summaryrefslogtreecommitdiff
path: root/lib/IR/Type.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/IR/Type.cpp')
-rw-r--r--lib/IR/Type.cpp767
1 files changed, 767 insertions, 0 deletions
diff --git a/lib/IR/Type.cpp b/lib/IR/Type.cpp
new file mode 100644
index 00000000000..f76eb9eb838
--- /dev/null
+++ b/lib/IR/Type.cpp
@@ -0,0 +1,767 @@
+//===-- Type.cpp - Implement the Type class -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Type class for the IR library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Type.h"
+#include "LLVMContextImpl.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Module.h"
+#include <algorithm>
+#include <cstdarg>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Type Class Implementation
+//===----------------------------------------------------------------------===//
+
+Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
+ switch (IDNumber) {
+ case VoidTyID : return getVoidTy(C);
+ case HalfTyID : return getHalfTy(C);
+ case FloatTyID : return getFloatTy(C);
+ case DoubleTyID : return getDoubleTy(C);
+ case X86_FP80TyID : return getX86_FP80Ty(C);
+ case FP128TyID : return getFP128Ty(C);
+ case PPC_FP128TyID : return getPPC_FP128Ty(C);
+ case LabelTyID : return getLabelTy(C);
+ case MetadataTyID : return getMetadataTy(C);
+ case X86_MMXTyID : return getX86_MMXTy(C);
+ default:
+ return 0;
+ }
+}
+
+/// getScalarType - If this is a vector type, return the element type,
+/// otherwise return this.
+Type *Type::getScalarType() {
+ if (VectorType *VTy = dyn_cast<VectorType>(this))
+ return VTy->getElementType();
+ return this;
+}
+
+const Type *Type::getScalarType() const {
+ if (const VectorType *VTy = dyn_cast<VectorType>(this))
+ return VTy->getElementType();
+ return this;
+}
+
+/// isIntegerTy - Return true if this is an IntegerType of the specified width.
+bool Type::isIntegerTy(unsigned Bitwidth) const {
+ return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
+}
+
+// canLosslesslyBitCastTo - Return true if this type can be converted to
+// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
+//
+bool Type::canLosslesslyBitCastTo(Type *Ty) const {
+ // Identity cast means no change so return true
+ if (this == Ty)
+ return true;
+
+ // They are not convertible unless they are at least first class types
+ if (!this->isFirstClassType() || !Ty->isFirstClassType())
+ return false;
+
+ // Vector -> Vector conversions are always lossless if the two vector types
+ // have the same size, otherwise not. Also, 64-bit vector types can be
+ // converted to x86mmx.
+ if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
+ if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
+ return thisPTy->getBitWidth() == thatPTy->getBitWidth();
+ if (Ty->getTypeID() == Type::X86_MMXTyID &&
+ thisPTy->getBitWidth() == 64)
+ return true;
+ }
+
+ if (this->getTypeID() == Type::X86_MMXTyID)
+ if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
+ if (thatPTy->getBitWidth() == 64)
+ return true;
+
+ // At this point we have only various mismatches of the first class types
+ // remaining and ptr->ptr. Just select the lossless conversions. Everything
+ // else is not lossless.
+ if (this->isPointerTy())
+ return Ty->isPointerTy();
+ return false; // Other types have no identity values
+}
+
+bool Type::isEmptyTy() const {
+ const ArrayType *ATy = dyn_cast<ArrayType>(this);
+ if (ATy) {
+ unsigned NumElements = ATy->getNumElements();
+ return NumElements == 0 || ATy->getElementType()->isEmptyTy();
+ }
+
+ const StructType *STy = dyn_cast<StructType>(this);
+ if (STy) {
+ unsigned NumElements = STy->getNumElements();
+ for (unsigned i = 0; i < NumElements; ++i)
+ if (!STy->getElementType(i)->isEmptyTy())
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+unsigned Type::getPrimitiveSizeInBits() const {
+ switch (getTypeID()) {
+ case Type::HalfTyID: return 16;
+ case Type::FloatTyID: return 32;
+ case Type::DoubleTyID: return 64;
+ case Type::X86_FP80TyID: return 80;
+ case Type::FP128TyID: return 128;
+ case Type::PPC_FP128TyID: return 128;
+ case Type::X86_MMXTyID: return 64;
+ case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
+ case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
+ default: return 0;
+ }
+}
+
+/// getScalarSizeInBits - If this is a vector type, return the
+/// getPrimitiveSizeInBits value for the element type. Otherwise return the
+/// getPrimitiveSizeInBits value for this type.
