summaryrefslogtreecommitdiff
path: root/lib/IR/ConstantFold.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/IR/ConstantFold.cpp')
-rw-r--r--lib/IR/ConstantFold.cpp2066
1 files changed, 2066 insertions, 0 deletions
diff --git a/lib/IR/ConstantFold.cpp b/lib/IR/ConstantFold.cpp
new file mode 100644
index 00000000000..91dc83f232e
--- /dev/null
+++ b/lib/IR/ConstantFold.cpp
@@ -0,0 +1,2066 @@
+//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements folding of constants for LLVM. This implements the
+// (internal) ConstantFold.h interface, which is used by the
+// ConstantExpr::get* methods to automatically fold constants when possible.
+//
+// The current constant folding implementation is implemented in two pieces: the
+// pieces that don't need DataLayout, and the pieces that do. This is to avoid
+// a dependence in IR on Target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ConstantFold.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/Operator.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include <limits>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// ConstantFold*Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+/// BitCastConstantVector - Convert the specified vector Constant node to the
+/// specified vector type. At this point, we know that the elements of the
+/// input vector constant are all simple integer or FP values.
+static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
+
+ if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
+ if (CV->isNullValue()) return Constant::getNullValue(DstTy);
+
+ // If this cast changes element count then we can't handle it here:
+ // doing so requires endianness information. This should be handled by
+ // Analysis/ConstantFolding.cpp
+ unsigned NumElts = DstTy->getNumElements();
+ if (NumElts != CV->getType()->getVectorNumElements())
+ return 0;
+
+ Type *DstEltTy = DstTy->getElementType();
+
+ SmallVector<Constant*, 16> Result;
+ Type *Ty = IntegerType::get(CV->getContext(), 32);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *C =
+ ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
+ C = ConstantExpr::getBitCast(C, DstEltTy);
+ Result.push_back(C);
+ }
+
+ return ConstantVector::get(Result);
+}
+
+/// This function determines which opcode to use to fold two constant cast
+/// expressions together. It uses CastInst::isEliminableCastPair to determine
+/// the opcode. Consequently its just a wrapper around that function.
+/// @brief Determine if it is valid to fold a cast of a cast
+static unsigned
+foldConstantCastPair(
+ unsigned opc, ///< opcode of the second cast constant expression
+ ConstantExpr *Op, ///< the first cast constant expression
+ Type *DstTy ///< desintation type of the first cast
+) {
+ assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
+ assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
+ assert(CastInst::isCast(opc) && "Invalid cast opcode");
+
+ // The the types and opcodes for the two Cast constant expressions
+ Type *SrcTy = Op->getOperand(0)->getType();
+ Type *MidTy = Op->getType();
+ Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
+ Instruction::CastOps secondOp = Instruction::CastOps(opc);
+
+ // Assume that pointers are never more than 64 bits wide.
+ IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
+
+ // Let CastInst::isEliminableCastPair do the heavy lifting.
+ return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
+ FakeIntPtrTy, FakeIntPtrTy,
+ FakeIntPtrTy);
+}
+
+static Constant *FoldBitCast(Constant *V, Type *DestTy) {
+ Type *SrcTy = V->getType();
+ if (SrcTy == DestTy)
+ return V; // no-op cast
+
+ // Check to see if we are casting a pointer to an aggregate to a pointer to
+ // the first element. If so, return the appropriate GEP instruction.
+ if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
+ if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
+ if (PTy->getAddressSpace() == DPTy->getAddressSpace()
+ && DPTy->getElementType()->isSized()) {
+ SmallVector<Value*, 8> IdxList;
+ Value *Zero =
+ Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
+ IdxList.push_back(Zero);
+ Type *ElTy = PTy->getElementType();
+ while (ElTy != DPTy->getElementType()) {
+ if (StructType *STy = dyn_cast<StructType>(ElTy)) {
+ if (STy->getNumElements() == 0) break;
+ ElTy = STy->getElementType(0);
+ IdxList.push_back(Zero);
+ } else if (SequentialType *STy =
+ dyn_cast<SequentialType>(ElTy)) {
+ if (ElTy->isPointerTy()) break; // Can't index into pointers!
+ ElTy = STy->getElementType();
+ IdxList.push_back(Zero);
+ } else {
+ break;
+ }
+ }
+
+ if (ElTy == DPTy->getElementType())
+ // This GEP is inbounds because all indices are zero.
+ return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
+ }
+
+ // Handle casts from one vector constant to another. We know that the src
+ // and dest type have the same size (otherwise its an illegal cast).
+ if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
+ if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
+ assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
+ "Not cast between same sized vectors!");
+ SrcTy = NULL;
+ // First, check for null. Undef is already handled.
+ if (isa<ConstantAggregateZero>(V))
+ return Constant::getNullValue(DestTy);
+
+ // Handle ConstantVector and ConstantAggregateVector.
+ return BitCastConstantVector(V, DestPTy);
+ }
+
+ // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
+ // This allows for other simplifications (although some of them
+ // can only be handled by Analysis/ConstantFolding.cpp).
+ if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
+ return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
+ }
+
+ // Finally, implement bitcast folding now. The code below doesn't handle
+ // bitcast right.
+ if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
+ return ConstantPointerNull::get(cast<PointerType>(DestTy));
+
+ // Handle integral constant input.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (DestTy->isIntegerTy())
+ // Integral -> Integral. This is a no-op because the bit widths must
+ // be the same. Consequently, we just fold to V.
+ return V;
+
+ if (DestTy->isFloatingPointTy())
+ return ConstantFP::get(DestTy->getContext(),
+ APFloat(CI->getValue(),
+ !DestTy->isPPC_FP128Ty()));
+
+ // Otherwise, can't fold this (vector?)
+ return 0;
+ }
+
+ // Handle ConstantFP input: FP -> Integral.
+ if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
+ return ConstantInt::get(FP->getContext(),
+ FP->getValueAPF().bitcastToAPInt());
+
+ return 0;
+}
+
+
+/// ExtractConstantBytes - V is an integer constant which only has a subset of
+/// its bytes used. The bytes used are indicated by ByteStart (which is the
+/// first byte used, counting from the least significant byte) and ByteSize,
+/// which is the number of bytes used.
+///
+/// This function analyzes the specified constant to see if the specified byte
+/// range can be returned as a simplified constant. If so, the constant is
+/// returned, otherwise null is returned.
+///
+static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
+ unsigned ByteSize) {
+ assert(C->getType()->isIntegerTy() &&
+ (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
+ "Non-byte sized integer input");
+ unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
+ assert(ByteSize && "Must be accessing some piece");
+ assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
+ assert(ByteSize != CSize && "Should not extract everything");
+
+ // Constant Integers are simple.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ APInt V = CI->getValue();
+ if (ByteStart)
+ V = V.lshr(ByteStart*8);
+ V = V.trunc(ByteSize*8);
+ return ConstantInt::get(CI->getContext(), V);
+ }
+
+ // In the input is a constant expr, we might be able to recursively simplify.
+ // If not, we definitely can't do anything.
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
+ if (CE == 0) return 0;
+
+ switch (CE->getOpcode()) {
+ default: return 0;
+ case Instruction::Or: {
+ Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
+ if (RHS == 0)
+ return 0;
+
+ // X | -1 -> -1.
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
+ if (RHSC->isAllOnesValue())
+ return RHSC;
+
+ Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
+ if (LHS == 0)
+ return 0;
+ return ConstantExpr::getOr(LHS, RHS);
+ }
+ case Instruction::And: {
+ Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
+ if (RHS == 0)
+ return 0;
+
+ // X & 0 -> 0.
