameter!", &F);
+
+ // Check function attributes.
+ VerifyFunctionAttrs(FT, Attrs, &F);
+
+ // Check that this function meets the restrictions on this calling convention.
+ switch (F.getCallingConv()) {
+ default:
+ break;
+ case CallingConv::C:
+ break;
+ case CallingConv::Fast:
+ case CallingConv::Cold:
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::Intel_OCL_BI:
+ case CallingConv::PTX_Kernel:
+ case CallingConv::PTX_Device:
+ Assert1(!F.isVarArg(),
+ "Varargs functions must have C calling conventions!", &F);
+ break;
+ }
+
+ bool isLLVMdotName = F.getName().size() >= 5 &&
+ F.getName().substr(0, 5) == "llvm.";
+
+ // Check that the argument values match the function type for this function...
+ unsigned i = 0;
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I, ++i) {
+ Assert2(I->getType() == FT->getParamType(i),
+ "Argument value does not match function argument type!",
+ I, FT->getParamType(i));
+ Assert1(I->getType()->isFirstClassType(),
+ "Function arguments must have first-class types!", I);
+ if (!isLLVMdotName)
+ Assert2(!I->getType()->isMetadataTy(),
+ "Function takes metadata but isn't an intrinsic", I, &F);
+ }
+
+ if (F.isMaterializable()) {
+ // Function has a body somewhere we can't see.
+ } else if (F.isDeclaration()) {
+ Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
+ F.hasExternalWeakLinkage(),
+ "invalid linkage type for function declaration", &F);
+ } else {
+ // Verify that this function (which has a body) is not named "llvm.*". It
+ // is not legal to define intrinsics.
+ Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
+
+ // Check the entry node
+ BasicBlock *Entry = &F.getEntryBlock();
+ Assert1(pred_begin(Entry) == pred_end(Entry),
+ "Entry block to function must not have predecessors!", Entry);
+
+ // The address of the entry block cannot be taken, unless it is dead.
+ if (Entry->hasAddressTaken()) {
+ Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
+ "blockaddress may not be used with the entry block!", Entry);
+ }
+ }
+
+ // If this function is actually an intrinsic, verify that it is only used in
+ // direct call/invokes, never having its "address taken".
+ if (F.getIntrinsicID()) {
+ const User *U;
+ if (F.hasAddressTaken(&U))
+ Assert1(0, "Invalid user of intrinsic instruction!", U);
+ }
+}
+
+// verifyBasicBlock - Verify that a basic block is well formed...
+//
+void Verifier::visitBasicBlock(BasicBlock &BB) {
+ InstsInThisBlock.clear();
+
+ // Ensure that basic blocks have terminators!
+ Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
+
+ // Check constraints that this basic block imposes on all of the PHI nodes in
+ // it.
+ if (isa<PHINode>(BB.front())) {
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
+ std::sort(Preds.begin(), Preds.end());
+ PHINode *PN;
+ for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
+ // Ensure that PHI nodes have at least one entry!
+ Assert1(PN->getNumIncomingValues() != 0,
+ "PHI nodes must have at least one entry. If the block is dead, "
+ "the PHI should be removed!", PN);
+ Assert1(PN->getNumIncomingValues() == Preds.size(),
+ "PHINode should have one entry for each predecessor of its "
+ "parent basic block!", PN);
+
+ // Get and sort all incoming values in the PHI node...
+ Values.clear();
+ Values.reserve(PN->getNumIncomingValues());
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ Values.push_back(std::make_pair(PN->getIncomingBlock(i),
+ PN->getIncomingValue(i)));
+ std::sort(Values.begin(), Values.end());
+
+ for (unsigned i = 0, e = Values.size(); i != e; ++i) {
+ // Check to make sure that if there is more than one entry for a
+ // particular basic block in this PHI node, that the incoming values are
+ // all identical.
+ //
+ Assert4(i == 0 || Values[i].first != Values[i-1].first ||
+ Values[i].second == Values[i-1].second,
+ "PHI node has multiple entries for the same basic block with "
+ "different incoming values!", PN, Values[i].first,
+ Values[i].second, Values[i-1].second);
+
+ // Check to make sure that the predecessors and PHI node entries are
+ // matched up.
+ Assert3(Values[i].first == Preds[i],
+ "PHI node entries do not match predecessors!", PN,
+ Values[i].first, Preds[i]);
+ }
+ }
+ }
+}
+
+void Verifier::visitTerminatorInst(TerminatorInst &I) {
+ // Ensure that terminators only exist at the end of the basic block.