+unsigned Type::getScalarSizeInBits() {
+ return getScalarType()->getPrimitiveSizeInBits();
+}
+
+/// getFPMantissaWidth - Return the width of the mantissa of this type. This
+/// is only valid on floating point types. If the FP type does not
+/// have a stable mantissa (e.g. ppc long double), this method returns -1.
+int Type::getFPMantissaWidth() const {
+ if (const VectorType *VTy = dyn_cast<VectorType>(this))
+ return VTy->getElementType()->getFPMantissaWidth();
+ assert(isFloatingPointTy() && "Not a floating point type!");
+ if (getTypeID() == HalfTyID) return 11;
+ if (getTypeID() == FloatTyID) return 24;
+ if (getTypeID() == DoubleTyID) return 53;
+ if (getTypeID() == X86_FP80TyID) return 64;
+ if (getTypeID() == FP128TyID) return 113;
+ assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
+ return -1;
+}
+
+/// isSizedDerivedType - Derived types like structures and arrays are sized
+/// iff all of the members of the type are sized as well. Since asking for
+/// their size is relatively uncommon, move this operation out of line.
+bool Type::isSizedDerivedType() const {
+ if (this->isIntegerTy())
+ return true;
+
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
+ return ATy->getElementType()->isSized();
+
+ if (const VectorType *VTy = dyn_cast<VectorType>(this))
+ return VTy->getElementType()->isSized();
+
+ if (!this->isStructTy())
+ return false;
+
+ return cast<StructType>(this)->isSized();
+}
+
+//===----------------------------------------------------------------------===//
+// Subclass Helper Methods
+//===----------------------------------------------------------------------===//
+
+unsigned Type::getIntegerBitWidth() const {
+ return cast<IntegerType>(this)->getBitWidth();
+}
+
+bool Type::isFunctionVarArg() const {
+ return cast<FunctionType>(this)->isVarArg();
+}
+
+Type *Type::getFunctionParamType(unsigned i) const {
+ return cast<FunctionType>(this)->getParamType(i);
+}
+
+unsigned Type::getFunctionNumParams() const {
+ return cast<FunctionType>(this)->getNumParams();
+}
+
+StringRef Type::getStructName() const {
+ return cast<StructType>(this)->getName();
+}
+
+unsigned Type::getStructNumElements() const {
+ return cast<StructType>(this)->getNumElements();
+}
+
+Type *Type::getStructElementType(unsigned N) const {
+ return cast<StructType>(this)->getElementType(N);
+}
+
+Type *Type::getSequentialElementType() const {
+ return cast<SequentialType>(this)->getElementType();
+}
+
+uint64_t Type::getArrayNumElements() const {
+ return cast<ArrayType>(this)->getNumElements();
+}
+
+unsigned Type::getVectorNumElements() const {
+ return cast<VectorType>(this)->getNumElements();
+}
+
+unsigned Type::getPointerAddressSpace() const {
+ return cast<PointerType>(getScalarType())->getAddressSpace();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Primitive 'Type' data
+//===----------------------------------------------------------------------===//
+
+Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
+Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
+Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
+Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
+Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
+Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
+Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
+Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
+Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
+Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
+
+IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
+IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
+IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
+IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
+IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
+
+IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
+ return IntegerType::get(C, N);
+}
+
+PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
+ return getHalfTy(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
+ return getFloatTy(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
+ return getDoubleTy(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
+ return getX86_FP80Ty(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
+ return getFP128Ty(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
+ return getPPC_FP128Ty(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
+ return getX86_MMXTy(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
+ return getIntNTy(C, N)->getPointerTo(AS);
+}
+
+PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt1Ty(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt8Ty(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt16Ty(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt32Ty(C)->getPointerTo(AS);
+}
+
+PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt64Ty(C)->getPointerTo(AS);
+}
+
+
+//===----------------------------------------------------------------------===//
+// IntegerType Implementation
+//===----------------------------------------------------------------------===//
+
+IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
+ assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
+ assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
+
+ // Check for the built-in integer types
+ switch (NumBits) {
+ case 1: return cast<IntegerType>(Type::getInt1Ty(C));
+ case 8: return cast<IntegerType>(Type::getInt8Ty(C));
+ case 16: return cast<IntegerType>(Type::getInt16Ty(C));
+ case 32: return cast<IntegerType>(Type::getInt32Ty(C));
+ case 64: return cast<IntegerType>(Type::getInt64Ty(C));
+ default:
+ break;
+ }
+
+ IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
+
+ if (Entry == 0)
+ Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
+
+ return Entry;
+}
+
+bool IntegerType::isPowerOf2ByteWidth() const {
+ unsigned BitWidth = getBitWidth();
+ return (BitWidth > 7) && isPowerOf2_32(BitWidth);
+}
+
+APInt IntegerType::getMask() const {
+ return APInt::getAllOnesValue(getBitWidth());
+}
+
+//===----------------------------------------------------------------------===//
+// FunctionType Implementation
+//===----------------------------------------------------------------------===//
+
+FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
+ bool IsVarArgs)
+ : Type(Result->getContext(), FunctionTyID) {
+ Type **SubTys = reinterpret_cast<Type**>(this+1);
+ assert(isValidReturnType(Result) && "invalid return type for function");
+ setSubclassData(IsVarArgs);
+
+ SubTys[0] = const_cast<Type*>(Result);
+
+ for (unsigned i = 0, e = Params.size(); i != e; ++i) {
+ assert(isValidArgumentType(Params[i]) &&
+ "Not a valid type for function argument!");
+ SubTys[i+1] = Params[i];
+ }
+
+ ContainedTys = SubTys;
+ NumContainedTys = Params.size() + 1; // + 1 for result type
+}
+
+// FunctionType::get - The factory function for the FunctionType class.