+ if (RHS->isNullValue())
+ return RHS;
+
+ Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
+ if (LHS == 0)
+ return 0;
+ return ConstantExpr::getAnd(LHS, RHS);
+ }
+ case Instruction::LShr: {
+ ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
+ if (Amt == 0)
+ return 0;
+ unsigned ShAmt = Amt->getZExtValue();
+ // Cannot analyze non-byte shifts.
+ if ((ShAmt & 7) != 0)
+ return 0;
+ ShAmt >>= 3;
+
+ // If the extract is known to be all zeros, return zero.
+ if (ByteStart >= CSize-ShAmt)
+ return Constant::getNullValue(IntegerType::get(CE->getContext(),
+ ByteSize*8));
+ // If the extract is known to be fully in the input, extract it.
+ if (ByteStart+ByteSize+ShAmt <= CSize)
+ return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
+
+ // TODO: Handle the 'partially zero' case.
+ return 0;
+ }
+
+ case Instruction::Shl: {
+ ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
+ if (Amt == 0)
+ return 0;
+ unsigned ShAmt = Amt->getZExtValue();
+ // Cannot analyze non-byte shifts.
+ if ((ShAmt & 7) != 0)
+ return 0;
+ ShAmt >>= 3;
+
+ // If the extract is known to be all zeros, return zero.
+ if (ByteStart+ByteSize <= ShAmt)
+ return Constant::getNullValue(IntegerType::get(CE->getContext(),
+ ByteSize*8));
+ // If the extract is known to be fully in the input, extract it.
+ if (ByteStart >= ShAmt)
+ return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
+
+ // TODO: Handle the 'partially zero' case.
+ return 0;
+ }
+
+ case Instruction::ZExt: {
+ unsigned SrcBitSize =
+ cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
+
+ // If extracting something that is completely zero, return 0.
+ if (ByteStart*8 >= SrcBitSize)
+ return Constant::getNullValue(IntegerType::get(CE->getContext(),
+ ByteSize*8));
+
+ // If exactly extracting the input, return it.
+ if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
+ return CE->getOperand(0);
+
+ // If extracting something completely in the input, if if the input is a
+ // multiple of 8 bits, recurse.
+ if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
+ return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
+
+ // Otherwise, if extracting a subset of the input, which is not multiple of
+ // 8 bits, do a shift and trunc to get the bits.
+ if ((ByteStart+ByteSize)*8 < SrcBitSize) {
+ assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
+ Constant *Res = CE->getOperand(0);
+ if (ByteStart)
+ Res = ConstantExpr::getLShr(Res,
+ ConstantInt::get(Res->getType(), ByteStart*8));
+ return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
+ ByteSize*8));
+ }
+
+ // TODO: Handle the 'partially zero' case.
+ return 0;
+ }
+ }
+}
+
+/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
+/// on Ty, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
+ bool Folded) {
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
+ Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has size zero.
+ if (NumElems == 0)
+ return ConstantExpr::getNullValue(DestTy);
+ // Check for a struct with all members having the same size.
+ Constant *MemberSize =
+ getFoldedSizeOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberSize !=
+ getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame) {
+ Constant *N = ConstantInt::get(DestTy, NumElems);
+ return ConstantExpr::getNUWMul(MemberSize, N);
+ }
+ }
+
+ // Pointer size doesn't depend on the pointee type, so canonicalize them
+ // to an arbitrary pointee.
+ if (PointerType *PTy = dyn_cast<PointerType>(Ty))
+ if (!PTy->getElementType()->isIntegerTy(1))
+ return
+ getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
+ PTy->getAddressSpace()),
+ DestTy, true);
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular sizeof expression.
+ Constant *C = ConstantExpr::getSizeOf(Ty);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
+/// on Ty, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
+ bool Folded) {
+ // The alignment of an array is equal to the alignment of the
+ // array element. Note that this is not always true for vectors.
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy,
+ false),
+ C, DestTy);
+ return C;
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ // Packed structs always have an alignment of 1.
+ if (STy->isPacked())
+ return ConstantInt::get(DestTy, 1);
+
+ // Otherwise, struct alignment is the maximum alignment of any member.
+ // Without target data, we can't compare much, but we can check to see
+ // if all the members have the same alignment.
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has minimal alignment.
+ if (NumElems == 0)
+ return ConstantInt::get(DestTy, 1);
+ // Check for a struct with all members having the same alignment.
+ Constant *MemberAlign =
+ getFoldedAlignOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame)
+ return MemberAlign;
+ }
+
+ // Pointer alignment doesn't depend on the pointee type, so canonicalize them
+ // to an arbitrary pointee.
+ if (PointerType *PTy = dyn_cast<PointerType>(Ty))
+ if (!PTy->getElementType()->isIntegerTy(1))
+ return
+ getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
+ 1),
+ PTy->getAddressSpace()),
+ DestTy, true);
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular alignof expression.
+ Constant *C = ConstantExpr::getAlignOf(Ty);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
+/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
+ Type *DestTy,
+ bool Folded) {
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
+ DestTy, false),
+ FieldNo, DestTy);
+ Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has no members.
+ if (NumElems == 0)
+ return 0;
+ // Check for a struct with all members having the same size.
+ Constant *MemberSize =
+ getFoldedSizeOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberSize !=
+ getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame) {
+ Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
+ false,
+ DestTy,
+ false),
+ FieldNo, DestTy);
+ return ConstantExpr::getNUWMul(MemberSize, N);
+ }
+ }
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular offsetof expression.
+ Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
+ Type *DestTy) {
+ if (isa<UndefValue>(V)) {
+ // zext(undef) = 0, because the top bits will be zero.
+ // sext(undef) = 0, because the top bits will all be the same.
+ // [us]itofp(undef) = 0, because the result value is bounded.
+ if (opc == Instruction::ZExt || opc == Instruction::SExt ||
+ opc == Instruction::UIToFP || opc == Instruction::SIToFP)
+ return Constant::getNullValue(DestTy);
+ return UndefValue::get(DestTy);
+ }
+
+ if (V->isNullValue() && !DestTy->isX86_MMXTy())
+ return Constant::getNullValue(DestTy);
+
+ // If the cast operand is a constant expression, there's a few things we can
+ // do to try to simplify it.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (CE->isCast()) {
+ // Try hard to fold cast of cast because they are often eliminable.
+ if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
+ return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
+ } else if (CE->getOpcode() == Instruction::GetElementPtr) {
+ // If all of the indexes in the GEP are null values, there is no pointer
+ // adjustment going on. We might as well cast the source pointer.
+ bool isAllNull = true;
+ for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
+ if (!CE->getOperand(i)->isNullValue()) {
+ isAllNull = false;
+ break;
+ }
+ if (isAllNull)
+ // This is casting one pointer type to another, always BitCast
+ return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
+ }
+ }
+
+ // If the cast operand is a constant vector, perform the cast by
+ // operating on each element. In the cast of bitcasts, the element
+ // count may be mismatched; don't attempt to handle that here.
+ if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
+ DestTy->isVectorTy() &&
+ DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
+ SmallVector<Constant*, 16> res;
+ VectorType *DestVecTy = cast<VectorType>(DestTy);
+ Type *DstEltTy = DestVecTy->getElementType();
+ Type *Ty = IntegerType::get(V->getContext(), 32);
+ for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
+ Constant *C =
+ ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
+ res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
+ }
+ return ConstantVector::get(res);
+ }
+
+ // We actually have to do a cast now. Perform the cast according to the
+ // opcode specified.