+ Assert1(&I == I.getParent()->getTerminator(),
+ "Terminator found in the middle of a basic block!", I.getParent());
+ visitInstruction(I);
+}
+
+void Verifier::visitBranchInst(BranchInst &BI) {
+ if (BI.isConditional()) {
+ Assert2(BI.getCondition()->getType()->isIntegerTy(1),
+ "Branch condition is not 'i1' type!", &BI, BI.getCondition());
+ }
+ visitTerminatorInst(BI);
+}
+
+void Verifier::visitReturnInst(ReturnInst &RI) {
+ Function *F = RI.getParent()->getParent();
+ unsigned N = RI.getNumOperands();
+ if (F->getReturnType()->isVoidTy())
+ Assert2(N == 0,
+ "Found return instr that returns non-void in Function of void "
+ "return type!", &RI, F->getReturnType());
+ else
+ Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
+ "Function return type does not match operand "
+ "type of return inst!", &RI, F->getReturnType());
+
+ // Check to make sure that the return value has necessary properties for
+ // terminators...
+ visitTerminatorInst(RI);
+}
+
+void Verifier::visitSwitchInst(SwitchInst &SI) {
+ // Check to make sure that all of the constants in the switch instruction
+ // have the same type as the switched-on value.
+ Type *SwitchTy = SI.getCondition()->getType();
+ IntegerType *IntTy = cast<IntegerType>(SwitchTy);
+ IntegersSubsetToBB Mapping;
+ std::map<IntegersSubset::Range, unsigned> RangeSetMap;
+ for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
+ IntegersSubset CaseRanges = i.getCaseValueEx();
+ for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
+ IntegersSubset::Range r = CaseRanges.getItem(ri);
+ Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
+ "Switch constants must all be same type as switch value!", &SI);
+ Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
+ "Switch constants must all be same type as switch value!", &SI);
+ Mapping.add(r);
+ RangeSetMap[r] = i.getCaseIndex();
+ }
+ }
+
+ IntegersSubsetToBB::RangeIterator errItem;
+ if (!Mapping.verify(errItem)) {
+ unsigned CaseIndex = RangeSetMap[errItem->first];
+ SwitchInst::CaseIt i(&SI, CaseIndex);
+ Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
+ }
+
+ visitTerminatorInst(SI);
+}
+
+void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
+ Assert1(BI.getAddress()->getType()->isPointerTy(),
+ "Indirectbr operand must have pointer type!", &BI);
+ for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
+ Assert1(BI.getDestination(i)->getType()->isLabelTy(),
+ "Indirectbr destinations must all have pointer type!", &BI);
+
+ visitTerminatorInst(BI);
+}
+
+void Verifier::visitSelectInst(SelectInst &SI) {
+ Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
+ SI.getOperand(2)),
+ "Invalid operands for select instruction!", &SI);
+
+ Assert1(SI.getTrueValue()->getType() == SI.getType(),
+ "Select values must have same type as select instruction!", &SI);
+ visitInstruction(SI);
+}
+
+/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
+/// a pass, if any exist, it's an error.
+///
+void Verifier::visitUserOp1(Instruction &I) {
+ Assert1(0, "User-defined operators should not live outside of a pass!", &I);
+}
+
+void Verifier::visitTruncInst(TruncInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
+ Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
+ Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "trunc source and destination must both be a vector or neither", &I);
+ Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitZExtInst(ZExtInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
+ Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
+ Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "zext source and destination must both be a vector or neither", &I);
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSExtInst(SExtInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
+ Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
+ Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "sext source and destination must both be a vector or neither", &I);
+ Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPTruncInst(FPTruncInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
+ Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
+ Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "fptrunc source and destination must both be a vector or neither",&I);
+ Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPExtInst(FPExtInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
+ Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
+ Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "fpext source and destination must both be a vector or neither", &I);
+ Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitUIToFPInst(UIToFPInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert1(SrcVec == DstVec,
+ "UIToFP source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isIntOrIntVectorTy(),
+ "UIToFP source must be integer or integer vector", &I);
+ Assert1(DestTy->isFPOrFPVectorTy(),
+ "UIToFP result must be FP or FP vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "UIToFP source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSIToFPInst(SIToFPInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert1(SrcVec == DstVec,
+ "SIToFP source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isIntOrIntVectorTy(),
+ "SIToFP source must be integer or integer vector", &I);
+ Assert1(DestTy->isFPOrFPVectorTy(),
+ "SIToFP result must be FP or FP vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "SIToFP source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToUIInst(FPToUIInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert1(SrcVec == DstVec,
+ "FPToUI source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
+ &I);
+ Assert1(DestTy->isIntOrIntVectorTy(),
+ "FPToUI result must be integer or integer vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToUI source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToSIInst(FPToSIInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert1(SrcVec == DstVec,
+ "FPToSI source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isFPOrFPVectorTy(),
+ "FPToSI source must be FP or FP vector", &I);
+ Assert1(DestTy->isIntOrIntVectorTy(),
+ "FPToSI result must be integer or integer vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToSI source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ Assert1(SrcTy->getScalarType()->isPointerTy(),
+ "PtrToInt source must be pointer", &I);
+ Assert1(DestTy->getScalarType()->isIntegerTy(),
+ "PtrToInt result must be integral", &I);
+ Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "PtrToInt type mismatch", &I);
+
+ if (SrcTy->isVectorTy()) {
+ VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
+ VectorType *VDest = dyn_cast<VectorType>(DestTy);
+ Assert1(VSrc->getNumElements() == VDest->getNumElements(),
+ "PtrToInt Vector width mismatch", &I);
+ }
+
+ visitInstruction(I);
+}
+
+void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ Assert1(SrcTy->getScalarType()->isIntegerTy(),
+ "IntToPtr source must be an integral", &I);
+ Assert1(DestTy->getScalarType()->isPointerTy(),
+ "IntToPtr result must be a pointer",&I);
+ Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "IntToPtr type mismatch", &I);
+ if (SrcTy->isVectorTy()) {
+ VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
+ VectorType *VDest = dyn_cast<VectorType>(DestTy);
+ Assert1(VSrc->getNumElements() == VDest->getNumElements(),
+ "IntToPtr Vector width mismatch", &I);
+ }
+ visitInstruction(I);
+}
+
+void Verifier::visitBitCastInst(BitCastInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ // BitCast implies a no-op cast of type only. No bits change.