+FunctionType *FunctionType::get(Type *ReturnType,
+ ArrayRef<Type*> Params, bool isVarArg) {
+ LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
+ FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
+ LLVMContextImpl::FunctionTypeMap::iterator I =
+ pImpl->FunctionTypes.find_as(Key);
+ FunctionType *FT;
+
+ if (I == pImpl->FunctionTypes.end()) {
+ FT = (FunctionType*) pImpl->TypeAllocator.
+ Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
+ AlignOf<FunctionType>::Alignment);
+ new (FT) FunctionType(ReturnType, Params, isVarArg);
+ pImpl->FunctionTypes[FT] = true;
+ } else {
+ FT = I->first;
+ }
+
+ return FT;
+}
+
+FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
+ return get(Result, ArrayRef<Type *>(), isVarArg);
+}
+
+/// isValidReturnType - Return true if the specified type is valid as a return
+/// type.
+bool FunctionType::isValidReturnType(Type *RetTy) {
+ return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
+ !RetTy->isMetadataTy();
+}
+
+/// isValidArgumentType - Return true if the specified type is valid as an
+/// argument type.
+bool FunctionType::isValidArgumentType(Type *ArgTy) {
+ return ArgTy->isFirstClassType();
+}
+
+//===----------------------------------------------------------------------===//
+// StructType Implementation
+//===----------------------------------------------------------------------===//
+
+// Primitive Constructors.
+
+StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
+ bool isPacked) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
+ LLVMContextImpl::StructTypeMap::iterator I =
+ pImpl->AnonStructTypes.find_as(Key);
+ StructType *ST;
+
+ if (I == pImpl->AnonStructTypes.end()) {
+ // Value not found. Create a new type!
+ ST = new (Context.pImpl->TypeAllocator) StructType(Context);
+ ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
+ ST->setBody(ETypes, isPacked);
+ Context.pImpl->AnonStructTypes[ST] = true;
+ } else {
+ ST = I->first;
+ }
+
+ return ST;
+}
+
+void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
+ assert(isOpaque() && "Struct body already set!");
+
+ setSubclassData(getSubclassData() | SCDB_HasBody);
+ if (isPacked)
+ setSubclassData(getSubclassData() | SCDB_Packed);
+
+ unsigned NumElements = Elements.size();
+ Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
+ memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
+
+ ContainedTys = Elts;
+ NumContainedTys = NumElements;
+}
+
+void StructType::setName(StringRef Name) {
+ if (Name == getName()) return;
+
+ StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
+ typedef StringMap<StructType *>::MapEntryTy EntryTy;
+
+ // If this struct already had a name, remove its symbol table entry. Don't
+ // delete the data yet because it may be part of the new name.
+ if (SymbolTableEntry)
+ SymbolTable.remove((EntryTy *)SymbolTableEntry);
+
+ // If this is just removing the name, we're done.
+ if (Name.empty()) {
+ if (SymbolTableEntry) {
+ // Delete the old string data.
+ ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
+ SymbolTableEntry = 0;
+ }
+ return;
+ }
+
+ // Look up the entry for the name.
+ EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
+
+ // While we have a name collision, try a random rename.