+ switch (opc) {
+ default:
+ llvm_unreachable("Failed to cast constant expression");
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ bool ignored;
+ APFloat Val = FPC->getValueAPF();
+ Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
+ DestTy->isFloatTy() ? APFloat::IEEEsingle :
+ DestTy->isDoubleTy() ? APFloat::IEEEdouble :
+ DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
+ DestTy->isFP128Ty() ? APFloat::IEEEquad :
+ DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
+ APFloat::Bogus,
+ APFloat::rmNearestTiesToEven, &ignored);
+ return ConstantFP::get(V->getContext(), Val);
+ }
+ return 0; // Can't fold.
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ const APFloat &V = FPC->getValueAPF();
+ bool ignored;
+ uint64_t x[2];
+ uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
+ APFloat::rmTowardZero, &ignored);
+ APInt Val(DestBitWidth, x);
+ return ConstantInt::get(FPC->getContext(), Val);
+ }
+ return 0; // Can't fold.
+ case Instruction::IntToPtr: //always treated as unsigned
+ if (V->isNullValue()) // Is it an integral null value?
+ return ConstantPointerNull::get(cast<PointerType>(DestTy));
+ return 0; // Other pointer types cannot be casted
+ case Instruction::PtrToInt: // always treated as unsigned
+ // Is it a null pointer value?
+ if (V->isNullValue())
+ return ConstantInt::get(DestTy, 0);
+ // If this is a sizeof-like expression, pull out multiplications by
+ // known factors to expose them to subsequent folding. If it's an
+ // alignof-like expression, factor out known factors.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getOperand(0)->isNullValue()) {
+ Type *Ty =
+ cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+ if (CE->getNumOperands() == 2) {
+ // Handle a sizeof-like expression.
+ Constant *Idx = CE->getOperand(1);
+ bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
+ if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
+ Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
+ DestTy, false),
+ Idx, DestTy);
+ return ConstantExpr::getMul(C, Idx);
+ }
+ } else if (CE->getNumOperands() == 3 &&
+ CE->getOperand(1)->isNullValue()) {
+ // Handle an alignof-like expression.
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
+ if (CI->isOne() &&
+ STy->getNumElements() == 2 &&
+ STy->getElementType(0)->isIntegerTy(1)) {
+ return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
+ }
+ }
+ // Handle an offsetof-like expression.
+ if (Ty->isStructTy() || Ty->isArrayTy()) {
+ if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
+ DestTy, false))
+ return C;
+ }
+ }
+ }
+ // Other pointer types cannot be casted
+ return 0;
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ APInt api = CI->getValue();
+ APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()),
+ !DestTy->isPPC_FP128Ty() /* isEEEE */);
+ (void)apf.convertFromAPInt(api,
+ opc==Instruction::SIToFP,
+ APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(V->getContext(), apf);
+ }
+ return 0;
+ case Instruction::ZExt:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ return ConstantInt::get(V->getContext(),
+ CI->getValue().zext(BitWidth));
+ }
+ return 0;
+ case Instruction::SExt:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ return ConstantInt::get(V->getContext(),
+ CI->getValue().sext(BitWidth));
+ }
+ return 0;
+ case Instruction::Trunc: {
+ uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ return ConstantInt::get(V->getContext(),
+ CI->getValue().trunc(DestBitWidth));
+ }
+
+ // The input must be a constantexpr. See if we can simplify this based on
+ // the bytes we are demanding. Only do this if the source and dest are an
+ // even multiple of a byte.
+ if ((DestBitWidth & 7) == 0 &&
+ (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
+ if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
+ return Res;
+
+ return 0;
+ }
+ case Instruction::BitCast:
+ return FoldBitCast(V, DestTy);
+ }
+}
+
+Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
+ Constant *V1, Constant *V2) {
+ // Check for i1 and vector true/false conditions.
+ if (Cond->isNullValue()) return V2;
+ if (Cond->isAllOnesValue()) return V1;
+
+ // If the condition is a vector constant, fold the result elementwise.
+ if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
+ SmallVector<Constant*, 16> Result;
+ Type *Ty = IntegerType::get(CondV->getContext(), 32);
+ for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
+ ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
+ if (Cond == 0) break;
+
+ Constant *V = Cond->isNullValue() ? V2 : V1;
+ Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
+ Result.push_back(Res);
+ }
+
+ // If we were able to build the vector, return it.
+ if (Result.size() == V1->getType()->getVectorNumElements())
+ return ConstantVector::get(Result);
+ }
+
+ if (isa<UndefValue>(Cond)) {
+ if (isa<UndefValue>(V1)) return V1;
+ return V2;
+ }
+ if (isa<UndefValue>(V1)) return V2;
+ if (isa<UndefValue>(V2)) return V1;
+ if (V1 == V2) return V1;
+
+ if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
+ if (TrueVal->getOpcode() == Instruction::Select)
+ if (TrueVal->getOperand(0) == Cond)
+ return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
+ }
+ if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
+ if (FalseVal->getOpcode() == Instruction::Select)
+ if (FalseVal->getOperand(0) == Cond)
+ return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
+ }
+
+ return 0;
+}
+
+Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
+ Constant *Idx) {
+ if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
+ return UndefValue::get(Val->getType()->getVectorElementType());
+ if (Val->isNullValue()) // ee(zero, x) -> zero
+ return Constant::getNullValue(Val->getType()->getVectorElementType());
+ // ee({w,x,y,z}, undef) -> undef
+ if (isa<UndefValue>(Idx))
+ return UndefValue::get(Val->getType()->getVectorElementType());
+
+ if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
+ uint64_t Index = CIdx->getZExtValue();
+ // ee({w,x,y,z}, wrong_value) -> undef
+ if (Index >= Val->getType()->getVectorNumElements())
+ return UndefValue::get(Val->getType()->getVectorElementType());
+ return Val->getAggregateElement(Index);
+ }
+ return 0;
+}
+
+Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
+ Constant *Elt,
+ Constant *Idx) {
+ ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
+ if (!CIdx) return 0;
+ const APInt &IdxVal = CIdx->getValue();
+
+ SmallVector<Constant*, 16> Result;
+ Type *Ty = IntegerType::get(Val->getContext(), 32);
+ for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
+ if (i == IdxVal) {
+ Result.push_back(Elt);
+ continue;
+ }
+
+ Constant *C =
+ ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
+ Result.push_back(C);
+ }
+
+ return ConstantVector::get(Result);
+}
+
+Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
+ Constant *V2,
+ Constant *Mask) {
+ unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
+ Type *EltTy = V1->getType()->getVectorElementType();
+
+ // Undefined shuffle mask -> undefined value.
+ if (isa<UndefValue>(Mask))
+ return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
+
+ // Don't break the bitcode reader hack.
+ if (isa<ConstantExpr>(Mask)) return 0;
+
+ unsigned SrcNumElts = V1->getType()->getVectorNumElements();
+
+ // Loop over the shuffle mask, evaluating each element.
+ SmallVector<Constant*, 32> Result;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
+ if (Elt == -1) {
+ Result.push_back(UndefValue::get(EltTy));
+ continue;
+ }
+ Constant *InElt;
+ if (unsigned(Elt) >= SrcNumElts*2)
+ InElt = UndefValue::get(EltTy);
+ else if (unsigned(Elt) >= SrcNumElts) {
+ Type *Ty = IntegerType::get(V2->getContext(), 32);
+ InElt =
+ ConstantExpr::getExtractElement(V2,
+ ConstantInt::get(Ty, Elt - SrcNumElts));
+ } else {
+ Type *Ty = IntegerType::get(V1->getContext(), 32);
+ InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
+ }
+ Result.push_back(InElt);
+ }
+
+ return ConstantVector::get(Result);
+}
+
+Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
+ ArrayRef<unsigned> Idxs) {
+ // Base case: no indices, so return the entire value.