+ // However, you can't cast pointers to anything but pointers.
+ Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
+ "Bitcast requires both operands to be pointer or neither", &I);
+ Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
+
+ // Disallow aggregates.
+ Assert1(!SrcTy->isAggregateType(),
+ "Bitcast operand must not be aggregate", &I);
+ Assert1(!DestTy->isAggregateType(),
+ "Bitcast type must not be aggregate", &I);
+
+ visitInstruction(I);
+}
+
+/// visitPHINode - Ensure that a PHI node is well formed.
+///
+void Verifier::visitPHINode(PHINode &PN) {
+ // Ensure that the PHI nodes are all grouped together at the top of the block.
+ // This can be tested by checking whether the instruction before this is
+ // either nonexistent (because this is begin()) or is a PHI node. If not,
+ // then there is some other instruction before a PHI.
+ Assert2(&PN == &PN.getParent()->front() ||
+ isa<PHINode>(--BasicBlock::iterator(&PN)),
+ "PHI nodes not grouped at top of basic block!",
+ &PN, PN.getParent());
+
+ // Check that all of the values of the PHI node have the same type as the
+ // result, and that the incoming blocks are really basic blocks.
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+ Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
+ "PHI node operands are not the same type as the result!", &PN);
+ }
+
+ // All other PHI node constraints are checked in the visitBasicBlock method.
+
+ visitInstruction(PN);
+}
+
+void Verifier::VerifyCallSite(CallSite CS) {
+ Instruction *I = CS.getInstruction();
+
+ Assert1(CS.getCalledValue()->getType()->isPointerTy(),
+ "Called function must be a pointer!", I);
+ PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
+
+ Assert1(FPTy->getElementType()->isFunctionTy(),
+ "Called function is not pointer to function type!", I);
+ FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
+
+ // Verify that the correct number of arguments are being passed
+ if (FTy->isVarArg())
+ Assert1(CS.arg_size() >= FTy->getNumParams(),
+ "Called function requires more parameters than were provided!",I);
+ else
+ Assert1(CS.arg_size() == FTy->getNumParams(),
+ "Incorrect number of arguments passed to called function!", I);
+
+ // Verify that all arguments to the call match the function type.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
+ "Call parameter type does not match function signature!",
+ CS.getArgument(i), FTy->getParamType(i), I);
+
+ const AttributeSet &Attrs = CS.getAttributes();
+
+ Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
+ "Attribute after last parameter!", I);
+
+ // Verify call attributes.
+ VerifyFunctionAttrs(FTy, Attrs, I);
+
+ if (FTy->isVarArg())
+ // Check attributes on the varargs part.
+ for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
+ Attribute Attr = Attrs.getParamAttributes(Idx);
+
+ VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
+
+ Assert1(!Attr.hasAttribute(Attribute::StructRet),
+ "Attribute 'sret' cannot be used for vararg call arguments!", I);
+ }
+
+ // Verify that there's no metadata unless it's a direct call to an intrinsic.
+ if (CS.getCalledFunction() == 0 ||
+ !CS.getCalledFunction()->getName().startswith("llvm.")) {
+ for (FunctionType::param_iterator PI = FTy->param_begin(),
+ PE = FTy->param_end(); PI != PE; ++PI)
+ Assert1(!(*PI)->isMetadataTy(),
+ "Function has metadata parameter but isn't an intrinsic", I);
+ }
+
+ visitInstruction(*I);
+}
+
+void Verifier::visitCallInst(CallInst &CI) {
+ VerifyCallSite(&CI);
+
+ if (Function *F = CI.getCalledFunction())
+ if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
+ visitIntrinsicFunctionCall(ID, CI);
+}
+
+void Verifier::visitInvokeInst(InvokeInst &II) {
+ VerifyCallSite(&II);
+
+ // Verify that there is a landingpad instruction as the first non-PHI
+ // instruction of the 'unwind' destination.