+ if (Entry->getValue()) {
+ SmallString<64> TempStr(Name);
+ TempStr.push_back('.');
+ raw_svector_ostream TmpStream(TempStr);
+ unsigned NameSize = Name.size();
+
+ do {
+ TempStr.resize(NameSize + 1);
+ TmpStream.resync();
+ TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
+
+ Entry = &getContext().pImpl->
+ NamedStructTypes.GetOrCreateValue(TmpStream.str());
+ } while (Entry->getValue());
+ }
+
+ // Okay, we found an entry that isn't used. It's us!
+ Entry->setValue(this);
+
+ // Delete the old string data.
+ if (SymbolTableEntry)
+ ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
+ SymbolTableEntry = Entry;
+}
+
+//===----------------------------------------------------------------------===//
+// StructType Helper functions.
+
+StructType *StructType::create(LLVMContext &Context, StringRef Name) {
+ StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
+ if (!Name.empty())
+ ST->setName(Name);
+ return ST;
+}
+
+StructType *StructType::get(LLVMContext &Context, bool isPacked) {
+ return get(Context, llvm::ArrayRef<Type*>(), isPacked);
+}
+
+StructType *StructType::get(Type *type, ...) {
+ assert(type != 0 && "Cannot create a struct type with no elements with this");
+ LLVMContext &Ctx = type->getContext();
+ va_list ap;
+ SmallVector<llvm::Type*, 8> StructFields;
+ va_start(ap, type);
+ while (type) {
+ StructFields.push_back(type);
+ type = va_arg(ap, llvm::Type*);
+ }
+ return llvm::StructType::get(Ctx, StructFields);
+}
+
+StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
+ StringRef Name, bool isPacked) {
+ StructType *ST = create(Context, Name);
+ ST->setBody(Elements, isPacked);
+ return ST;
+}
+
+StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
+ return create(Context, Elements, StringRef());
+}
+
+StructType *StructType::create(LLVMContext &Context) {
+ return create(Context, StringRef());
+}
+
+StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
+ bool isPacked) {
+ assert(!Elements.empty() &&
+ "This method may not be invoked with an empty list");
+ return create(Elements[0]->getContext(), Elements, Name, isPacked);
+}
+
+StructType *StructType::create(ArrayRef<Type*> Elements) {
+ assert(!Elements.empty() &&
+ "This method may not be invoked with an empty list");
+ return create(Elements[0]->getContext(), Elements, StringRef());
+}
+
+StructType *StructType::create(StringRef Name, Type *type, ...) {
+ assert(type != 0 && "Cannot create a struct type with no elements with this");
+ LLVMContext &Ctx = type->getContext();
+ va_list ap;
+ SmallVector<llvm::Type*, 8> StructFields;
+ va_start(ap, type);
+ while (type) {
+ StructFields.push_back(type);
+ type = va_arg(ap, llvm::Type*);
+ }
+ return llvm::StructType::create(Ctx, StructFields, Name);
+}
+
+bool StructType::isSized() const {
+ if ((getSubclassData() & SCDB_IsSized) != 0)
+ return true;
+ if (isOpaque())
+ return false;
+
+ // Okay, our struct is sized if all of the elements are, but if one of the
+ // elements is opaque, the struct isn't sized *yet*, but may become sized in
+ // the future, so just bail out without caching.
+ for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
+ if (!(*I)->isSized())
+ return false;
+
+ // Here we cheat a bit and cast away const-ness. The goal is to memoize when
+ // we find a sized type, as types can only move from opaque to sized, not the
+ // other way.
+ const_cast<StructType*>(this)->setSubclassData(
+ getSubclassData() | SCDB_IsSized);
+ return true;
+}
+
+StringRef StructType::getName() const {
+ assert(!isLiteral() && "Literal structs never have names");
+ if (SymbolTableEntry == 0) return StringRef();
+
+ return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
+}
+
+void StructType::setBody(Type *type, ...) {
+ assert(type != 0 && "Cannot create a struct type with no elements with this");
+ va_list ap;
+ SmallVector<llvm::Type*, 8> StructFields;
+ va_start(ap, type);
+ while (type) {
+ StructFields.push_back(type);
+ type = va_arg(ap, llvm::Type*);
+ }
+ setBody(StructFields);
+}
+
+bool StructType::isValidElementType(Type *ElemTy) {
+ return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
+ !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
+}
+
+/// isLayoutIdentical - Return true if this is layout identical to the
+/// specified struct.
+bool StructType::isLayoutIdentical(StructType *Other) const {
+ if (this == Other) return true;
+
+ if (isPacked() != Other->isPacked() ||
+ getNumElements() != Other->getNumElements())
+ return false;
+
+ return std::equal(element_begin(), element_end(), Other->element_begin());
+}
+
+/// getTypeByName - Return the type with the specified name, or null if there
+/// is none by that name.