+ if (Idxs.empty())
+ return Agg;
+
+ if (Constant *C = Agg->getAggregateElement(Idxs[0]))
+ return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
+
+ return 0;
+}
+
+Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
+ Constant *Val,
+ ArrayRef<unsigned> Idxs) {
+ // Base case: no indices, so replace the entire value.
+ if (Idxs.empty())
+ return Val;
+
+ unsigned NumElts;
+ if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
+ NumElts = ST->getNumElements();
+ else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
+ NumElts = AT->getNumElements();
+ else
+ NumElts = AT->getVectorNumElements();
+
+ SmallVector<Constant*, 32> Result;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *C = Agg->getAggregateElement(i);
+ if (C == 0) return 0;
+
+ if (Idxs[0] == i)
+ C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
+
+ Result.push_back(C);
+ }
+
+ if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
+ return ConstantStruct::get(ST, Result);
+ if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
+ return ConstantArray::get(AT, Result);
+ return ConstantVector::get(Result);
+}
+
+
+Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
+ Constant *C1, Constant *C2) {
+ // Handle UndefValue up front.
+ if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
+ switch (Opcode) {
+ case Instruction::Xor:
+ if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
+ // Handle undef ^ undef -> 0 special case. This is a common
+ // idiom (misuse).
+ return Constant::getNullValue(C1->getType());
+ // Fallthrough
+ case Instruction::Add:
+ case Instruction::Sub:
+ return UndefValue::get(C1->getType());
+ case Instruction::And:
+ if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
+ return C1;
+ return Constant::getNullValue(C1->getType()); // undef & X -> 0
+ case Instruction::Mul: {
+ ConstantInt *CI;
+ // X * undef -> undef if X is odd or undef
+ if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
+ ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
+ (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
+ return UndefValue::get(C1->getType());
+
+ // X * undef -> 0 otherwise
+ return Constant::getNullValue(C1->getType());
+ }
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ // undef / 1 -> undef
+ if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
+ if (CI2->isOne())
+ return C1;
+ // FALL THROUGH
+ case Instruction::URem:
+ case Instruction::SRem:
+ if (!isa<UndefValue>(C2)) // undef / X -> 0
+ return Constant::getNullValue(C1->getType());
+ return C2; // X / undef -> undef
+ case Instruction::Or: // X | undef -> -1
+ if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
+ return C1;
+ return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
+ case Instruction::LShr:
+ if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
+ return C1; // undef lshr undef -> undef
+ return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
+ // undef lshr X -> 0
+ case Instruction::AShr:
+ if (!isa<UndefValue>(C2)) // undef ashr X --> all ones
+ return Constant::getAllOnesValue(C1->getType());
+ else if (isa<UndefValue>(C1))
+ return C1; // undef ashr undef -> undef
+ else
+ return C1; // X ashr undef --> X
+ case Instruction::Shl:
+ if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
+ return C1; // undef shl undef -> undef
+ // undef << X -> 0 or X << undef -> 0
+ return Constant::getNullValue(C1->getType());
+ }
+ }
+
+ // Handle simplifications when the RHS is a constant int.
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
+ switch (Opcode) {
+ case Instruction::Add:
+ if (CI2->equalsInt(0)) return C1; // X + 0 == X
+ break;
+ case Instruction::Sub:
+ if (CI2->equalsInt(0)) return C1; // X - 0 == X
+ break;
+ case Instruction::Mul:
+ if (CI2->equalsInt(0)) return C2; // X * 0 == 0
+ if (CI2->equalsInt(1))
+ return C1; // X * 1 == X
+ break;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ if (CI2->equalsInt(1))
+ return C1; // X / 1 == X
+ if (CI2->equalsInt(0))
+ return UndefValue::get(CI2->getType()); // X / 0 == undef
+ break;
+ case Instruction::URem:
+ case Instruction::SRem:
+ if (CI2->equalsInt(1))
+ return Constant::getNullValue(CI2->getType()); // X % 1 == 0
+ if (CI2->equalsInt(0))
+ return UndefValue::get(CI2->getType()); // X % 0 == undef
+ break;
+ case Instruction::And:
+ if (CI2->isZero()) return C2; // X & 0 == 0
+ if (CI2->isAllOnesValue())
+ return C1; // X & -1 == X
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
+ if (CE1->getOpcode() == Instruction::ZExt) {
+ unsigned DstWidth = CI2->getType()->getBitWidth();
+ unsigned SrcWidth =
+ CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
+ APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
+ if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
+ return C1;
+ }
+
+ // If and'ing the address of a global with a constant, fold it.
+ if (CE1->getOpcode() == Instruction::PtrToInt &&
+ isa<GlobalValue>(CE1->getOperand(0))) {
+ GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
+
+ // Functions are at least 4-byte aligned.
+ unsigned GVAlign = GV->getAlignment();
+ if (isa<Function>(GV))
+ GVAlign = std::max(GVAlign, 4U);
+
+ if (GVAlign > 1) {
+ unsigned DstWidth = CI2->getType()->getBitWidth();
+ unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
+ APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
+
+ // If checking bits we know are clear, return zero.
+ if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
+ return Constant::getNullValue(CI2->getType());
+ }
+ }
+ }
+ break;
+ case Instruction::Or:
+ if (CI2->equalsInt(0)) return C1; // X | 0 == X
+ if (CI2->isAllOnesValue())
+ return C2; // X | -1 == -1
+ break;
+ case Instruction::Xor:
+ if (CI2->equalsInt(0)) return C1; // X ^ 0 == X
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ switch (CE1->getOpcode()) {
+ default: break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ // cmp pred ^ true -> cmp !pred
+ assert(CI2->equalsInt(1));
+ CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
+ pred = CmpInst::getInversePredicate(pred);
+ return ConstantExpr::getCompare(pred, CE1->getOperand(0),
+ CE1->getOperand(1));
+ }
+ }
+ break;
+ case Instruction::AShr:
+ // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
+ if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
+ return ConstantExpr::getLShr(C1, C2);
+ break;
+ }
+ } else if (isa<ConstantInt>(C1)) {
+ // If C1 is a ConstantInt and C2 is not, swap the operands.
+ if (Instruction::isCommutative(Opcode))
+ return ConstantExpr::get(Opcode, C2, C1);
+ }
+
+ // At this point we know neither constant is an UndefValue.