+ Assert1(II.getUnwindDest()->isLandingPad(),
+ "The unwind destination does not have a landingpad instruction!",&II);
+
+ visitTerminatorInst(II);
+}
+
+/// visitBinaryOperator - Check that both arguments to the binary operator are
+/// of the same type!
+///
+void Verifier::visitBinaryOperator(BinaryOperator &B) {
+ Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
+ "Both operands to a binary operator are not of the same type!", &B);
+
+ switch (B.getOpcode()) {
+ // Check that integer arithmetic operators are only used with
+ // integral operands.
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::SRem:
+ case Instruction::URem:
+ Assert1(B.getType()->isIntOrIntVectorTy(),
+ "Integer arithmetic operators only work with integral types!", &B);
+ Assert1(B.getType() == B.getOperand(0)->getType(),
+ "Integer arithmetic operators must have same type "
+ "for operands and result!", &B);
+ break;
+ // Check that floating-point arithmetic operators are only used with
+ // floating-point operands.
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ Assert1(B.getType()->isFPOrFPVectorTy(),
+ "Floating-point arithmetic operators only work with "
+ "floating-point types!", &B);
+ Assert1(B.getType() == B.getOperand(0)->getType(),
+ "Floating-point arithmetic operators must have same type "
+ "for operands and result!", &B);
+ break;
+ // Check that logical operators are only used with integral operands.
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ Assert1(B.getType()->isIntOrIntVectorTy(),
+ "Logical operators only work with integral types!", &B);
+ Assert1(B.getType() == B.getOperand(0)->getType(),
+ "Logical operators must have same type for operands and result!",
+ &B);
+ break;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ Assert1(B.getType()->isIntOrIntVectorTy(),
+ "Shifts only work with integral types!", &B);
+ Assert1(B.getType() == B.getOperand(0)->getType(),
+ "Shift return type must be same as operands!", &B);
+ break;
+ default:
+ llvm_unreachable("Unknown BinaryOperator opcode!");
+ }
+
+ visitInstruction(B);
+}
+
+void Verifier::visitICmpInst(ICmpInst &IC) {
+ // Check that the operands are the same type
+ Type *Op0Ty = IC.getOperand(0)->getType();
+ Type *Op1Ty = IC.getOperand(1)->getType();
+ Assert1(Op0Ty == Op1Ty,
+ "Both operands to ICmp instruction are not of the same type!", &IC);
+ // Check that the operands are the right type
+ Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
+ "Invalid operand types for ICmp instruction", &IC);
+ // Check that the predicate is valid.
+ Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
+ IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
+ "Invalid predicate in ICmp instruction!", &IC);
+
+ visitInstruction(IC);
+}
+
+void Verifier::visitFCmpInst(FCmpInst &FC) {
+ // Check that the operands are the same type
+ Type *Op0Ty = FC.getOperand(0)->getType();
+ Type *Op1Ty = FC.getOperand(1)->getType();
+ Assert1(Op0Ty == Op1Ty,
+ "Both operands to FCmp instruction are not of the same type!", &FC);
+ // Check that the operands are the right type
+ Assert1(Op0Ty->isFPOrFPVectorTy(),
+ "Invalid operand types for FCmp instruction", &FC);
+ // Check that the predicate is valid.
+ Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
+ FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
+ "Invalid predicate in FCmp instruction!", &FC);
+
+ visitInstruction(FC);
+}
+
+void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
+ Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
+ EI.getOperand(1)),
+ "Invalid extractelement operands!", &EI);
+ visitInstruction(EI);
+}
+
+void Verifier::visitInsertElementInst(InsertElementInst &IE) {
+ Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
+ IE.getOperand(1),
+ IE.getOperand(2)),
+ "Invalid insertelement operands!", &IE);
+ visitInstruction(IE);
+}
+
+void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
+ Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
+ SV.getOperand(2)),
+ "Invalid shufflevector operands!", &SV);
+ visitInstruction(SV);
+}
+
+void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
+
+ Assert1(isa<PointerType>(TargetTy),
+ "GEP base pointer is not a vector or a vector of pointers", &GEP);
+ Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
+ "GEP into unsized type!", &GEP);
+ Assert1(GEP.getPointerOperandType()->isVectorTy() ==
+ GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
+ &GEP);
+
+ SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
+ Type *ElTy =
+ GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
+ Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
+
+ Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
+ cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
+ == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
+
+ if (GEP.getPointerOperandType()->isVectorTy()) {
+ // Additional checks for vector GEPs.
+ unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
+ Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
+ "Vector GEP result width doesn't match operand's", &GEP);
+ for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
+ Type *IndexTy = Idxs[i]->getType();
+ Assert1(IndexTy->isVectorTy(),
+ "Vector GEP must have vector indices!", &GEP);
+ unsigned IndexWidth = IndexTy->getVectorNumElements();
+ Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
+ }
+ }
+ visitInstruction(GEP);
+}
+
+static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
+ return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
+}
+
+void Verifier::visitLoadInst(LoadInst &LI) {
+ PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
+ Assert1(PTy, "Load operand must be a pointer.", &LI);
+ Type *ElTy = PTy->getElementType();
+ Assert2(ElTy == LI.getType(),
+ "Load result type does not match pointer operand type!", &LI, ElTy);
+ if (LI.isAtomic()) {
+ Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
+ "Load cannot have Release ordering", &LI);
+ Assert1(LI.getAlignment() != 0,
+ "Atomic load must specify explicit alignment", &LI);
+ if (!ElTy->isPointerTy()) {
+ Assert2(ElTy->isIntegerTy(),
+ "atomic store operand must have integer type!",
+ &LI, ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert2(Size >= 8 && !(Size & (Size - 1)),
+ "atomic store operand must be power-of-two byte-sized integer",
+ &LI, ElTy);
+ }
+ } else {
+ Assert1(LI.getSynchScope() == CrossThread,
+ "Non-atomic load cannot have SynchronizationScope specified", &LI);
+ }
+
+ if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
+ unsigned NumOperands = Range->getNumOperands();
+ Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
+ unsigned NumRanges = NumOperands / 2;
+ Assert1(NumRanges >= 1, "It should have at least one range!", Range);
+
+ ConstantRange LastRange(1); // Dummy initial value
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
+ Assert1(Low, "The lower limit must be an integer!", Low);
+ ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
+ Assert1(High, "The upper limit must be an integer!", High);
+ Assert1(High->getType() == Low->getType() &&
+ High->getType() == ElTy, "Range types must match load type!",
+ &LI);
+
+ APInt HighV = High->getValue();
+ APInt LowV = Low->getValue();
+ ConstantRange CurRange(LowV, HighV);
+ Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
+ "Range must not be empty!", Range);
+ if (i != 0) {
+ Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
+ Range);
+ Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
+ Range);
+ }
+ LastRange = ConstantRange(LowV, HighV);
+ }
+ if (NumRanges > 2) {
+ APInt FirstLow =
+ dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
+ APInt FirstHigh =
+ dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
+ ConstantRange FirstRange(FirstLow, FirstHigh);
+ Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
+ Range);
+ }
+
+
+ }
+
+ visitInstruction(LI);
+}
+
+void Verifier::visitStoreInst(StoreInst &SI) {
+ PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
+ Assert1(PTy, "Store operand must be a pointer.", &SI);
+ Type *ElTy = PTy->getElementType();
+ Assert2(ElTy == SI.getOperand(0)->getType(),
+ "Stored value type does not match pointer operand type!",
+ &SI, ElTy);
+ if (SI.isAtomic()) {
+ Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
+ "Store cannot have Acquire ordering", &SI);
+ Assert1(SI.getAlignment() != 0,
+ "Atomic store must specify explicit alignment", &SI);
+ if (!ElTy->isPointerTy()) {
+ Assert2(ElTy->isIntegerTy(),
+ "atomic store operand must have integer type!",
+ &SI, ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert2(Size >= 8 && !(Size & (Size - 1)),
+ "atomic store operand must be power-of-two byte-sized integer",
+ &SI, ElTy);
+ }
+ } else {
+ Assert1(SI.getSynchScope() == CrossThread,
+ "Non-atomic store cannot have SynchronizationScope specified", &SI);
+ }
+ visitInstruction(SI);
+}
+
+void Verifier::visitAllocaInst(AllocaInst &AI) {
+ PointerType *PTy = AI.getType();
+ Assert1(PTy->getAddressSpace() == 0,
+ "Allocation instruction pointer not in the generic address space!",
+ &AI);
+ Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
+ &AI);
+ Assert1(AI.getArraySize()->getType()->isIntegerTy(),
+ "Alloca array size must have integer type", &AI);
+ visitInstruction(AI);
+}
+
+void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
+ Assert1(CXI.getOrdering() != NotAtomic,
+ "cmpxchg instructions must be atomic.", &CXI);
+ Assert1(CXI.getOrdering() != Unordered,
+ "cmpxchg instructions cannot be unordered.", &CXI);
+ PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
+ Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
+ Type *ElTy = PTy->getElementType();
+ Assert2(ElTy->isIntegerTy(),
+ "cmpxchg operand must have integer type!",
+ &CXI, ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert2(Size >= 8 && !(Size & (Size - 1)),
+ "cmpxchg operand must be power-of-two byte-sized integer",
+ &CXI, ElTy);
+ Assert2(ElTy == CXI.getOperand(1)->getType(),
+ "Expected value type does not match pointer operand type!",
+ &CXI, ElTy);
+ Assert2(ElTy == CXI.getOperand(2)->getType(),
+ "Stored value type does not match pointer operand type!",