+StructType *Module::getTypeByName(StringRef Name) const {
+ StringMap<StructType*>::iterator I =
+ getContext().pImpl->NamedStructTypes.find(Name);
+ if (I != getContext().pImpl->NamedStructTypes.end())
+ return I->second;
+ return 0;
+}
+
+
+//===----------------------------------------------------------------------===//
+// CompositeType Implementation
+//===----------------------------------------------------------------------===//
+
+Type *CompositeType::getTypeAtIndex(const Value *V) {
+ if (StructType *STy = dyn_cast<StructType>(this)) {
+ unsigned Idx =
+ (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
+ assert(indexValid(Idx) && "Invalid structure index!");
+ return STy->getElementType(Idx);
+ }
+
+ return cast<SequentialType>(this)->getElementType();
+}
+Type *CompositeType::getTypeAtIndex(unsigned Idx) {
+ if (StructType *STy = dyn_cast<StructType>(this)) {
+ assert(indexValid(Idx) && "Invalid structure index!");
+ return STy->getElementType(Idx);
+ }
+
+ return cast<SequentialType>(this)->getElementType();
+}
+bool CompositeType::indexValid(const Value *V) const {
+ if (const StructType *STy = dyn_cast<StructType>(this)) {
+ // Structure indexes require (vectors of) 32-bit integer constants. In the
+ // vector case all of the indices must be equal.
+ if (!V->getType()->getScalarType()->isIntegerTy(32))
+ return false;
+ const Constant *C = dyn_cast<Constant>(V);
+ if (C && V->getType()->isVectorTy())
+ C = C->getSplatValue();
+ const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
+ return CU && CU->getZExtValue() < STy->getNumElements();
+ }
+
+ // Sequential types can be indexed by any integer.
+ return V->getType()->isIntOrIntVectorTy();
+}
+
+bool CompositeType::indexValid(unsigned Idx) const {
+ if (const StructType *STy = dyn_cast<StructType>(this))
+ return Idx < STy->getNumElements();
+ // Sequential types can be indexed by any integer.
+ return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+// ArrayType Implementation
+//===----------------------------------------------------------------------===//
+
+ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
+ : SequentialType(ArrayTyID, ElType) {
+ NumElements = NumEl;
+}
+
+ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
+ Type *ElementType = const_cast<Type*>(elementType);
+ assert(isValidElementType(ElementType) && "Invalid type for array element!");
+
+ LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
+ ArrayType *&Entry =
+ pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
+
+ if (Entry == 0)
+ Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
+ return Entry;
+}
+
+bool ArrayType::isValidElementType(Type *ElemTy) {
+ return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
+ !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
+}
+
+//===----------------------------------------------------------------------===//
+// VectorType Implementation
+//===----------------------------------------------------------------------===//
+
+VectorType::VectorType(Type *ElType, unsigned NumEl)
+ : SequentialType(VectorTyID, ElType) {
+ NumElements = NumEl;
+}
+
+VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
+ Type *ElementType = const_cast<Type*>(elementType);
+ assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
+ assert(isValidElementType(ElementType) &&
+ "Elements of a VectorType must be a primitive type");
+
+ LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
+ VectorType *&Entry = ElementType->getContext().pImpl
+ ->VectorTypes[std::make_pair(ElementType, NumElements)];
+
+ if (Entry == 0)
+ Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
+ return Entry;
+}
+
+bool VectorType::isValidElementType(Type *ElemTy) {
+ return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
+ ElemTy->isPointerTy();
+}
+
+//===----------------------------------------------------------------------===//
+// PointerType Implementation
+//===----------------------------------------------------------------------===//
+
+PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
+ assert(EltTy && "Can't get a pointer to <null> type!");
+ assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
+
+ LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
+
+ // Since AddressSpace #0 is the common case, we special case it.
+ PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
+ : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
+
+ if (Entry == 0)
+ Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
+ return Entry;
+}
+
+
+PointerType::PointerType(Type *E, unsigned AddrSpace)
+ : SequentialType(PointerTyID, E) {
+#ifndef NDEBUG
+ const unsigned oldNCT = NumContainedTys;
+#endif
+ setSubclassData(AddrSpace);
+ // Check for miscompile. PR11652.
+ assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
+}
+
+PointerType *Type::getPointerTo(unsigned addrs) {
+ return PointerType::get(this, addrs);
+}
+
+bool PointerType::isValidElementType(Type *ElemTy) {
+ return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
+ !ElemTy->isMetadataTy();
+}