+ if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
+ const APInt &C1V = CI1->getValue();
+ const APInt &C2V = CI2->getValue();
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::Add:
+ return ConstantInt::get(CI1->getContext(), C1V + C2V);
+ case Instruction::Sub:
+ return ConstantInt::get(CI1->getContext(), C1V - C2V);
+ case Instruction::Mul:
+ return ConstantInt::get(CI1->getContext(), C1V * C2V);
+ case Instruction::UDiv:
+ assert(!CI2->isNullValue() && "Div by zero handled above");
+ return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
+ case Instruction::SDiv:
+ assert(!CI2->isNullValue() && "Div by zero handled above");
+ if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
+ return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
+ return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
+ case Instruction::URem:
+ assert(!CI2->isNullValue() && "Div by zero handled above");
+ return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
+ case Instruction::SRem:
+ assert(!CI2->isNullValue() && "Div by zero handled above");
+ if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
+ return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
+ return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
+ case Instruction::And:
+ return ConstantInt::get(CI1->getContext(), C1V & C2V);
+ case Instruction::Or:
+ return ConstantInt::get(CI1->getContext(), C1V | C2V);
+ case Instruction::Xor:
+ return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
+ case Instruction::Shl: {
+ uint32_t shiftAmt = C2V.getZExtValue();
+ if (shiftAmt < C1V.getBitWidth())
+ return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
+ else
+ return UndefValue::get(C1->getType()); // too big shift is undef
+ }
+ case Instruction::LShr: {
+ uint32_t shiftAmt = C2V.getZExtValue();
+ if (shiftAmt < C1V.getBitWidth())
+ return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
+ else
+ return UndefValue::get(C1->getType()); // too big shift is undef
+ }
+ case Instruction::AShr: {
+ uint32_t shiftAmt = C2V.getZExtValue();
+ if (shiftAmt < C1V.getBitWidth())
+ return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
+ else
+ return UndefValue::get(C1->getType()); // too big shift is undef
+ }
+ }
+ }
+
+ switch (Opcode) {
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::Shl:
+ if (CI1->equalsInt(0)) return C1;
+ break;
+ default:
+ break;
+ }
+ } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
+ if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
+ APFloat C1V = CFP1->getValueAPF();
+ APFloat C2V = CFP2->getValueAPF();
+ APFloat C3V = C1V; // copy for modification
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::FAdd:
+ (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(C1->getContext(), C3V);
+ case Instruction::FSub:
+ (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(C1->getContext(), C3V);
+ case Instruction::FMul:
+ (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(C1->getContext(), C3V);
+ case Instruction::FDiv:
+ (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(C1->getContext(), C3V);
+ case Instruction::FRem:
+ (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(C1->getContext(), C3V);
+ }
+ }
+ } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
+ // Perform elementwise folding.
+ SmallVector<Constant*, 16> Result;
+ Type *Ty = IntegerType::get(VTy->getContext(), 32);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ Constant *LHS =
+ ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
+ Constant *RHS =
+ ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
+
+ Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
+ }
+
+ return ConstantVector::get(Result);
+ }
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ // There are many possible foldings we could do here. We should probably
+ // at least fold add of a pointer with an integer into the appropriate
+ // getelementptr. This will improve alias analysis a bit.
+
+ // Given ((a + b) + c), if (b + c) folds to something interesting, return
+ // (a + (b + c)).
+ if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
+ Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
+ if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
+ return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
+ }
+ } else if (isa<ConstantExpr>(C2)) {
+ // If C2 is a constant expr and C1 isn't, flop them around and fold the
+ // other way if possible.
+ if (Instruction::isCommutative(Opcode))
+ return ConstantFoldBinaryInstruction(Opcode, C2, C1);
+ }
+
+ // i1 can be simplified in many cases.
+ if (C1->getType()->isIntegerTy(1)) {
+ switch (Opcode) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ return ConstantExpr::getXor(C1, C2);
+ case Instruction::Mul:
+ return ConstantExpr::getAnd(C1, C2);
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ // We can assume that C2 == 0. If it were one the result would be
+ // undefined because the shift value is as large as the bitwidth.
+ return C1;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ // We can assume that C2 == 1. If it were zero the result would be
+ // undefined through division by zero.
+ return C1;
+ case Instruction::URem:
+ case Instruction::SRem:
+ // We can assume that C2 == 1. If it were zero the result would be
+ // undefined through division by zero.
+ return ConstantInt::getFalse(C1->getContext());
+ default:
+ break;
+ }
+ }
+
+ // We don't know how to fold this.
+ return 0;
+}
+
+/// isZeroSizedType - This type is zero sized if its an array or structure of
+/// zero sized types. The only leaf zero sized type is an empty structure.
+static bool isMaybeZeroSizedType(Type *Ty) {
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ if (STy->isOpaque()) return true; // Can't say.
+
+ // If all of elements have zero size, this does too.
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
+ return true;
+
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ return isMaybeZeroSizedType(ATy->getElementType());
+ }
+ return false;
+}
+
+/// IdxCompare - Compare the two constants as though they were getelementptr
+/// indices. This allows coersion of the types to be the same thing.
+///
+/// If the two constants are the "same" (after coersion), return 0. If the
+/// first is less than the second, return -1, if the second is less than the
+/// first, return 1. If the constants are not integral, return -2.
+///
+static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
+ if (C1 == C2) return 0;
+
+ // Ok, we found a different index. If they are not ConstantInt, we can't do
+ // anything with them.
+ if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
+ return -2; // don't know!
+
+ // Ok, we have two differing integer indices. Sign extend them to be the same
+ // type. Long is always big enough, so we use it.
+ if (!C1->getType()->isIntegerTy(64))
+ C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
+
+ if (!C2->getType()->isIntegerTy(64))
+ C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
+
+ if (C1 == C2) return 0; // They are equal
+
+ // If the type being indexed over is really just a zero sized type, there is
+ // no pointer difference being made here.
+ if (isMaybeZeroSizedType(ElTy))
+ return -2; // dunno.
+
+ // If they are really different, now that they are the same type, then we
+ // found a difference!
+ if (cast<ConstantInt>(C1)->getSExtValue() <
+ cast<ConstantInt>(C2)->getSExtValue())
+ return -1;
+ else
+ return 1;
+}
+
+/// evaluateFCmpRelation - This function determines if there is anything we can
+/// decide about the two constants provided. This doesn't need to handle simple
+/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
+/// If we can determine that the two constants have a particular relation to
+/// each other, we should return the corresponding FCmpInst predicate,
+/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
+/// ConstantFoldCompareInstruction.
+///
+/// To simplify this code we canonicalize the relation so that the first
+/// operand is always the most "complex" of the two. We consider ConstantFP
+/// to be the simplest, and ConstantExprs to be the most complex.
+static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
+ assert(V1->getType() == V2->getType() &&
+ "Cannot compare values of different types!");
+
+ // Handle degenerate case quickly
+ if (V1 == V2) return FCmpInst::FCMP_OEQ;
+
+ if (!isa<ConstantExpr>(V1)) {
+ if (!isa<ConstantExpr>(V2)) {
+ // We distilled thisUse the standard constant folder for a few cases
+ ConstantInt *R = 0;
+ R = dyn_cast<ConstantInt>(
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
+ if (R && !R->isZero())
+ return FCmpInst::FCMP_OEQ;
+ R = dyn_cast<ConstantInt>(
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
+ if (R && !R->isZero())
+ return FCmpInst::FCMP_OLT;
+ R = dyn_cast<ConstantInt>(
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
+ if (R && !R->isZero())
+ return FCmpInst::FCMP_OGT;
+
+ // Nothing more we can do
+ return FCmpInst::BAD_FCMP_PREDICATE;
+ }
+
+ // If the first operand is simple and second is ConstantExpr, swap operands.
+ FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
+ if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
+ return FCmpInst::getSwappedPredicate(SwappedRelation);
+ } else {
+ // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
+ // constantexpr or a simple constant.
+ ConstantExpr *CE1 = cast<ConstantExpr>(V1);
+ switch (CE1->getOpcode()) {
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ // We might be able to do something with these but we don't right now.
+ break;
+ default:
+ break;
+ }
+ }
+ // There are MANY other foldings that we could perform here. They will
+ // probably be added on demand, as they seem needed.