+ &CXI, ElTy);
+ visitInstruction(CXI);
+}
+
+void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
+ Assert1(RMWI.getOrdering() != NotAtomic,
+ "atomicrmw instructions must be atomic.", &RMWI);
+ Assert1(RMWI.getOrdering() != Unordered,
+ "atomicrmw instructions cannot be unordered.", &RMWI);
+ PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
+ Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
+ Type *ElTy = PTy->getElementType();
+ Assert2(ElTy->isIntegerTy(),
+ "atomicrmw operand must have integer type!",
+ &RMWI, ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert2(Size >= 8 && !(Size & (Size - 1)),
+ "atomicrmw operand must be power-of-two byte-sized integer",
+ &RMWI, ElTy);
+ Assert2(ElTy == RMWI.getOperand(1)->getType(),
+ "Argument value type does not match pointer operand type!",
+ &RMWI, ElTy);
+ Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
+ RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
+ "Invalid binary operation!", &RMWI);
+ visitInstruction(RMWI);
+}
+
+void Verifier::visitFenceInst(FenceInst &FI) {
+ const AtomicOrdering Ordering = FI.getOrdering();
+ Assert1(Ordering == Acquire || Ordering == Release ||
+ Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
+ "fence instructions may only have "
+ "acquire, release, acq_rel, or seq_cst ordering.", &FI);
+ visitInstruction(FI);
+}
+
+void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
+ Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
+ EVI.getIndices()) ==
+ EVI.getType(),
+ "Invalid ExtractValueInst operands!", &EVI);
+
+ visitInstruction(EVI);
+}
+
+void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
+ Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
+ IVI.getIndices()) ==
+ IVI.getOperand(1)->getType(),
+ "Invalid InsertValueInst operands!", &IVI);
+
+ visitInstruction(IVI);
+}
+
+void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
+ BasicBlock *BB = LPI.getParent();
+
+ // The landingpad instruction is ill-formed if it doesn't have any clauses and
+ // isn't a cleanup.
+ Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
+ "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
+
+ // The landingpad instruction defines its parent as a landing pad block. The
+ // landing pad block may be branched to only by the unwind edge of an invoke.
+ for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
+ const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
+ Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
+ "Block containing LandingPadInst must be jumped to "
+ "only by the unwind edge of an invoke.", &LPI);
+ }
+
+ // The landingpad instruction must be the first non-PHI instruction in the
+ // block.
+ Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
+ "LandingPadInst not the first non-PHI instruction in the block.",
+ &LPI);
+
+ // The personality functions for all landingpad instructions within the same
+ // function should match.
+ if (PersonalityFn)
+ Assert1(LPI.getPersonalityFn() == PersonalityFn,
+ "Personality function doesn't match others in function", &LPI);
+ PersonalityFn = LPI.getPersonalityFn();
+
+ // All operands must be constants.
+ Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
+ &LPI);
+ for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
+ Value *Clause = LPI.getClause(i);
+ Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
+ if (LPI.isCatch(i)) {
+ Assert1(isa<PointerType>(Clause->getType()),
+ "Catch operand does not have pointer type!", &LPI);
+ } else {
+ Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
+ Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
+ "Filter operand is not an array of constants!", &LPI);
+ }
+ }
+
+ visitInstruction(LPI);
+}
+
+void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
+ Instruction *Op = cast<Instruction>(I.getOperand(i));
+ // If the we have an invalid invoke, don't try to compute the dominance.
+ // We already reject it in the invoke specific checks and the dominance
+ // computation doesn't handle multiple edges.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
+ if (II->getNormalDest() == II->getUnwindDest())
+ return;
+ }
+
+ const Use &U = I.getOperandUse(i);
+ Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
+ "Instruction does not dominate all uses!", Op, &I);
+}
+
+/// verifyInstruction - Verify that an instruction is well formed.
+///
+void Verifier::visitInstruction(Instruction &I) {
+ BasicBlock *BB = I.getParent();
+ Assert1(BB, "Instruction not embedded in basic block!", &I);
+
+ if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
+ UI != UE; ++UI)
+ Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
+ "Only PHI nodes may reference their own value!", &I);
+ }
+
+ // Check that void typed values don't have names
+ Assert1(!I.getType()->isVoidTy() || !I.hasName(),
+ "Instruction has a name, but provides a void value!", &I);
+
+ // Check that the return value of the instruction is either void or a legal
+ // value type.
+ Assert1(I.getType()->isVoidTy() ||
+ I.getType()->isFirstClassType(),
+ "Instruction returns a non-scalar type!", &I);
+
+ // Check that the instruction doesn't produce metadata. Calls are already
+ // checked against the callee type.