+ return FCmpInst::BAD_FCMP_PREDICATE;
+}
+
+/// evaluateICmpRelation - This function determines if there is anything we can
+/// decide about the two constants provided. This doesn't need to handle simple
+/// things like integer comparisons, but should instead handle ConstantExprs
+/// and GlobalValues. If we can determine that the two constants have a
+/// particular relation to each other, we should return the corresponding ICmp
+/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
+///
+/// To simplify this code we canonicalize the relation so that the first
+/// operand is always the most "complex" of the two. We consider simple
+/// constants (like ConstantInt) to be the simplest, followed by
+/// GlobalValues, followed by ConstantExpr's (the most complex).
+///
+static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
+ bool isSigned) {
+ assert(V1->getType() == V2->getType() &&
+ "Cannot compare different types of values!");
+ if (V1 == V2) return ICmpInst::ICMP_EQ;
+
+ if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
+ !isa<BlockAddress>(V1)) {
+ if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
+ !isa<BlockAddress>(V2)) {
+ // We distilled this down to a simple case, use the standard constant
+ // folder.
+ ConstantInt *R = 0;
+ ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
+ if (R && !R->isZero())
+ return pred;
+ pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
+ if (R && !R->isZero())
+ return pred;
+ pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
+ if (R && !R->isZero())
+ return pred;
+
+ // If we couldn't figure it out, bail.
+ return ICmpInst::BAD_ICMP_PREDICATE;
+ }
+
+ // If the first operand is simple, swap operands.
+ ICmpInst::Predicate SwappedRelation =
+ evaluateICmpRelation(V2, V1, isSigned);
+ if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
+ return ICmpInst::getSwappedPredicate(SwappedRelation);
+
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
+ if (isa<ConstantExpr>(V2)) { // Swap as necessary.
+ ICmpInst::Predicate SwappedRelation =
+ evaluateICmpRelation(V2, V1, isSigned);
+ if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
+ return ICmpInst::getSwappedPredicate(SwappedRelation);
+ return ICmpInst::BAD_ICMP_PREDICATE;
+ }
+
+ // Now we know that the RHS is a GlobalValue, BlockAddress or simple
+ // constant (which, since the types must match, means that it's a
+ // ConstantPointerNull).
+ if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
+ // Don't try to decide equality of aliases.
+ if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
+ if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
+ return ICmpInst::ICMP_NE;
+ } else if (isa<BlockAddress>(V2)) {
+ return ICmpInst::ICMP_NE; // Globals never equal labels.
+ } else {
+ assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
+ // GlobalVals can never be null unless they have external weak linkage.
+ // We don't try to evaluate aliases here.
+ if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
+ return ICmpInst::ICMP_NE;
+ }
+ } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
+ if (isa<ConstantExpr>(V2)) { // Swap as necessary.
+ ICmpInst::Predicate SwappedRelation =
+ evaluateICmpRelation(V2, V1, isSigned);
+ if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
+ return ICmpInst::getSwappedPredicate(SwappedRelation);
+ return ICmpInst::BAD_ICMP_PREDICATE;
+ }
+
+ // Now we know that the RHS is a GlobalValue, BlockAddress or simple
+ // constant (which, since the types must match, means that it is a
+ // ConstantPointerNull).
+ if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
+ // Block address in another function can't equal this one, but block
+ // addresses in the current function might be the same if blocks are
+ // empty.
+ if (BA2->getFunction() != BA->getFunction())
+ return ICmpInst::ICMP_NE;
+ } else {
+ // Block addresses aren't null, don't equal the address of globals.
+ assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
+ "Canonicalization guarantee!");
+ return ICmpInst::ICMP_NE;
+ }
+ } else {
+ // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
+ // constantexpr, a global, block address, or a simple constant.
+ ConstantExpr *CE1 = cast<ConstantExpr>(V1);
+ Constant *CE1Op0 = CE1->getOperand(0);
+
+ switch (CE1->getOpcode()) {
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ break; // We can't evaluate floating point casts or truncations.
+
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::BitCast:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // If the cast is not actually changing bits, and the second operand is a
+ // null pointer, do the comparison with the pre-casted value.
+ if (V2->isNullValue() &&
+ (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
+ if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
+ if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
+ return evaluateICmpRelation(CE1Op0,
+ Constant::getNullValue(CE1Op0->getType()),
+ isSigned);
+ }
+ break;
+
+ case Instruction::GetElementPtr:
+ // Ok, since this is a getelementptr, we know that the constant has a
+ // pointer type. Check the various cases.
+ if (isa<ConstantPointerNull>(V2)) {
+ // If we are comparing a GEP to a null pointer, check to see if the base
+ // of the GEP equals the null pointer.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
+ if (GV->hasExternalWeakLinkage())
+ // Weak linkage GVals could be zero or not. We're comparing that
+ // to null pointer so its greater-or-equal
+ return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
+ else
+ // If its not weak linkage, the GVal must have a non-zero address
+ // so the result is greater-than
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ } else if (isa<ConstantPointerNull>(CE1Op0)) {
+ // If we are indexing from a null pointer, check to see if we have any
+ // non-zero indices.
+ for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
+ if (!CE1->getOperand(i)->isNullValue())
+ // Offsetting from null, must not be equal.
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ // Only zero indexes from null, must still be zero.
+ return ICmpInst::ICMP_EQ;
+ }
+ // Otherwise, we can't really say if the first operand is null or not.
+ } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
+ if (isa<ConstantPointerNull>(CE1Op0)) {
+ if (GV2->hasExternalWeakLinkage())
+ // Weak linkage GVals could be zero or not. We're comparing it to
+ // a null pointer, so its less-or-equal
+ return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
+ else
+ // If its not weak linkage, the GVal must have a non-zero address
+ // so the result is less-than
+ return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
+ if (GV == GV2) {
+ // If this is a getelementptr of the same global, then it must be
+ // different. Because the types must match, the getelementptr could
+ // only have at most one index, and because we fold getelementptr's
+ // with a single zero index, it must be nonzero.
+ assert(CE1->getNumOperands() == 2 &&
+ !CE1->getOperand(1)->isNullValue() &&
+ "Surprising getelementptr!");
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ } else {
+ // If they are different globals, we don't know what the value is,
+ // but they can't be equal.
+ return ICmpInst::ICMP_NE;
+ }
+ }
+ } else {
+ ConstantExpr *CE2 = cast<ConstantExpr>(V2);
+ Constant *CE2Op0 = CE2->getOperand(0);
+
+ // There are MANY other foldings that we could perform here. They will
+ // probably be added on demand, as they seem needed.
+ switch (CE2->getOpcode()) {
+ default: break;
+ case Instruction::GetElementPtr:
+ // By far the most common case to handle is when the base pointers are
+ // obviously to the same or different globals.
+ if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
+ if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
+ return ICmpInst::ICMP_NE;
+ // Ok, we know that both getelementptr instructions are based on the
+ // same global. From this, we can precisely determine the relative
+ // ordering of the resultant pointers.
+ unsigned i = 1;
+
+ // The logic below assumes that the result of the comparison
+ // can be determined by finding the first index that differs.
+ // This doesn't work if there is over-indexing in any
+ // subsequent indices, so check for that case first.
+ if (!CE1->isGEPWithNoNotionalOverIndexing() ||
+ !CE2->isGEPWithNoNotionalOverIndexing())
+ return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
+
+ // Compare all of the operands the GEP's have in common.
+ gep_type_iterator GTI = gep_type_begin(CE1);
+ for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
+ ++i, ++GTI)
+ switch (IdxCompare(CE1->getOperand(i),
+ CE2->getOperand(i), GTI.getIndexedType())) {
+ case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
+ case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
+ case -2: return ICmpInst::BAD_ICMP_PREDICATE;
+ }
+
+ // Ok, we ran out of things they have in common. If any leftovers
+ // are non-zero then we have a difference, otherwise we are equal.