+ Assert1(!I.getType()->isMetadataTy() ||
+ isa<CallInst>(I) || isa<InvokeInst>(I),
+ "Invalid use of metadata!", &I);
+
+ // Check that all uses of the instruction, if they are instructions
+ // themselves, actually have parent basic blocks. If the use is not an
+ // instruction, it is an error!
+ for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
+ UI != UE; ++UI) {
+ if (Instruction *Used = dyn_cast<Instruction>(*UI))
+ Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
+ " embedded in a basic block!", &I, Used);
+ else {
+ CheckFailed("Use of instruction is not an instruction!", *UI);
+ return;
+ }
+ }
+
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
+
+ // Check to make sure that only first-class-values are operands to
+ // instructions.
+ if (!I.getOperand(i)->getType()->isFirstClassType()) {
+ Assert1(0, "Instruction operands must be first-class values!", &I);
+ }
+
+ if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
+ // Check to make sure that the "address of" an intrinsic function is never
+ // taken.
+ Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
+ "Cannot take the address of an intrinsic!", &I);
+ Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
+ F->getIntrinsicID() == Intrinsic::donothing,
+ "Cannot invoke an intrinsinc other than donothing", &I);
+ Assert1(F->getParent() == Mod, "Referencing function in another module!",
+ &I);
+ } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
+ Assert1(OpBB->getParent() == BB->getParent(),
+ "Referring to a basic block in another function!", &I);
+ } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
+ Assert1(OpArg->getParent() == BB->getParent(),
+ "Referring to an argument in another function!", &I);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
+ Assert1(GV->getParent() == Mod, "Referencing global in another module!",
+ &I);
+ } else if (isa<Instruction>(I.getOperand(i))) {
+ verifyDominatesUse(I, i);
+ } else if (isa<InlineAsm>(I.getOperand(i))) {
+ Assert1((i + 1 == e && isa<CallInst>(I)) ||
+ (i + 3 == e && isa<InvokeInst>(I)),
+ "Cannot take the address of an inline asm!", &I);
+ }
+ }
+
+ if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
+ Assert1(I.getType()->isFPOrFPVectorTy(),
+ "fpmath requires a floating point result!", &I);
+ Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
+ Value *Op0 = MD->getOperand(0);
+ if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
+ APFloat Accuracy = CFP0->getValueAPF();
+ Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
+ "fpmath accuracy not a positive number!", &I);
+ } else {
+ Assert1(false, "invalid fpmath accuracy!", &I);
+ }
+ }
+
+ MDNode *MD = I.getMetadata(LLVMContext::MD_range);
+ Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
+
+ InstsInThisBlock.insert(&I);
+}
+
+/// VerifyIntrinsicType - Verify that the specified type (which comes from an
+/// intrinsic argument or return value) matches the type constraints specified
+/// by the .td file (e.g. an "any integer" argument really is an integer).
+///
+/// This return true on error but does not print a message.
+bool Verifier::VerifyIntrinsicType(Type *Ty,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type*> &ArgTys) {
+ using namespace Intrinsic;
+
+ // If we ran out of descriptors, there are too many arguments.
+ if (Infos.empty()) return true;
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+
+ switch (D.Kind) {
+ case IITDescriptor::Void: return !Ty->isVoidTy();
+ case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
+ case IITDescriptor::Metadata: return !Ty->isMetadataTy();
+ case IITDescriptor::Float: return !Ty->isFloatTy();
+ case IITDescriptor::Double: return !Ty->isDoubleTy();
+ case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
+ case IITDescriptor::Vector: {
+ VectorType *VT = dyn_cast<VectorType>(Ty);
+ return VT == 0 || VT->getNumElements() != D.Vector_Width ||
+ VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
+ }
+ case IITDescriptor::Pointer: {
+ PointerType *PT = dyn_cast<PointerType>(Ty);
+ return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
+ VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
+ }
+
+ case IITDescriptor::Struct: {
+ StructType *ST = dyn_cast<StructType>(Ty);
+ if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
+ return true;
+
+ for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
+ if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
+ return true;
+ return false;
+ }
+
+ case IITDescriptor::Argument:
+ // Two cases here - If this is the second occurrence of an argument, verify
+ // that the later instance matches the previous instance.
+ if (D.getArgumentNumber() < ArgTys.size())
+ return Ty != ArgTys[D.getArgumentNumber()];
+
+ // Otherwise, if this is the first instance of an argument, record it and
+ // verify the "Any" kind.
+ assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
+ ArgTys.push_back(Ty);
+
+ switch (D.getArgumentKind()) {
+ case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
+ case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
+ case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
+ case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
+ }
+ llvm_unreachable("all argument kinds not covered");
+
+ case IITDescriptor::ExtendVecArgument:
+ // This may only be used when referring to a previous vector argument.
+ return D.getArgumentNumber() >= ArgTys.size() ||
+ !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
+ VectorType::getExtendedElementVectorType(
+ cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
+
+ case IITDescriptor::TruncVecArgument:
+ // This may only be used when referring to a previous vector argument.
+ return D.getArgumentNumber() >= ArgTys.size() ||
+ !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
+ VectorType::getTruncatedElementVectorType(
+ cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
+ }
+ llvm_unreachable("unhandled");
+}
+
+/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
+///
+void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
+ Function *IF = CI.getCalledFunction();
+ Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
+ IF);
+
+ // Verify that the intrinsic prototype lines up with what the .td files
+ // describe.
+ FunctionType *IFTy = IF->getFunctionType();
+ Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
+
+ SmallVector<Intrinsic::IITDescriptor, 8> Table;
+ getIntrinsicInfoTableEntries(ID, Table);
+ ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
+
+ SmallVector<Type *, 4> ArgTys;
+ Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
+ "Intrinsic has incorrect return type!", IF);
+ for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
+ Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
+ "Intrinsic has incorrect argument type!", IF);
+ Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
+
+ // Now that we have the intrinsic ID and the actual argument types (and we
+ // know they are legal for the intrinsic!) get the intrinsic name through the
+ // usual means. This allows us to verify the mangling of argument types into
+ // the name.
+ Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
+ "Intrinsic name not mangled correctly for type arguments!", IF);
+
+ // If the intrinsic takes MDNode arguments, verify that they are either global
+ // or are local to *this* function.
+ for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
+ if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
+ visitMDNode(*MD, CI.getParent()->getParent());
+
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::ctlz: // llvm.ctlz
+ case Intrinsic::cttz: // llvm.cttz
+ Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
+ "is_zero_undef argument of bit counting intrinsics must be a "
+ "constant int", &CI);
+ break;
+ case Intrinsic::dbg_declare: { // llvm.dbg.declare
+ Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
+ "invalid llvm.dbg.declare intrinsic call 1", &CI);
+ MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
+ Assert1(MD->getNumOperands() == 1,
+ "invalid llvm.dbg.declare intrinsic call 2", &CI);
+ } break;
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset:
+ Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
+ "alignment argument of memory intrinsics must be a constant int",
+ &CI);
+ Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
+ "isvolatile argument of memory intrinsics must be a constant int",
+ &CI);
+ break;
+ case Intrinsic::gcroot:
+ case Intrinsic::gcwrite:
+ case Intrinsic::gcread:
+ if (ID == Intrinsic::gcroot) {
+ AllocaInst *AI =
+ dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
+ Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
+ Assert1(isa<Constant>(CI.getArgOperand(1)),
+ "llvm.gcroot parameter #2 must be a constant.", &CI);
+ if (!AI->getType()->getElementType()->isPointerTy()) {
+ Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
+ "llvm.gcroot parameter #1 must either be a pointer alloca, "
+ "or argument #2 must be a non-null constant.", &CI);
+ }
+ }
+
+ Assert1(CI.getParent()->getParent()->hasGC(),
+ "Enclosing function does not use GC.", &CI);
+ break;
+ case Intrinsic::init_trampoline:
+ Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
+ "llvm.init_trampoline parameter #2 must resolve to a function.",
+ &CI);
+ break;
+ case Intrinsic::prefetch:
+ Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
+ isa<ConstantInt>(CI.getArgOperand(2)) &&
+ cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
+ cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
+ "invalid arguments to llvm.prefetch",
+ &CI);
+ break;
+ case Intrinsic::stackprotector:
+ Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
+ "llvm.stackprotector parameter #2 must resolve to an alloca.",
+ &CI);
+ break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start:
+ Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
+ "size argument of memory use markers must be a constant integer",
+ &CI);
+ break;
+ case Intrinsic::invariant_end:
+ Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
+ "llvm.invariant.end parameter #2 must be a constant integer", &CI);
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Implement the public interfaces to this file...
+//===----------------------------------------------------------------------===//
+
+FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
+ return new Verifier(action);
+}
+
+
+/// verifyFunction - Check a function for errors, printing messages on stderr.
+/// Return true if the function is corrupt.
+///
+bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
+ Function &F = const_cast<Function&>(f);
+ assert(!F.isDeclaration() && "Cannot verify external functions");
+
+ FunctionPassManager FPM(F.getParent());
+ Verifier *V = new Verifier(action);
+ FPM.add(V);
+ FPM.run(F);
+ return V->Broken;
+}
+
+/// verifyModule - Check a module for errors, printing messages on stderr.
+/// Return true if the module is corrupt.
+///
+bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
+ std::string *ErrorInfo) {
+ PassManager PM;
+ Verifier *V = new Verifier(action);
+ PM.add(V);
+ PM.run(const_cast<Module&>(M));
+
+ if (ErrorInfo && V->Broken)
+ *ErrorInfo = V->MessagesStr.str();
+ return V->Broken;
+}