+ for (; i < CE1->getNumOperands(); ++i)
+ if (!CE1->getOperand(i)->isNullValue()) {
+ if (isa<ConstantInt>(CE1->getOperand(i)))
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ else
+ return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
+ }
+
+ for (; i < CE2->getNumOperands(); ++i)
+ if (!CE2->getOperand(i)->isNullValue()) {
+ if (isa<ConstantInt>(CE2->getOperand(i)))
+ return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
+ else
+ return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
+ }
+ return ICmpInst::ICMP_EQ;
+ }
+ }
+ }
+ default:
+ break;
+ }
+ }
+
+ return ICmpInst::BAD_ICMP_PREDICATE;
+}
+
+Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
+ Constant *C1, Constant *C2) {
+ Type *ResultTy;
+ if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
+ ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
+ VT->getNumElements());
+ else
+ ResultTy = Type::getInt1Ty(C1->getContext());
+
+ // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
+ if (pred == FCmpInst::FCMP_FALSE)
+ return Constant::getNullValue(ResultTy);
+
+ if (pred == FCmpInst::FCMP_TRUE)
+ return Constant::getAllOnesValue(ResultTy);
+
+ // Handle some degenerate cases first
+ if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
+ // For EQ and NE, we can always pick a value for the undef to make the
+ // predicate pass or fail, so we can return undef.
+ // Also, if both operands are undef, we can return undef.
+ if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
+ (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
+ return UndefValue::get(ResultTy);
+ // Otherwise, pick the same value as the non-undef operand, and fold
+ // it to true or false.
+ return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
+ }
+
+ // icmp eq/ne(null,GV) -> false/true
+ if (C1->isNullValue()) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
+ // Don't try to evaluate aliases. External weak GV can be null.
+ if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
+ if (pred == ICmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(C1->getContext());
+ else if (pred == ICmpInst::ICMP_NE)
+ return ConstantInt::getTrue(C1->getContext());
+ }
+ // icmp eq/ne(GV,null) -> false/true
+ } else if (C2->isNullValue()) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
+ // Don't try to evaluate aliases. External weak GV can be null.
+ if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
+ if (pred == ICmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(C1->getContext());
+ else if (pred == ICmpInst::ICMP_NE)
+ return ConstantInt::getTrue(C1->getContext());
+ }
+ }
+
+ // If the comparison is a comparison between two i1's, simplify it.
+ if (C1->getType()->isIntegerTy(1)) {
+ switch(pred) {
+ case ICmpInst::ICMP_EQ:
+ if (isa<ConstantInt>(C2))
+ return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
+ return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
+ case ICmpInst::ICMP_NE:
+ return ConstantExpr::getXor(C1, C2);
+ default:
+ break;
+ }
+ }
+
+ if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
+ APInt V1 = cast<ConstantInt>(C1)->getValue();
+ APInt V2 = cast<ConstantInt>(C2)->getValue();
+ switch (pred) {
+ default: llvm_unreachable("Invalid ICmp Predicate");
+ case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
+ case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
+ case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
+ case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
+ case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
+ case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
+ case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
+ case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
+ case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
+ case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
+ }
+ } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
+ APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
+ APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
+ APFloat::cmpResult R = C1V.compare(C2V);
+ switch (pred) {
+ default: llvm_unreachable("Invalid FCmp Predicate");
+ case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
+ case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
+ case FCmpInst::FCMP_UNO:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
+ case FCmpInst::FCMP_ORD:
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
+ case FCmpInst::FCMP_UEQ:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpEqual);
+ case FCmpInst::FCMP_OEQ:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
+ case FCmpInst::FCMP_UNE:
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
+ case FCmpInst::FCMP_ONE:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
+ R==APFloat::cmpGreaterThan);
+ case FCmpInst::FCMP_ULT:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpLessThan);
+ case FCmpInst::FCMP_OLT:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
+ case FCmpInst::FCMP_UGT:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpGreaterThan);
+ case FCmpInst::FCMP_OGT:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
+ case FCmpInst::FCMP_ULE:
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
+ case FCmpInst::FCMP_OLE:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
+ R==APFloat::cmpEqual);
+ case FCmpInst::FCMP_UGE:
+ return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
+ case FCmpInst::FCMP_OGE:
+ return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpEqual);
+ }
+ } else if (C1->getType()->isVectorTy()) {
+ // If we can constant fold the comparison of each element, constant fold
+ // the whole vector comparison.
+ SmallVector<Constant*, 4> ResElts;
+ Type *Ty = IntegerType::get(C1->getContext(), 32);
+ // Compare the elements, producing an i1 result or constant expr.
+ for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
+ Constant *C1E =
+ ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
+ Constant *C2E =
+ ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
+
+ ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
+ }
+
+ return ConstantVector::get(ResElts);
+ }
+
+ if (C1->getType()->isFloatingPointTy()) {
+ int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
+ switch (evaluateFCmpRelation(C1, C2)) {
+ default: llvm_unreachable("Unknown relation!");
+ case FCmpInst::FCMP_UNO:
+ case FCmpInst::FCMP_ORD:
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_TRUE:
+ case FCmpInst::FCMP_FALSE:
+ case FCmpInst::BAD_FCMP_PREDICATE:
+ break; // Couldn't determine anything about these constants.
+ case FCmpInst::FCMP_OEQ: // We know that C1 == C2
+ Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
+ pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
+ pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
+ break;
+ case FCmpInst::FCMP_OLT: // We know that C1 < C2
+ Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
+ pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
+ pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
+ break;
+ case FCmpInst::FCMP_OGT: // We know that C1 > C2
+ Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
+ pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
+ pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
+ break;
+ case FCmpInst::FCMP_OLE: // We know that C1 <= C2
+ // We can only partially decide this relation.
+ if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
+ Result = 0;
+ else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
+ Result = 1;
+ break;
+ case FCmpInst::FCMP_OGE: // We known that C1 >= C2
+ // We can only partially decide this relation.
+ if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
+ Result = 0;
+ else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
+ Result = 1;
+ break;
+ case FCmpInst::FCMP_ONE: // We know that C1 != C2
+ // We can only partially decide this relation.
+ if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
+ Result = 0;
+ else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
+ Result = 1;
+ break;
+ }
+
+ // If we evaluated the result, return it now.
+ if (Result != -1)
+ return ConstantInt::get(ResultTy, Result);
+
+ } else {
+ // Evaluate the relation between the two constants, per the predicate.
+ int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
+ switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
+ default: llvm_unreachable("Unknown relational!");
+ case ICmpInst::BAD_ICMP_PREDICATE:
+ break; // Couldn't determine anything about these constants.
+ case ICmpInst::ICMP_EQ: // We know the constants are equal!
+ // If we know the constants are equal, we can decide the result of this
+ // computation precisely.
+ Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
+ break;
+ case ICmpInst::ICMP_ULT:
+ switch (pred) {
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
+ Result = 1; break;
+ case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
+ Result = 0; break;
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ switch (pred) {
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
+ Result = 1; break;
+ case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
+ Result = 0; break;
+ }
+ break;
+ case ICmpInst::ICMP_UGT:
+ switch (pred) {
+ case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
+ Result = 1; break;
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
+ Result = 0; break;
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ switch (pred) {
+ case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
+ Result = 1; break;
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
+ Result = 0; break;
+ }
+ break;
+ case ICmpInst::ICMP_ULE:
+ if (pred == ICmpInst::ICMP_UGT) Result = 0;
+ if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
+ break;
+ case ICmpInst::ICMP_SLE:
+ if (pred == ICmpInst::ICMP_SGT) Result = 0;
+ if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
+ break;
+ case ICmpInst::ICMP_UGE:
+ if (pred == ICmpInst::ICMP_ULT) Result = 0;
+ if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
+ break;
+ case ICmpInst::ICMP_SGE:
+ if (pred == ICmpInst::ICMP_SLT) Result = 0;
+ if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
+ break;
+ case ICmpInst::ICMP_NE:
+ if (pred == ICmpInst::ICMP_EQ) Result = 0;
+ if (pred == ICmpInst::ICMP_NE) Result = 1;
+ break;
+ }
+
+ // If we evaluated the result, return it now.
+ if (Result != -1)
+ return ConstantInt::get(ResultTy, Result);
+
+ // If the right hand side is a bitcast, try using its inverse to simplify
+ // it by moving it to the left hand side. We can't do this if it would turn
+ // a vector compare into a scalar compare or visa versa.
+ if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
+ Constant *CE2Op0 = CE2->getOperand(0);
+ if (CE2->getOpcode() == Instruction::BitCast &&
+ CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
+ Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
+ return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
+ }
+ }
+
+ // If the left hand side is an extension, try eliminating it.
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
+ (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
+ Constant *CE1Op0 = CE1->getOperand(0);
+ Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
+ if (CE1Inverse == CE1Op0) {
+ // Check whether we can safely truncate the right hand side.
+ Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
+ if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
+ return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
+ }
+ }
+ }
+ }
+
+ if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
+ (C1->isNullValue() && !C2->isNullValue())) {
+ // If C2 is a constant expr and C1 isn't, flip them around and fold the
+ // other way if possible.
+ // Also, if C1 is null and C2 isn't, flip them around.
+ pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
+ return ConstantExpr::getICmp(pred, C2, C1);
+ }
+ }
+ return 0;
+}
+
+/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
+/// is "inbounds".
+template<typename IndexTy>
+static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
+ // No indices means nothing that could be out of bounds.
+ if (Idxs.empty()) return true;
+
+ // If the first index is zero, it's in bounds.
+ if (cast<Constant>(Idxs[0])->isNullValue()) return true;
+
+ // If the first index is one and all the rest are zero, it's in bounds,
+ // by the one-past-the-end rule.
+ if (!cast<ConstantInt>(Idxs[0])->isOne())
+ return false;
+ for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
+ if (!cast<Constant>(Idxs[i])->isNullValue())
+ return false;
+ return true;
+}
+
+template<typename IndexTy>
+static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
+ bool inBounds,
+ ArrayRef<IndexTy> Idxs) {
+ if (Idxs.empty()) return C;
+ Constant *Idx0 = cast<Constant>(Idxs[0]);
+ if ((Idxs.size() == 1 && Idx0->isNullValue()))
+ return C;
+
+ if (isa<UndefValue>(C)) {
+ PointerType *Ptr = cast<PointerType>(C->getType());
+ Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
+ assert(Ty != 0 && "Invalid indices for GEP!");
+ return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
+ }
+
+ if (C->isNullValue()) {
+ bool isNull = true;
+ for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
+ if (!cast<Constant>(Idxs[i])->isNullValue()) {
+ isNull = false;
+ break;
+ }
+ if (isNull) {
+ PointerType *Ptr = cast<PointerType>(C->getType());
+ Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
+ assert(Ty != 0 && "Invalid indices for GEP!");
+ return ConstantPointerNull::get(PointerType::get(Ty,
+ Ptr->getAddressSpace()));
+ }
+ }
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ // Combine Indices - If the source pointer to this getelementptr instruction
+ // is a getelementptr instruction, combine the indices of the two
+ // getelementptr instructions into a single instruction.
+ //
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ Type *LastTy = 0;
+ for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
+ I != E; ++I)
+ LastTy = *I;
+
+ if ((LastTy && isa<SequentialType>(LastTy)) || Idx0->isNullValue()) {
+ SmallVector<Value*, 16> NewIndices;
+ NewIndices.reserve(Idxs.size() + CE->getNumOperands());
+ for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
+ NewIndices.push_back(CE->getOperand(i));
+
+ // Add the last index of the source with the first index of the new GEP.
+ // Make sure to handle the case when they are actually different types.
+ Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
+ // Otherwise it must be an array.
+ if (!Idx0->isNullValue()) {
+ Type *IdxTy = Combined->getType();
+ if (IdxTy != Idx0->getType()) {
+ Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
+ Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
+ Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
+ Combined = ConstantExpr::get(Instruction::Add, C1, C2);
+ } else {
+ Combined =
+ ConstantExpr::get(Instruction::Add, Idx0, Combined);
+ }
+ }
+
+ NewIndices.push_back(Combined);
+ NewIndices.append(Idxs.begin() + 1, Idxs.end());
+ return
+ ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
+ inBounds &&
+ cast<GEPOperator>(CE)->isInBounds());
+ }
+ }
+
+ // Implement folding of:
+ // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
+ // i64 0, i64 0)
+ // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
+ //
+ if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
+ if (PointerType *SPT =
+ dyn_cast<PointerType>(CE->getOperand(0)->getType()))
+ if (ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
+ if (ArrayType *CAT =
+ dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
+ if (CAT->getElementType() == SAT->getElementType())
+ return
+ ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
+ Idxs, inBounds);
+ }
+ }
+
+ // Check to see if any array indices are not within the corresponding
+ // notional array bounds. If so, try to determine if they can be factored
+ // out into preceding dimensions.
+ bool Unknown = false;
+ SmallVector<Constant *, 8> NewIdxs;
+ Type *Ty = C->getType();
+ Type *Prev = 0;
+ for (unsigned i = 0, e = Idxs.size(); i != e;
+ Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
+ if (ATy->getNumElements() <= INT64_MAX &&
+ ATy->getNumElements() != 0 &&
+ CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
+ if (isa<SequentialType>(Prev)) {
+ // It's out of range, but we can factor it into the prior
+ // dimension.
+ NewIdxs.resize(Idxs.size());
+ ConstantInt *Factor = ConstantInt::get(CI->getType(),
+ ATy->getNumElements());
+ NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
+
+ Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
+ Constant *Div = ConstantExpr::getSDiv(CI, Factor);
+
+ // Before adding, extend both operands to i64 to avoid
+ // overflow trouble.
+ if (!PrevIdx->getType()->isIntegerTy(64))
+ PrevIdx = ConstantExpr::getSExt(PrevIdx,
+ Type::getInt64Ty(Div->getContext()));
+ if (!Div->getType()->isIntegerTy(64))
+ Div = ConstantExpr::getSExt(Div,
+ Type::getInt64Ty(Div->getContext()));
+
+ NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
+ } else {
+ // It's out of range, but the prior dimension is a struct
+ // so we can't do anything about it.
+ Unknown = true;
+ }
+ }
+ } else {
+ // We don't know if it's in range or not.
+ Unknown = true;
+ }
+ }
+
+ // If we did any factoring, start over with the adjusted indices.
+ if (!NewIdxs.empty()) {
+ for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
+ if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
+ return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
+ }
+
+ // If all indices are known integers and normalized, we can do a simple
+ // check for the "inbounds" property.
+ if (!Unknown && !inBounds &&
+ isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
+ return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
+
+ return 0;
+}
+
+Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
+ bool inBounds,
+ ArrayRef<Constant *> Idxs) {
+ return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
+}
+
+Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
+ bool inBounds,
+ ArrayRef<Value *> Idxs) {
+ return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
+}